
Transcription Module Trees from Gene

Expression Data

Gábor Csárdi

October 6, 2009

Contents

1 Introduction 1

2 Running the ISA 2

3 Generating the module tree 2

4 Plotting the sweep tree 4
4.1 Simple plots . 4
4.2 Customized plots . 4

5 More information 6

6 Session information 6

1 Introduction

The Iterative Signature Algorithm (ISA) finds transcription modules in gene
expression data. A module is a block of the reordered gene expression matrix.
The ISA has two threshold parameters: the gene (or feature) threshold and
the conditions (or sample) threshold. These essentially specify the stringency
of the biclustering. If the gene threshold is high, then modules will have less
genes, only the one that are consistently far above or below the mean expres-
sion level will be included. The same is true for the sample threshold and the
samples in the modules.
It is possible to run the ISA using different threshold parameters and define a
hierarchical organization of the found modules. We call such a description a
sweep graph or sweep tree. The vertices (or nodes) of the sweep graph are the
modules and there is a directed edge from module A to module B if the ISA
converges to module B, when started from module A, and the thresholds that
were used to find module B are used.

1

A sweep tree can be generated by keeping one threshold parameter fixed, and
vary the other one. We first find modules at a stringent threshold value and
then check where these converge at less stringent thresholds.
This document shows how it is possible to create a sweep tree with the eisa
package and the tree can be visualized.

2 Running the ISA

We will use the acute lymphoblastic leukemia data set from the ALL package.

> library(ALL)

> library(hgu95av2.db)

> library(genefilter)

> library(eisa)

> library(GO.db)

> data(ALL)

> varLimit <- 0.5

> kLimit <- 4

> ALimit <- 5

First we filter the genes and keep only the ones that have an expression level
of at least 5 in at least 4 samples; and that have a variance of at least 0.5
across the samples.

> flist <- filterfun(function(x) var(x) > varLimit,

kOverA(kLimit, ALimit))

> ALL.filt <- ALL[genefilter(ALL, flist),]

We remove the T-cell samples as well, and use only the B-cell leukemia sam-
ples.

> ALL.filt2 <- ALL.filt[, grepl("^B", ALL.filt$BT)]

Next, we run the ISA, with keeping the condition threshold fixed, but varying
the gene threshold.

> set.seed(1)

> modules <- ISA(ALL.filt2, flist = NA, thr.gene = seq(2,

4, by = 0.5), thr.cond = 1)

3 Generating the module tree

The ISASweep() function can be used to create a sweep tree from a set of ISA
modules. This essentially means finding the edges between the modules and
occasionally involves finding new modules as well.

2

> modules2 <- ISASweep(ALL.filt2, modules)

ISASweep() returns an ISAModules object, but adds some new seed data that
defines the edges of the sweep graph, plus possibly some new modules:

> modules

An ISAModules instance.
Number of modules: 36
Number of features: 1132
Number of samples: 95
Gene threshold(s): 4, 3.5, 3, 2.5, 2
Conditions threshold(s): 1

> modules2

An ISAModules instance.
Number of modules: 43
Number of features: 1132
Number of samples: 95
Gene threshold(s): 4, 3.5, 3, 2.5, 2
Conditions threshold(s): 1

> colnames(seedData(modules))

[1] "iterations" "oscillation" "thr.row" "thr.col"
[5] "freq" "rob" "rob.limit"

> colnames(seedData(modules2))

[1] "iterations" "oscillation" "thr.row" "thr.col"
[5] "freq" "rob" "rob.limit" "father"
[9] "level"

The father column contains pointers to the parent vertices in the graph and
the level column gives levels defined based on the gene thresholds, higher
levels indicate less stringent thresholds.
This data can be converted into a graph and then plotted using the igraph
package. The ISASweepGraph() function creates the graph.

> G <- ISASweepGraph(modules2)

G has a lot of attributes:

> list.graph.attributes(G)

[1] "layout" "width" "height"

> list.vertex.attributes(G)

3

[1] "thr" "id" "color" "shape"
[5] "size" "size2" "label" "noFeatures"
[9] "noSamples"

The layout graph attribute contains a two-column matrix with carefully cal-
culated coordinates for plotting the graph. The width and height graph at-
tributes contain the suggested size of the plot in inches.

> G$width

[1] 10

> G$height

[1] 10.6

The id vertex attribute contains the ids of the modules. The other vertex at-
tributes essentially define the look of the graph, when it is plotted.
See the documentation of the igraph package for more about igraph graph
objects.

4 Plotting the sweep tree

4.1 Simple plots

The ISASweepGraphPlot() function can be used to plot the graph returned
by ISASweepGraph(). We will use the suggested size for the plot, and leave all
plotting options at their default values. The result is in Fig. 1.

> X11(width = G$width, height = G$height)

> ISASweepGraphPlot(G)

4.2 Customized plots

Let us show a little example on how to customize the module tree plot. We
will add some annotation to the module, based on Gene Ontology enrich-
ment calculations. Let us perform the hypergeometric test for the enrichment
calculation. The p-values are automatically corrected using the Benjamini-
Hochberg method.

> GO <- ISAGO(modules2)

We will color the vertices according to their enrichment in the Biological Pro-
cess GO ontology. We also create some labels for them, the abbreviated GO
terms will be used for this.

4

2 2.5 3 3.5 4

2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Figure 1: An ISA module tree. Each rectangle symbolizes a transcription module, modules
in the same column were found at the same gene threshold. An arrow between two mod-
ules indicates that one is the “generalization” of the other, in the sense that ISA converges
to the more general (=bigger) module at the milder threshold.

5

> p.bp <- sapply(summary(GO$BP), function(x) as.integer(-log10(x$Pvalue[1])))

> c.bp <- d.bp <- sapply(sigCategories(GO$BP), function(x) x[1])

> d.bp[!is.na(c.bp)] <- sapply(mget(na.omit(c.bp),

GOTERM), Term)

> d.bp <- abbreviate(d.bp, 6)

> colbar <- hcl(h = 260, c = 35, l = seq(30, 100,

length = 20))

> colbar <- c("#FFFFFF", rev(colbar))

> col <- colbar[p.bp]

> X11(width = G$width, height = G$height)

We are ready to plot the sweep tree now. We put the abbreviated GO terms
to the top left corner, and the size of the module (i.e. number of genes and
number of samples) in the top right corner. We also increase the height of the
vertices a bit.

> ISASweepGraphPlot(G, vertex.color = col, vertex.size2 = 50,

vertex.label.topleft = d.bp, vertex.label.topright = paste(V(G)$noFeatures,

sep = ",", V(G)$noSamples))

Finally, we add a key for the abbreviated names at the top right corner. The
result is in Fig. 2.

> key <- na.omit(d.bp)[unique(names(na.omit(d.bp)))]

> key2 <- paste(key, sep = ": ", names(key))

> legend("topright", key2)

5 More information

For more information about the ISA, please see the references below. The ISA
homepage at http://www.unil.ch/cbg/homepage/software.html has exam-
ple data sets, and all ISA related tutorials and papers.

6 Session information

The version number of R and packages loaded for generating this vignette
were:

� R version 2.9.2 (2009-08-24), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-
8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-
8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-
8;LC_IDENTIFICATION=C

6

2 2.5 3 3.5 4

2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

rspntvrspntv

oxygnt

chrmta

phsp−s

gstrns

phsp−s

phsp−s

chrmta

gstrns

DNArpr

DNArpr

chmtxs

8,22

13,28

6,25

8,22

15,31

13,29

13,21

13,35

12,19

13,17

19,27

32,24

25,25

16,29

24,36

28,20

21,19

28,21

14,37

23,34

16,29

21,27

67,26

41,29

51,35

50,26

51,21

50,25

56,37

61,38

58,25

60,26

53,15

46,22

42,22

57,20

52,27

44,19

56,35

47,18

39,30

48,22

55,15

rspntv: response to virus
oxygnt: oxygen transport
chrmta: chromatin assembly
phsp−s: phosphoinositide−mediated signaling
gstrns: gas transport
DNArpr: DNA repair
chmtxs: chemotaxis

Figure 2: The same module tree, but with some annotation added. The modules are col-
ored according to their Gene Ontology Biological Process enrichment p-values, darker
colors correspond to more significant enrichment. The enriched GO terms and the sizes of
the modules were also added.

7

� Base packages: base, datasets, graphics, grDevices, methods, stats, utils

� Other packages: ALL 1.4.4, AnnotationDbi 1.6.0, Biobase 2.4.1, Cate-
gory 2.10.0, DBI 0.2-4, eisa 0.2, genefilter 1.24.2, GO.db 2.2.5, hgu95av2.db 2.2.12,
igraph 0.5.2-2, isa2 0.1, RSQLite 0.7-1

� Loaded via a namespace (and not attached): annotate 1.22.0, biclust 0.8.1,
colorspace 1.0-1, graph 1.22.2, grid 2.9.2, GSEABase 1.6.0, MASS 7.2-
48, RBGL 1.20.0, splines 2.9.2, survival 2.35-4, tools 2.9.2, vcd 1.2-4,
XML 2.6-0, xtable 1.5-5

References

[Bergmann et al., 2003] Bergmann, S., Ihmels, J., and Barkai, N. (2003). It-
erative signature algorithm for the analysis of large-scale gene expression
data. Phys Rev E Nonlin Soft Matter Phys, page 031902.

[Csárdi, 2009a] Csárdi, G. (2009a). eisa: The iterative signature algorithm for
gene expression data. R package version 0.2.

[Csárdi, 2009b] Csárdi, G. (2009b). isa2: The iterative signature algorithm. R
package version 0.2.

[Ihmels et al., 2004] Ihmels, J., Bergmann, S., and Barkai, N. (2004). Defining
transcription modules using large-scale gene expression data. Bioinformat-
ics, pages 1993–2003.

[Ihmels et al., 2002] Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv,
Y., and Barkai, N. (2002). Revealing modular organization in the yeast
transcriptional network. Nat Genet, pages 370–377.

[Kaiser et al., 2009] Kaiser, S., Santamaria, R., Theron, R., Quintales, L., and
Leisch, F. (2009). biclust: Bicluster algorithms. R package version 0.7.2.

[Luscher, 2009] Luscher, A. (2009). Expressionview: Visualize overlapping
biclusters. R package version 0.2.

[Madeira and Oliveira, 2004] Madeira, S. and Oliveira, A. (2004). Biclustering
algorithms for biological data analysis: a survey. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 1:24–45.

[Turner et al., 2003] Turner, H., Bailey, T., and Krzanowski, W. (2003). Im-
proved biclustering of microarray data demonstrated through systematic
performance tests. Computational Statistics and Data Analysis, 48:235–254.

8

