Go to: content | top | bottom | search
You are hereUNIL > Department of Ecology and Evolution > Research > Sanders Group

Sanders Group - Ecology and Evolution of Symbiotic Organisms.

For more information about mycorrhizas, our research projects in Lausanne and in the field in Colombia, with lots of photos and animations please visit:




Symbiotic interactions between different species are extremely common in nature and have evolved many times independently throughout the history of life. The abundance of symbiotic interactions indicates that this is clearly a very successful life strategy. Some symbioses are very important for the functioning of ecosystems. The interaction between plants and mycorrhizal fungi is necessary for plants to obtain sufficient phosphorus and other nutrients and it plays a key role in global carbon and phosphorus cycles.

Most of our work is carried out on the mycorrhizal symbiosis, and particularly the fungal side of the partnership. At least 60% of the world's plant species and all our globally important crops form this symbiosis. Global phosphate reserves are likely to become critically low in the next decades and prices are will escalate, along with the rapid growth of the world's human population.
It is essential to understand the biology of this symbiosis because of it's ubiquity in nature and it's importance for plant growth, agriculture, plant biodiversity and ecosystem stability and productivity. This is essential for conserving phosphate and for feeding people in the future.

From Molecular Genetics to Maintaining Diverse Ecosystems and Feeding People

In recent years, our group has focussed on furthering the basic understanding of the genetics, ecology and molecular biology of the mycorrhizal symbiosis. This particularly concerns the unusual genetics of the fungal partner in this symbiosis. We then apply this scientific knowledge in developing countries (especially Colombia), using mycorrhizal fungi to increase agricultural production of globally important crops and, at the same time, reduce fertiliser inputs. The ultimate goal of the applied part of our research is to reduce poverty and hunger. Because the mycorrhizal symbiosis is also important for healthy functioning of ecosystems, we also conduct ecological experiments aimed at understanding the mechanisms by which mycorrhizal fungal genetics contributes to plant diversity in ecosystems.

Genetics of Mycorrhizal Fungi

The genetics of arbuscular mycorrhizal fungi is unusual (see Sanders & Croll, 2010, Annual Review of Genetics). The fungi are coenocytic meaning that there are no membranes separating one nucleus from another. We have demonstrated that the nuclei are genetically different from each other within the same fungus/individual (see Kuhn et al., 2001, Nature and Hijri & Sanders, 2005, Nature). We study the consequences of this among-nucleus genetic diversity on the symbiosis and on how plants grow (see below).

Genetic Changes in Mycorrhizal Fungi Increase Plant Growth

It was thought that mycorrhizal fungi are completely clonal, exhibiting no genetic exchange and segregation. One of the most exciting findings in our group is that these two genetic processes indeed occur in mycorrhizal fungi and that they can have very large effects on plant growth. In the greenhouse, we can increase rice growth by up to five times by inoculating the plants with genetically novel fungi created in our lab using the completely natural processes of genetic exchange and segregation (see Angelard et al. 2010).

Improving Yields of Globally Important Crops in Colombia

Plants have an enormous difficulty obtaining phosphorus. This is especially the case in most tropical soils, where farmers have to apply huge amounts of phosphate fertiliser. In the tropics, mycorrhizal fungi can make a major impact in agriculture and reduce fertiliser costs. Our research has taken an exciting turn in the last couple of years, allowing us to apply our technological developments in improving mycorrhizal fungi and using them to reduce farmers costs in the tropics. We have teamed up with Prof. Alia Rodriguez's group at the National University of Colombia and with the Spanish biotechnology company Mycovitro S.L. to develop biotechnologically in-vitro produced mycorrhizal fungal lines for use with globally important crops. Our applied work in the field is mostly on cassava as globally it is one of the most important food security crops.

In press |  2016 |  2015 |  2014 |  2013 |  2012 |  2011 |  2010 |  2009 |  2008 |  2007 |  2006 |  2005 |  2004 |  2003 |  2002 |  2001 |  2000 |  1999 |  1998 |  1997 |  1996 |  1995 |  1994 |  1993 |  1992 |  1990 |  Thèses (doctorat) | 

In Press
Ordoñez Y.M., Fernandez B.R., Lara L.S., Rodriguez A., Uribe-Vélez D., Sanders I.R., 2016. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLoS One 11(6) pp. e0154438. [Document] [DOI] [Web of Science] [Pubmed]
van der Heijden M.G., Martin F.M., Selosse M.A., Sanders I.R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205(4) pp. 1406-1423. [DOI] [Web of Science] [Pubmed]
Angelard C., Tanner C.J., Fontanillas P., Niculita-Hirzel Hélène, Masclaux F., Sanders I.R., 2014. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME Journal 8(2) pp. 284-294. [DOI] [Web of Science] [Pubmed]
Pellissier L., Niculita-Hirzel Hélène, Dubuis A., Pagni M., Guex N., Ndiribe C., Salamin N., Xenarios I., Goudet J., Sanders I.R. et al., 2014. Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Molecular Ecology 23(17) pp. 4274-4290. [DOI] [Web of Science] [Pubmed]
Angelard C., Sanders I.R., 2013. Consequences of Segregation and Genetic Exchange on Adaptability in Arbuscular Mycorrhizal Fungi (AMF). pp. 231-243 in Springer Berlin Heidelberg (eds.) Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Pierre Pontarotti, CNRS UMR 6632, Labo. Evolution Biologique et, Université d'Aix-Marseille.
Johnson N.C., Angelard C., Sanders I.R., Kiers E.T., 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters 16 Suppl 1 pp. 140-153. [DOI] [Web of Science] [Pubmed]
Pagni M., Niculita-Hirzel Hélène, Pellissier L., Dubuis A., Xenarios I., Guisan A., Sanders I.R., Goudet J., Guex N., 2013. Density-based hierarchical clustering of pyro-sequences on a large scale--the case of fungal ITS1. Bioinformatics 29(10) pp. 1268-1274. [Document] [DOI] [Web of Science] [Pubmed]
Pellissier L., Pinto-Figueroa E., Niculita-Hirzel H., Moora M., Villard L., Goudet J., Guex N., Pagni M., Xenarios I., Sanders I. et al., 2013. Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Frontiers In Plant Science 4(500) p. 500. [Document] [DOI] [Web of Science] [Pubmed]
Roger A., Colard A., Angelard C., Sanders I.R., 2013. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME Journal 7(11) pp. 2137-2146. [DOI] [Web of Science] [Pubmed]
Roger A., Gétaz M., Rasmann S., Sanders I.R., 2013. Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology 38(4) pp. 330-338. [DOI] [Web of Science]
Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., Charron P., Duensing N., Frei Dit Frey N., Gianinazzi-Pearson V. et al., 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America 110(50) pp. 20117-20122. [DOI] [Web of Science] [Pubmed]
Tisserant E., Kohler A., Dozolme-Seddas P., Balestrini R., Benabdellah K., Colard A., Croll D., Da Silva C., Gomez S.K., Koul R. et al., 2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist 193(3) pp. 755-769. [DOI] [Web of Science] [Pubmed]
Colard A., Angelard C., Sanders I.R., 2011. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Applied and Environmental Microbiology 77(18) pp. 6510-6515. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2011. Fungal sex: meiosis machinery in ancient symbiotic fungi. Current Biology 21(21) pp. R896-R897. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2011. Mycorrhizal symbioses: how to be seen as a good fungus. Current Biology 21(14) pp. R550-R552. [DOI] [Web of Science] [Pubmed]
Angelard C., Colard A., Niculita-Hirzel Hélène, Croll D., Sanders I.R., 2010. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Current Biology 20(13) pp. 1216-1221. [DOI] [Web of Science] [Pubmed]
Phosri C., Rodriguez A., Sanders I.R., Jeffries P., 2010. The role of mycorrhizas in more sustainable oil palm cultivation. Agriculture Ecosystems and Environment 135(3) pp. 187-193. [DOI] [Web of Science]
Sanders I.R., Croll D., 2010. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annual Review of Genetics 44 pp. 271-292. [DOI] [Web of Science] [Pubmed]
Scheublin T.R., Sanders I.R., Keel C., van der Meer J.R., 2010. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME Journal 4(6) pp. 752-763. [DOI] [Web of Science] [Pubmed]
Corradi N., Ruffner B., Croll D., Colard A., Horák A., Sanders I.R., 2009. High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular Mycorrhizal fungi. Applied and Environmental Microbiology 75(7) pp. 1970-1978. [Document] [DOI] [Web of Science] [Pubmed]
Croll D., Giovannetti M., Koch A.M., Sbrana C., Ehinger M., Lammers P.J., Sanders I.R., 2009. Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 181(4) pp. 924-937. [Document] [DOI] [Web of Science] [Pubmed]
Croll D., Sanders I. R., 2009. Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evolutionary Biology 9(13) pp. 1-11. [Document] [DOI] [Web of Science] [Pubmed]
Burri R., Hirzel Hélène N., Salamin N., Roulin A., Fumagalli L., 2008. Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution. Molecular Biology and Evolution 25(6) pp. 1180-1191. [DOI] [Web of Science] [Pubmed]
Burri R., Niculita-Hirzel Hélène, Roulin A., Fumagalli L., 2008. Isolation and characterization of major histocompatibility complex (MHC) class II B genes in the Barn owl (Aves: Tyto alba). Immunogenetics 60(9) pp. 543-550. [DOI] [Web of Science] [Pubmed]
Croll D., Corradi N., Gamper H.A., Sanders I.R., 2008. Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytologist 180(3) pp. 564-568. [Document] [DOI] [Web of Science] [Pubmed]
Croll D., Wille L., Gamper H.A., Mathimaran N., Lammers P.J., Corradi N., Sanders I.R., 2008. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 178(3) pp. 672-687. [Document] [DOI] [Web of Science] [Pubmed]
Devevey G., Niculita-Hirzel Hélène, Biollaz F., Candice Y., Chapuisat M., Christe P., 2008. Developmental, metabolic and immunological costs of flea infestation in the common vole. Functional Ecology 22(6) pp. 1091-1098. [Document] [DOI] [Web of Science]
Martin F., Aerts A., Ahrén D., Brun A., Danchin E.G., Duchaussoy F., Gibon J., Kohler A., Lindquist E., Pereda V. et al., 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183) pp. 88-92. [DOI] [Web of Science] [Pubmed]
Martin F., Gianinazzi-Pearson V., Hijri M., Lammers P., Requena N., Sanders I.R., Shachar-Hill Y., Shapiro H., Tuskan G.A., Young J.P., 2008. The long hard road to a completed Glomus intraradices genome. New Phytologist 180(4) pp. 747-750. [DOI] [Web of Science] [Pubmed]
Niculita Hélène, Hirzel A.H., 2008. Visualizing the gene order conservation among genomes with ChromoMapper. International Journal of Computational Intelligence in Bioinformatics and Systems Biology 1(2).
Niculita-Hirzel Hélène, Labbé J., Kohler A., le Tacon F., Martin F., Sanders I.R., Kües U., 2008. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytologist 180(2) pp. 329-342. [DOI] [Web of Science] [Pubmed]
Niculita-Hirzel Hélène, Stöck M., Perrin N., 2008. A key transcription cofactor on the nascent sex chromosomes of European tree frogs (Hyla arborea). Genetics 179(3) pp. 1721-1723. [Document] [DOI] [Web of Science] [Pubmed]
Corradi N., Croll D., Colard A., Kuhn G., Ehinger M., Sanders I.R., 2007. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Applied and Environmental Microbiology 73(1) pp. 366-369. [Document] [DOI] [Web of Science] [Pubmed]
Hijri M., Niculita Hélène, Sanders I.R., 2007. Molecular characterization of chromosome termini of the arbuscular mycorrhizal fungus Glomus intraradices (Glomeromycota). Fungal Genetics and Biology 44(12) pp. 1380-1386. [DOI] [Web of Science] [Pubmed]
Koch A.M., Croll D., Sanders I.R., 2006. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecology Letters 9(2) pp. 103-110. [Document] [DOI] [Web of Science] [Pubmed]
Montchamp-Moreau C., Ogereau D., Chaminade N., Colard A., Aulard S., 2006. Organization of the sex-ratio meiotic drive region in Drosophila simulans. Genetics 174(3) pp. 1365-1371. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2006. Rapid disease emergence through horizontal gene transfer between eukaryotes. Trends in Ecology and Evolution 21(12) pp. 656-658. [DOI] [Web of Science] [Pubmed]
van der Heijden M.G., Streitwolf-Engel R., Riedl R., Siegrist S., Neudecker A., Ineichen K., Boller T., Wiemken A., Sanders I.R., 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172(4) pp. 739-752. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2005. Microbiology: conspirators in blight. Nature 437(7060) pp. 823-824. [DOI] [Web of Science] [Pubmed]
Corradi N., Hijri M., Fumagalli L., Sanders I.R., 2004. Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genetics and Biology 41(11) pp. 1037-1045. [Document] [DOI] [Web of Science] [Pubmed]
Koch A.M., Kuhn G., Fontanillas P., Fumagalli L., Goudet J., Sanders I.R., 2004. High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America 101(8) pp. 2369-2374. [DOI] [Web of Science] [Pubmed]
Gandolfi A., Sanders I.R., Rossi V., Menozzi P., 2003. Evidence of recombination in putative ancient asexuals. Molecular Biology and Evolution 20(5) pp. 754-761. [DOI] [Web of Science] [Pubmed]
Jansa J., Mozafar A., Kuhn G., Anken T., Ruh R., Sanders I. R., Frossard E., 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications 13(4) pp. 1164-1176. [DOI] [Web of Science]
Sanders I.R., 2003. Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends in Plant Science 8(4) pp. 143-145. [DOI] [Web of Science] [Pubmed]
Sanders I.R., Koch A., Kuhn G., 2003. Arbuscular mycorrhizal fungi: genetics of multigenomic, clonal networks and its ecological consequences. Biological Journal of the Linnean Society 79(1) pp. 59-60. [Document] [DOI] [Web of Science]
van der Heijden M.G.A., Wiemken A., Sanders I.R., 2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytologist 157(3) pp. 569-578. [DOI] [Web of Science]
Hijri M., Redecker D., Petetot J.A., Voigt K., Wöstemeyer J., Sanders I.R., 2002. Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Applied and Environmental Microbiology 68(9) pp. 4567-4573. [Document] [DOI] [Web of Science] [Pubmed]
Jansa J., Mozafar A., Anken T., Ruh R., Sanders I.R., Frossard E., 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12(5) pp. 225-234. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2002. Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. American Naturalist 160(Suppl. 4) pp. S128-S141. [DOI] [Web of Science] [Pubmed]
Sanders I.R., 2002. Specificity in the mycorrhizal symbiosis. pp. 415-437 in van der Heijden M.G.A., Sanders I.R. (eds.) Mycorrhizal ecology. Ecological studies 157. Springer-Verlag, Heidelberg.
van der Heijden M.G.A., Sanders I.R., 2002. Mycorrhizal ecology: synthesis and perspectives. pp. 441-456 in van der Heijden M.G.A., Sanders I.R. (eds.) Mycorrhizal ecology. Ecological Studies 157. Springer-Verlag, Heidelberg.
Kuhn G., Hijri M., Sanders I.R., 2001. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414(6865) pp. 745-748. [Document] [DOI] [Web of Science] [Pubmed]
Streitwolf-Engel R., van der Heijden M.G.A., Wiemken A., Sanders I.R., 2001. The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82(10) pp. 2846-2859. [Document] [DOI] [Web of Science]
Goverde M., van der Heijden M.G.A., Wiemken A., Sanders I R., Erhardt A., 2000. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125(3) pp. 362-369. [Document] [DOI] [Web of Science]
Sanders I.R., 1999. Evolutionary genetics. No sex please, we're fungi. Nature 399(6738) pp. 737-739. [DOI] [Pubmed]
van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I. R., 1999. "Sampling effect", a problem in biodiversity manipulation? A reply to David A. Wardle. Oikos 87(2) pp. 408-410. [DOI] [Web of Science]
Sanders I. R., Streitwolf-Engel R., van der Heijden M. G. A., Boller T., Wiemken A., 1998. Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117(4) pp. 496-503. [Document] [Web of Science]
Sanders I.R., Koide R.T., Shumway D.L., 1998. Diversity and structure in natural communities: the role of the mycorrhizal symbiosis. pp. 571-593 in Varma A., Hock B. (eds.) Mycorrhiza: structure, function, molecular biology and biotechnology. 2nd ed., Springer-Verlag, Berlin.
van der Heijden M G A., Boller T., Wiemken A., Sanders I.R., 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79(6) pp. 2082-2091. [Document] [DOI] [Web of Science]
van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I.R., 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706) pp. 69-72. [Document] [DOI] [Web of Science]
Streitwolf-Engel R., Boller T., Wiemken A., Sanders I.R., 1997. Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. Journal of Ecology 85(2) pp. 181-191. [Document] [Web of Science]
Sanders I.R., 1996. Plant-fungal interactions in a CO2-rich world. pp. 265-272 in Körner C., Bazzaz F.A. (eds.) Carbon dioxide, populations, and communities. Physiological ecology series . Academic Press, San Diego.
Groppe K., Sanders I., Wiemken A., Boller T., 1995. A microsatellite marker for studying the ecology and diversity of fungal endophytes (Epichloë spp.) in grasses. Applied and Environmental Microbiology 61(11) pp. 3943-3949. [Web of Science] [Pubmed]
Sanders I.R., 1995. Grassland ecology. pp. 225-235 in Nierenberg W.A. (eds.) Encyclopedia of environmental biology. Academic Press, San Diego.
Sanders I.R., Boller T., Wiemken A., 1995. Symbiosis and the biodiversity of natural ecosystems. Gaia 4(4) pp. 227-233.
Sanders I.R., Koide R.T., Shumway D L., 1995. Community level interactions between plants and vesicular-arbuscular mycorrhizal fungi. pp. 607-625 in Varma A., Hock B. (eds.) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer-Verlag, Berlin.
Arnone J.A., Blot M., Leadley P., Matthies D., Sanders I., 1994. Biodiversity in Switzerland. Nature 370(6490) pp. 500-500. [DOI] [Web of Science]
Sanders I.R., Koide R.T., Shumway D.L., 1993. Mycorrhizal stimulation of plant parasitism. Canadian Journal of Botany 71(9) pp. 1143-1146.
Fitter A.H., Sanders I.R., 1992. Interactions with the soil fauna. pp. 333-354 in Allen M.F. (eds.) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York.
Sanders I.R., Ravolanirina F., Gianinazzipearson V., Gianinazzi S., Lemoine M.C., 1992. Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycological Research 96(6) pp. 477-480. [DOI] [Web of Science]
Phd thesis
Roger A., 2012. Effects of the relatedness of arbuscular mycorrhizal fungi on associated species ecology. 155 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I. (dir.).
Colard A., 2011. Genetic variability in Arbuscular Mycorrhizal Fungi : effect on gene transcription of "Oryza Sativa". 240 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I. R. (dir.). [Document]
Labouche A.-M., 2011. Coupled reproductive ecologies in a plant-pollinator-seed predator system. 209 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I. (dir.).
Croll D., 07-2009. Evolutionary genetics of arbuscular mycorrhizal fungi - causes and consequences of multiple genomes in Glomus intraradices. 271 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I. R. (dir.).
Corradi N., 2006. Molecular evolutionary patterns in the Glomeromycota;. 105 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I.R. (dir.).
Ehinger M., 2006. Evolutionary forces affect multigenomic arbuscular mycorhizal fungi : an experimental approach using Glomus intraradices. 106 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I.R. (dir.).
Koch A.M., 2006. Linking the population genetics and ecology of arbuscular mycorrhizal fungi. 105 p., Université de Lausanne, Faculté de biologie et médecine, Sanders I.R. (dir.). [Document]
Kuhn G., 2003. Organisation of genetic variation in multinucleate arbuscular mycorrhizal fungi. Université de Lausanne, Faculté des sciences, Sanders I. R. (dir.). [Document]


Ian Sanders
Office room: 4318
Phone: +41(0)21 692 42 61
Fax: +41(0)21 692 42 65

Administrative assistant
Office room: 3109
Phone: +4121 692 4205
Fax: +4121 692 4265


All about the Wood Wide Web (Prof. Ian Sanders)

Biophore - CH-1015 Lausanne  - Switzerland  -  Tel. +41 21 692 41 60  -  Fax +41 21 692 41 65
Swiss University