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of possible positions; 

 Here we can consider two cases: 

o a) Single particles species, this is the disjoint union of the n-particle 
configuration space  
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o b) for several particles species, there is the Cartesian product of several 
copies of Γ𝒬 =  𝒬[𝑛]∞

𝑛=0 , one for each species. One obtains a 
configuration space which is an union of sectors 𝒬[𝑛] where 𝑛 = (𝑛1, … , 𝑛ℓ) 
is the ℓ-tuple of the particles number for a certain species of particles. 

 



Ontology 

E.g.: 

QED → 𝒬 is a product of 3 copies of  

Γ𝒬 =  𝒬[𝑛]
∞

𝑛=0

 

Particles species involved: electrons, positrons and photons; 

In this case, a configuration space specifies number and position of all 

𝑒−, 𝑒+, 𝛾. 
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 In BQFT particles are unlabelled: they are identical and pointlike 

                                              ↓     

     the sector 𝒬[𝑛] is defined as ℝ3𝑛 modulo permutations: 
ℝ3𝑛
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 In this case we could permute the particles without changing their world 

lines 

 

NB: in the usual NRBM we cannot permute particles since they are labelled: if 

there is a permutation, it will entails a different trajectory for the particle;  
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b) Fermionic Fock Space: consists of square-integrable functions on  ℝ3𝑛
𝑛  

which are antisymmetric under permutations; 

 

As a consequence, we can consider Ψ𝑡 as a function on configuration space; 

 

Here, as in NRBM, Ψ𝑡 has a double role: it guides the particles’ motion and 

determines the statistical distribution of the positions.  

 



Ontology 

 To sum up: 

• Particles have positions at any given time in a real physical space 

                                                   ↓ 

Possible configurations of particles have a representation in a position’s space 

Γ𝒬[𝑛]; 

 

•  Ψ𝑡 is a vector in an appropriate Fock space; 
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Dynamics 

 The dynamics of the local beables, as in NRBM, depends on Ψ𝑡 (and on H); 

 Here particles follow world lines which have begin and end at some 

spacetime points                                                   ↓ 

                                               it corresponds to a creation/annihilation event 

 These events are the novel element respect standard bohmian trajectories, 

but trivially they are essential to explain processes involving particle 

creation and annihilation; 

 NB: these events are intrinsically stochastic, so the evolution of a physical 

system in this theory will not be deterministic, in opposition to the non 

relativistic regime (here we will call these random events “jumps”). 
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Dynamics 

 The law of motion of BQFT specifies for the configuration of particles: 

• When to jump;                                                       

                                                       stochastic terms 

• Where to jump;            

• How to move between the jumps           deterministic evolution; 

 

• The state vector evolves according to the Schrödinger equation; 

• NB: generally speaking, world lines follow classical bohmian trajectories 

interrupted randomly by stochastic jumps which correspond to particle 

creation/annihilation events.  
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Dynamics 

 What do we mean when we say that a certain configuration follows 

classical bohmian trajectories? 

 The law of motion for 𝑄𝑡 depends on the state vector and on its 

Hamiltonian 

                                   ↓ 

the “continuous” path of a world line is governed by a first-order differential 

equation which is very close to the bohmian guidance equation: 

 
𝑑𝑄𝑡
𝑑𝑡

= 𝑣Ψ𝑡 = Re
Ψ𝑡 (𝑄𝑡)(𝑞 Ψ𝑡)𝑄𝑡

Ψ𝑡(𝑄𝑡)Ψ𝑡(𝑄𝑡)
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It defines the deterministic path of the world lines between the jumps; 
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It is the interaction term corresponding to a random jump defined by jump 
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𝜎 = 𝜎 𝑞′, 𝑞, 𝑡 = 𝜎Ψ 𝑡 (𝑞′, 𝑞) 

 

 𝜎 is a transition from a configuration q to a configuration q’ at time t; 

 𝐻𝑡𝑜𝑡 appears in the Schrödinger equation for Ψ, thus it becomes clear how 

the law of motion for the configuration of particles depends on Ψ and 𝐻𝑡𝑜𝑡.  
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Ψ 𝑞 Ψ(𝑞)
 

 

To sum up, the total Hamiltonian gives a “deterministic” motion with velocity v 

randomly interrupted by jumps with rate 𝜎 after each of which the 

deterministic motion is resumed (and again interrupted). 
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 What is stochastic about 𝑄𝑡? 

a) The times at which jumps occur; 

b) The destination of the jumps; 



Equivariance 

 The probabilities for a) and b) are governed by the wave function 
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If 𝑄(𝑡0) is chosen at random with distribution |Ψ(𝑡0)|
2, then at every later 
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2, then at every later 

time 𝑡 > 𝑡0 𝑄 𝑡 is distributed with density |Ψ(𝑡)|2 

 

 This process is equivariant, and it establishes the empirical equivalence 

between BQFT and standard QFT; 

 NB: equivariance in BQFT is differently understood respect NRBM in virtue 

of the stochastic nature of the events which are observed at the QFT level.  
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 Here Markov processes are candidates for the equivariant motion of the 

configuration; 

 Markovian processes involve transition probabilities from one configuration 

to another → this is completely adherent to the stochasticity of jumps rates 

for creation/annihilation events; 

 These probabilities are characterized by a linear operator called forward 

generator 𝐿𝑡 

 The distribution 𝜌𝑡 of 𝑄𝑡 evolves according to 

 

𝜕𝜌𝑡
𝜕𝑡

= 𝐿𝑡𝜌𝑡. 
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 Generalization of equivariance from deterministic to Markovian processes: 

 

given the transition probabilities, the |Ψ|2- distribution is equivariant iff for all 

times 𝑡and 𝑡′ with 𝑡′ > 𝑡 the distribution 𝑄𝑡 with distribution |Ψ|2 evolves into a 

configuration 𝑄𝑡′ with distribution |Ψ𝑡′|
2. 
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 Generalization of equivariance from deterministic to Markovian processes: 

 

given the transition probabilities, the |Ψ|2- distribution is equivariant iff for all 

times 𝑡and 𝑡′ with 𝑡′ > 𝑡 the distribution 𝑄𝑡 with distribution |Ψ|2 evolves into a 

configuration 𝑄𝑡′ with distribution |Ψ𝑡′|
2. 

 

Therefore, the transition probabilities are equivariant. 

 To close the circle: “A jump process is a Markov process on configuration 

space for which the only motion that occurs is via jumps”.  
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particles; 

 All talk about particles has to be understood as talk about fields → 

particles are defined as field’s excitations → fields are the beables of the 

theory; 

 Malament’s aim: to show the physical impossibility to have a quantum filed 

theory with a particle ontology;  

 The notion of “particle” entails some peculiar features among which its 

localizability: this result is concerned with this property 

↓ 

The theorem is about position measurement of a (supposed) localized particle 

in Minkowski spacetime and shows how we cannot localize a particle in this 

space, no matter where we perform the measurement; 

NB: in SQM particles are not localized but localizable 
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 Let ℳ be a Minkowski spacetime, and let 𝑆 be a family of parallel 

spacelike hyperplanes that cover ℳ; 

 Let us take a spatial set Δ to be any bounded open set within some 

particular 𝑆𝑖; 

 NB: for the following argument it is no important how large is Δ; 

 Definition of a quantum state: 

1) ℋ Hilbert space, the rays of which represent the pure state of our system; 

2) An assignment to each spatial set Δ of a projection operator 𝑃Δ on ℋ; 

3) A unitary 𝐚 ↦ 𝑈(𝐚) representation in ℋ of the translation group in ℳ; 

 



Malament’s theorem 

 Here 𝑃Δ means the event that the particle would be found in ∆ if a 

particular detection experiment were performed; 

 Conditions on the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝐚)) 

 



Malament’s theorem 

 Here 𝑃Δ means the event that the particle would be found in ∆ if a 

particular detection experiment were performed; 

 Conditions on the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝐚)) 

1) Translation Covariance Condition: 

 
𝑃Δ+𝐚 = 𝑈(𝐚)𝑃Δ𝑈(−𝐚) 

 

where 𝑃Δ+𝐚 is a result one obtains translating Δ by 𝐚; 

 



Malament’s theorem 

 Here 𝑃Δ means the event that the particle would be found in ∆ if a 
particular detection experiment were performed; 

 Conditions on the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝐚)) 

1) Translation Covariance Condition: 

 
𝑃Δ+𝐚 = 𝑈(𝐚)𝑃Δ𝑈(−𝐚) 

 

where 𝑃Δ+𝐚 is a result one obtains translating Δ by 𝐚; 

This condition means that the statistics of a measurement does not change with 
spatial translations: We can suppose to conduct the experiment not at its 
original site, but translated in another place, which is displaced from the first 
by 𝐚: 𝑃Δ+𝐚 represents the event that if a particular experiment were 
performed, the particle would be found in Δ + 𝐚. 
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2) Energy Condition: 

For all future directed timelike vectors 𝐚 in ℳ, if 𝐻(𝐚) is the unique self-

adjoint hamiltonian operator satisfying  

𝑈 𝑡, 𝐚 = 𝑒−𝑖𝐻(𝐚) 

then the spectrum of 𝐻(𝐚) is bounded below; 

This condition says that a particle has a ground energy state; 
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For all future directed timelike vectors 𝐚 in ℳ, if 𝐻(𝐚) is the unique self-

adjoint hamiltonian operator satisfying  

𝑈 𝑡, 𝐚 = 𝑒−𝑖𝐻(𝐚) 

then the spectrum of 𝐻(𝐚) is bounded below; 

This condition says that a particle has a ground energy state; 

3) Localizability Condition: 

If ∆1, ∆2 are disjoint spatial sets of a single 𝑆, then 

𝑃∆1𝑃∆2 = 𝑃∆2𝑃∆1 = 0 

this condition rules out the “infinite speed” possibility for a particle: a particle 

cannot be detected in two disjoints (spacelike related) spatial sets at the same 

given time; 
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4) Locality Condition:  

If ∆1, ∆2 are spatial sets (not necessarily on the same hyperplane) that are 

spacelike related, then 

 
𝑃∆1𝑃∆2 = 𝑃∆2𝑃∆1 

 

Here it is imposed the “stamp of relativity”, the independence of outcomes 

holds in time → the statistical independence of position measurements is 

propagated and preserved in time! 



Malament’s theorem 

 Claim: Malament’s theorem 

If the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝒂)) satisfies condition (1)-(4), then 

 
𝑃∆ = 0, 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 ∆ 

 

 Conclusion: any candidate of a particle relativistic quantum theory that 

satisfies these conditions must predict that the probability to find the 

particle in any ∆ is 0. Since this conclusion is not acceptable, the claim 

assumes the status of a no-go theorem for a particle ontology. 



Discussion 

 Two options on the table: 

1) Malament’s theorem shows how it is physically impossible to have a 

consistent theory with a particles ontology; 

2) Bohmian QFT, a quantum field theory of particles which is empirically 

adequate since it recovers all the set of predictions of standard QFT; 
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 Malament’s theorem is based on the usual SQM formalism: the description 
of a physical system is provided only in terms of the wave function; 

 The theorem is concerned with measurements of position operator, it is not 
about particles 

                                                         ↓ 

                        here is valid the same argument against SQM 

BM and BQFT have a richer and clearer ontological structure: we assume that 
our world is made of particles, our primitive variables, which have definite 
positions at any given time; 

 The “primitiveness” of PO ⇒ two different aspects:  

a) primitive variables are “irreducible” to others notions, they are not 
inferred o derived from other entities;  

b) explanatory function of the primitive variables: they are primitive because 
every physical object or phenomenon must be connected and explained in 
terms of PO; 

 



Discussion 

 Realism about operators, two quotations: 

 The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite 

surprising to have it appearing in physical theory at the most fundamental 

level. […] Does not any analysis of measurement require concepts more 

fundamental than measurement? And should not the fundamental theory be 

about these more fundamental concepts? (Bell, 1981)  
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 The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite 
surprising to have it appearing in physical theory at the most fundamental 
level. […] Does not any analysis of measurement require concepts more 
fundamental than measurement? And should not the fundamental theory be 
about these more fundamental concepts? (Bell, 1981)  

 

 Here are some words which, however legitimate and necessary in 
application, have no place in a formulation with any pretension to physical 
precision: system; apparatus; environment; microscopic, macroscopic; 
reversible, irreversible; observable; information; measurement. […] The 
notions of “microscopic” and “macroscopic” defy precise definition. […] 
Einstein said that it is theory which decides what is “observable”. I think he 
was right. […]“observation” is a complicated and theory-laden business. 
Then that notion should not appear in the formulation of fundamental 
theory. (Bell, 1990)  
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 Malament’s argument excludes non local interactions, while BQFT 

incorporate non locality in its dynamical equation for the primitive variables 

                                                         ↓ 

as in the non relativistic regime, the velocity of particles depends on the entire 

configuration 

 The point here is that within the bohmian framework one is not trying to 

“make the standard QFT a bohmian one”, rather one is trying to built up a 

new physical theory with different features respect standard QFT; 
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 Malament’s argument excludes non local interactions, while BQFT 
incorporate non locality in its dynamical equation for the primitive variables 

                                                         ↓ 

as in the non relativistic regime, the velocity of particles depends on the entire 
configuration 

 The point here is that within the bohmian framework one is not trying to 
“make the standard QFT a bohmian one”, rather one is trying to built up a 
new physical theory with different features respect standard QFT; 

 In conclusion we have a different structure for the definition and the 
description of a quantum system than (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝒂)) 

 
↓ 

a description which includes physical assumptions about the primitive ontology; 
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 BQFT is a counterexample to Malament’s theorem, so it is possible to have 

a theory with a particle ontology; 

 BQFT is however an effective theory: we have to introduce cut offs (UV and 

IR) in order to have well defined Hamiltonians; 

 



Conclusions 

 BQFT is a counterexample to Malament’s theorem, so it is possible to have 

a theory with a particle ontology; 

 BQFT is however an effective theory: we have to introduce cut offs (UV and 

IR) in order to have well defined Hamiltonians; 

 Here effective means only that this theory is not strictly speaking a 

fundamental theory → e.g. gravitational phenomena are not explained (this 

is also the case of any QFT) 

                                                    ↓ 

Effectiveness has not to be regarded as a negative feature: it says only that a 

certain theory has limits in its applications: we cannot say anything under 

certain physical energies! 

 



Conclusions 

 Lorentz invariance: BQFT requires a preferred reference frame, therefore it 

is not Lorentz invariant 

 

 However, the theory is empirically equivalent to a Lorentz-invariant theory 

 
↓ 

Experimentally there are no possibilities for an observer to determine which 

frame is the preferred one, so the BQFT’s empirical predictions are Lorentz 

invariant 

↓ 

BQFT is equivalent to a fully Lorentz-invariant theory. 
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