BOHMIAN-TYPE QFT AND MALAMENT NO GO THEOREM

Andrea Oldofredi 02 May 2014, Lausanne

Ontology

\square Ontology of BQFT: particles moving in 4D spacetime \rightarrow as in NRBM particles have a definite position at any given time;

Ontology

\square Ontology of BQFT: particles moving in 4D spacetime \rightarrow as in NRBM particles have a definite position at any given time;

- $Q_{t}=Q(t)$ is a possible configuration of particles in configuration space Q of possible positions;

Ontology

\square Ontology of BQFT: particles moving in 4D spacetime \rightarrow as in NRBM particles have a definite position at any given time;
$\square Q_{t}=Q(t)$ is a possible configuration of particles in configuration space \mathcal{Q} of possible positions;
\square Here we can consider two cases:

- a) Single particles species, this is the disjoint union of the n-particle configuration space

$$
\Gamma Q=\bigcup_{n=0}^{\infty} \mathcal{Q}^{[n]}
$$

Ontology

\square Ontology of BQFT: particles moving in 4D spacetime \rightarrow as in NRBM particles have a definite position at any given time;
$\square Q_{t}=Q(t)$ is a possible configuration of particles in configuration space Q of possible positions;
\square Here we can consider two cases:
a) Single particles species, this is the disjoint union of the n-particle configuration space

$$
\Gamma Q=\bigcup_{n=0}^{\infty} \mathcal{Q}^{[n]}
$$

b) for several particles species, there is the Cartesian product of several copies of $\Gamma Q=\bigcup_{n=0}^{\infty} \mathcal{Q}^{[n]}$, one for each species. One obtains a configuration space which is an union of sectors $Q^{[n]}$ where $n=\left(n_{1}, \ldots, n_{\ell}\right)$ is the ℓ-tuple of the particles number for a certain species of particles.

Ontology

E.g.:

QED $\rightarrow \mathcal{Q}$ is a product of 3 copies of

$$
\Gamma Q=\bigcup_{n=0}^{\infty} \mathcal{Q}^{[n]}
$$

Particles species involved: electrons, positrons and photons;
In this case, a configuration space specifies number and position of all e^{-}, e^{+}, γ.

Ontology

\square In BQFT particles are unlabelled: they are identical and pointlike

Ontology

$\square \ln$ BQFT particles are unlabelled: they are identical and pointlike \downarrow
the sector $\mathcal{Q}^{[n]}$ is defined as $\mathbb{R}^{3 n}$ modulo permutations: $\frac{\mathbb{R}^{3 n}}{S^{n}}$

Ontology

$\square \ln$ BQFT particles are unlabelled: they are identical and pointlike \downarrow
the sector $\mathcal{Q}^{[n]}$ is defined as $\mathbb{R}^{3 n}$ modulo permutations: $\frac{\mathbb{R}^{3 n}}{S^{n}}$
\square In this case we could permute the particles without changing their world lines

Ontology

$\square \ln$ BQFT particles are unlabelled: they are identical and pointlike \downarrow
the sector $\mathcal{Q}^{[n]}$ is defined as $\mathbb{R}^{3 n}$ modulo permutations: $\frac{\mathbb{R}^{3 n}}{S^{n}}$
\square In this case we could permute the particles without changing their world lines

NB: in the usual NRBM we cannot permute particles since they are labelled: if there is a permutation, it will entails a different trajectory for the particle;

Ontology

(a)

(c)
(b)

(d)

Ontology

\square In BQFT a state of a physical system is described by a pair $\left(Q_{t}, \Psi_{t}\right)$ where Ψ_{t} is a vector in the appropriate Fock space

Ontology

\square In BQFT a state of a physical system is described by a pair $\left(Q_{t}, \Psi_{t}\right)$ where Ψ_{t} is a vector in the appropriate Fock space
\downarrow
a) Bosonic Fock space: it can be understood as a space of square-integrable functions on $\cup_{n} \mathbb{R}^{3 n} / S^{n}$;

Ontology

\square In BQFT a state of a physical system is described by a pair $\left(Q_{t}, \Psi_{t}\right)$ where Ψ_{t} is a vector in the appropriate Fock space
\downarrow
a) Bosonic Fock space: it can be understood as a space of square-integrable functions on $\cup_{n} \mathbb{R}^{3 n} / S^{n}$;
b) Fermionic Fock Space: consists of square-integrable functions on $U_{n} \mathbb{R}^{3 n}$ which are antisymmetric under permutations;

Ontology

\square In BQFT a state of a physical system is described by a pair $\left(Q_{t}, \Psi_{t}\right)$ where Ψ_{t} is a vector in the appropriate Fock space \downarrow
a) Bosonic Fock space: it can be understood as a space of square-integrable functions on $\cup_{n} \mathbb{R}^{3 n} / S^{n}$;
b) Fermionic Fock Space: consists of square-integrable functions on $U_{n} \mathbb{R}^{3 n}$ which are antisymmetric under permutations;

As a consequence, we can consider Ψ_{t} as a function on configuration space;

Ontology

\square In BQFT a state of a physical system is described by a pair $\left(Q_{t}, \Psi_{t}\right)$ where Ψ_{t} is a vector in the appropriate Fock space
\downarrow
a) Bosonic Fock space: it can be understood as a space of square-integrable functions on $\cup_{n} \mathbb{R}^{3 n} / S^{n}$;
b) Fermionic Fock Space: consists of square-integrable functions on $U_{n} \mathbb{R}^{3 n}$ which are antisymmetric under permutations;

As a consequence, we can consider Ψ_{t} as a function on configuration space;

Here, as in NRBM, Ψ_{t} has a double role: it guides the particles' motion and determines the statistical distribution of the positions.

Ontology

\square To sum up:

- Particles have positions at any given time in a real physical space \downarrow

Possible configurations of particles have a representation in a position's space $\Gamma Q^{[n]}$;
Ψ_{t} is a vector in an appropriate Fock space;

Dynamics

\square The dynamics of the local beables, as in NRBM, depends on Ψ_{t} (and on H);

Dynamics

\square The dynamics of the local beables, as in NRBM, depends on Ψ_{t} (and on H);
\square Here particles follow world lines which have begin and end at some spacetime points \downarrow
it corresponds to a creation/annihilation event

Dynamics

\square The dynamics of the local beables, as in NRBM, depends on Ψ_{t} (and on H);
\square Here particles follow world lines which have begin and end at some spacetime points
it corresponds to a creation/annihilation event
\square These events are the novel element respect standard bohmian trajectories, but trivially they are essential to explain processes involving particle creation and annihilation;
\square NB: these events are intrinsically stochastic, so the evolution of a physical system in this theory will not be deterministic, in opposition to the non relativistic regime (here we will call these random events "jumps").

Dynamics

Dynamics

\square The law of motion of BQFT specifies for the configuration of particles:

Dynamics

\square The law of motion of BQFT specifies for the configuration of particles:

- When to jump;
stochastic terms
Where to jump;

Dynamics

\square The law of motion of BQFT specifies for the configuration of particles:

- When to jump;
stochastic terms
- Where to jump;
- How to move between the jumps \longrightarrow deterministic evolution

Dynamics

\square The law of motion of BQFT specifies for the configuration of particles:

- When to jump;
stochastic terms
Where to jump;
- How to move between the jumps \longrightarrow deterministic evolution;
- The state vector evolves according to the Schrödinger equation;

Dynamics

\square The law of motion of BQFT specifies for the configuration of particles:

- When to jump;

Where to jump;

- How to move between the jumps \longrightarrow deterministic evolution;
- The state vector evolves according to the Schrödinger equation;
- NB: generally speaking, world lines follow classical bohmian trajectories interrupted randomly by stochastic jumps which correspond to particle creation/annihilation events.

Dynamics

\square What do we mean when we say that a certain configuration follows classical bohmian trajectories?

Dynamics

\square What do we mean when we say that a certain configuration follows classical bohmian trajectories?
\square The law of motion for Q_{t} depends on the state vector and on its Hamiltonian

$$
\downarrow
$$

the "continuous" path of a world line is governed by a first-order differential equation which is very close to the bohmian guidance equation:

$$
\frac{d Q_{t}}{d t}=v^{\Psi_{t}}=\operatorname{Re} \frac{\overline{\Psi_{t}}\left(Q_{t}\right)\left(\dot{q} \Psi_{t}\right) Q_{t}}{\overline{\Psi_{t}}\left(Q_{t}\right) \Psi_{t}\left(Q_{t}\right)}
$$

Dynamics

\square Jumps are stochastic in nature \rightarrow they occur at random times and lead to random destinations

Dynamics

\square Jumps are stochastic in nature \rightarrow they occur at random times and lead to random destinations
\square In BQFT, as in standard QFT, Hamiltonian is a sum of terms:

$$
H_{t o t}=H_{0}+H_{i n t}
$$

Dynamics

\square Jumps are stochastic in nature \rightarrow they occur at random times and lead to random destinations
\square In BQFT, as in standard QFT, Hamiltonian is a sum of terms:

$$
H_{t o t}=H_{0}+H_{i n t}
$$

It corresponds to a deterministic motion
given by a velocity field in configuration space

It defines the deterministic path of the world lines between the jumps;

Dynamics

$$
H_{t o t}=H_{0}+H_{\text {int }}
$$

It is the interaction term corresponding to a random jump defined by jump rates

Dynamics

$$
H_{t o t}=H_{0}+H_{i n t}
$$

It is the interaction term corresponding to a random jump defined by jump rates

$$
\sigma=\sigma\left(q^{\prime}, q, t\right)=\sigma^{\Psi(t)}\left(q^{\prime}, q\right)
$$

$\square \sigma$ is a transition from a configuration q to a configuration q' at time t;

Dynamics

$$
H_{t o t}=H_{0}+H_{i n t}
$$

It is the interaction term corresponding to a random jump defined by jump rates

$$
\sigma=\sigma\left(q^{\prime}, q, t\right)=\sigma^{\Psi(t)}\left(q^{\prime}, q\right)
$$

$\square \sigma$ is a transition from a configuration q to a configuration q' at time t ;
$\square H_{\text {tot }}$ appears in the Schrödinger equation for Ψ, thus it becomes clear how the law of motion for the configuration of particles depends on Ψ and $H_{\text {tot }}$.

Dynamics

\square When the actual configuration Q at time t is q, then with probability $\sigma\left(q^{\prime}, q, t\right) Q$ will jump from q to q^{\prime} in the time interval $(t, t+d t)$.

Dynamics

\square When the actual configuration Q at time t is q, then with probability $\sigma\left(q^{\prime}, q, t\right) Q$ will jump from q to q^{\prime} in the time interval $(t, t+d t)$.
\square The jump rate, which depends on the configuration, on the state vector and on $H_{t o t}$, is given by

$$
\sigma\left(q^{\prime}, q, t\right)=\frac{2}{\hbar} \frac{\left(\operatorname{Im} \overline{\Psi(q)}\langle q| H_{i n t}\left|q^{\prime}\right\rangle \Psi\left(q^{\prime}\right)\right)^{+}}{\overline{\Psi(q)} \Psi(q)}
$$

Dynamics

\square When the actual configuration Q at time t is q, then with probability $\sigma\left(q^{\prime}, q, t\right) Q$ will jump from q to q^{\prime} in the time interval $(t, t+d t)$.
\square The jump rate, which depends on the configuration, on the state vector and on $H_{t o t}$, is given by

$$
\sigma\left(q^{\prime}, q, t\right)=\frac{2}{\hbar} \frac{\left(\operatorname{Im} \overline{\Psi(q)}\langle q| H_{i n t}\left|q^{\prime}\right\rangle \Psi\left(q^{\prime}\right)\right)^{+}}{\overline{\Psi(q)} \Psi(q)}
$$

To sum up, the total Hamiltonian gives a "deterministic" motion with velocity v randomly interrupted by jumps with rate σ after each of which the deterministic motion is resumed (and again interrupted).

Dynamics

\square The possible jumps are very restricted and they can change the particles' number only by ± 1

1) appearance of a particle (e.g. emission)
2) disappearance of a particle (e.g. absorption)
3) replacement of one particle by two particles (creation)
4) replacement of two particles by one particle (annihilation)

Dynamics

\square The possible jumps are very restricted and they can change the particles' number only by ± 1

1) appearance of a particle (e.g. emission)
2) disappearance of a particle (e.g. absorption)
3) replacement of one particle by two particles (creation)
4) replacement of two particles by one particle (annihilation)
\square What is stochastic about Q_{t} ?
a) The times at which jumps occur;
b) The destination of the jumps;

Equivariance

\square The probabilities for a) and b) are governed by the wave function \downarrow

If $Q\left(t_{0}\right)$ is chosen at random with distribution $\left|\Psi\left(t_{0}\right)\right|^{2}$, then at every later time $t>t_{0} Q(t)$ is distributed with density $|\Psi(t)|^{2}$

Equivariance

\square The probabilities for a) and b) are governed by the wave function \downarrow

If $Q\left(t_{0}\right)$ is chosen at random with distribution $\left|\Psi\left(t_{0}\right)\right|^{2}$, then at every later time $t>t_{0} Q(t)$ is distributed with density $|\Psi(t)|^{2}$
\square This process is equivariant, and it establishes the empirical equivalence between BQFT and standard QFT;
\square NB: equivariance in BQFT is differently understood respect NRBM in virtue of the stochastic nature of the events which are observed at the QFT level.

Equivariance

\square Here Markov processes are candidates for the equivariant motion of the configuration;
\square Markovian processes involve transition probabilities from one configuration to another \rightarrow this is completely adherent to the stochasticity of jumps rates for creation/annihilation events;

Equivariance

\square Here Markov processes are candidates for the equivariant motion of the configuration;
\square Markovian processes involve transition probabilities from one configuration to another \rightarrow this is completely adherent to the stochasticity of jumps rates for creation/annihilation events;
\square These probabilities are characterized by a linear operator called forward generator L_{t}
\square The distribution ρ_{t} of Q_{t} evolves according to

$$
\frac{\partial \rho_{t}}{\partial t}=L_{t} \rho_{t}
$$

Equivariance

\square Generalization of equivariance from deterministic to Markovian processes:
given the transition probabilities, the $|\Psi|^{2}$ - distribution is equivariant iff for all times t and t^{\prime} with $t^{\prime}>t$ the distribution Q_{t} with distribution $|\Psi|^{2}$ evolves into a configuration Q_{t}, with distribution $\left|\Psi_{t}\right|^{2}$.

Therefore, the transition probabilities are equivariant.

Equivariance

\square Generalization of equivariance from deterministic to Markovian processes:
given the transition probabilities, the $|\Psi|^{2}$ - distribution is equivariant iff for all times t and t^{\prime} with $t^{\prime}>t$ the distribution Q_{t} with distribution $|\Psi|^{2}$ evolves into a configuration Q_{t}, with distribution $\left|\Psi_{t}\right|^{2}$.

Therefore, the transition probabilities are equivariant.
\square To close the circle: "A jump process is a Markov process on configuration space for which the only motion that occurs is via jumps".

Malament's theorem

\square Main claim: there cannot be a relativistic quantum theory of localizable particles;
\square All talk about particles has to be understood as talk about fields \rightarrow particles are defined as field's excitations \rightarrow fields are the beables of the theory;

Malament's theorem

\square Main claim: there cannot be a relativistic quantum theory of localizable particles;
\square All talk about particles has to be understood as talk about fields \rightarrow particles are defined as field's excitations \rightarrow fields are the beables of the theory;
\square Malament's aim: to show the physical impossibility to have a quantum field theory with a particle ontology;

Malament's theorem

\square Main claim: there cannot be a relativistic quantum theory of localizable particles;
\square All talk about particles has to be understood as talk about fields \rightarrow particles are defined as field's excitations \rightarrow fields are the beables of the theory;
\square Malament's aim: to show the physical impossibility to have a quantum filed theory with a particle ontology;
\square The notion of "particle" entails some peculiar features among which its localizability: this result is concerned with this property

The theorem is about position measurement of a (supposed) localized particle in Minkowski spacetime and shows how we cannot localize a particle in this space, no matter where we perform the measurement;

NB: in SQM particles are not localized but localizable

Malament's theorem

\square The arena: Minkowski spacetime;
\square Let \mathcal{M} be a Minkowski spacetime, and let S be a family of parallel spacelike hyperplanes that cover \mathcal{M};
\square Let us take a spatial set Δ to be any bounded open set within some particular S_{i};
\square NB: for the following argument it is no important how large is Δ;

Malament's theorem

\square The arena: Minkowski spacetime;
\square Let \mathcal{M} be a Minkowski spacetime, and let S be a family of parallel spacelike hyperplanes that cover \mathcal{M};
\square Let us take a spatial set Δ to be any bounded open set within some particular S_{i};
\square NB: for the following argument it is no important how large is Δ;
\square Definition of a quantum state:

1) \mathcal{H} Hilbert space, the rays of which represent the pure state of our system;
2) An assignment to each spatial set Δ of a projection operator P_{Δ} on \mathcal{H};
3) A unitary $\mathbf{a} \mapsto U(\mathbf{a})$ representation in \mathcal{H} of the translation group in \mathcal{M};

Malament's theorem

\square Here P_{Δ} means the event that the particle would be found in Δ if a particular detection experiment were performed;
\square Conditions on the structure $\left(\mathcal{H}, \Delta \mapsto P_{\Delta}, \mathbf{a} \mapsto U(\mathbf{a})\right)$

Malament's theorem

\square Here P_{Δ} means the event that the particle would be found in Δ if a particular detection experiment were performed;
\square Conditions on the structure $\left(\mathcal{H}, \Delta \mapsto P_{\Delta}, \mathbf{a} \mapsto U(\mathbf{a})\right)$

1) Translation Covariance Condition:

$$
P_{\Delta+\mathbf{a}}=U(\mathbf{a}) P_{\Delta} U(-\mathbf{a})
$$

where $P_{\Delta+\mathbf{a}}$ is a result one obtains translating Δ by $\mathbf{a}_{\text {; }}$

Malament's theorem

\square Here P_{Δ} means the event that the particle would be found in Δ if a particular detection experiment were performed;
\square Conditions on the structure $\left(\mathcal{H}, \Delta \mapsto P_{\Delta}, \mathbf{a} \mapsto U(\mathbf{a})\right)$

1) Translation Covariance Condition:

$$
P_{\Delta+\mathbf{a}}=U(\mathbf{a}) P_{\Delta} U(-\mathbf{a})
$$

where $P_{\Delta+\mathbf{a}}$ is a result one obtains translating Δ by $\mathbf{a}_{\text {; }}$
This condition means that the statistics of a measurement does not change with spatial translations: We can suppose to conduct the experiment not at its original site, but translated in another place, which is displaced from the first by a: $P_{\Delta+\mathbf{a}}$ represents the event that if a particular experiment were performed, the particle would be found in $\Delta+\mathbf{a}$.

Malament's theorem

2) Energy Condition:

For all future directed timelike vectors \mathbf{a} in \mathcal{M}, if $H(\mathbf{a})$ is the unique selfadjoint hamiltonian operator satisfying

$$
U(t, \mathbf{a})=e^{-i H(\mathbf{a})}
$$

then the spectrum of $H(\mathbf{a})$ is bounded below;
This condition says that a particle has a ground energy state;

Malament's theorem

2) Energy Condition:

For all future directed timelike vectors \mathbf{a} in \mathcal{M}, if $H(\mathbf{a})$ is the unique selfadjoint hamiltonian operator satisfying

$$
U(t, \mathbf{a})=e^{-i H(\mathbf{a})}
$$

then the spectrum of $H(\mathbf{a})$ is bounded below;
This condition says that a particle has a ground energy state;
3) Localizability Condition:

If Δ_{1}, Δ_{2} are disjoint spatial sets of a single S, then

$$
P_{\Delta_{1}} P_{\Delta_{2}}=P_{\Delta_{2}} P_{\Delta_{1}}=0
$$

this condition rules out the "infinite speed" possibility for a particle: a particle cannot be detected in two disjoints (spacelike related) spatial sets at the same given time;

Malament's theorem

4) Locality Condition:

If Δ_{1}, Δ_{2} are spatial sets (not necessarily on the same hyperplane) that are spacelike related, then

$$
P_{\Delta_{1}} P_{\Delta_{2}}=P_{\Delta_{2}} P_{\Delta_{1}}
$$

Here it is imposed the "stamp of relativity", the independence of outcomes holds in time \rightarrow the statistical independence of position measurements is propagated and preserved in time!

Malament's theorem

\square Claim: Malament's theorem
If the structure $\left(\mathcal{H}, \Delta \mapsto P_{\Delta}, \mathbf{a} \mapsto U(\boldsymbol{a})\right)$ satisfies condition (1)-(4), then

$$
P_{\Delta}=0, \text { in every } \Delta
$$

\square Conclusion: any candidate of a particle relativistic quantum theory that satisfies these conditions must predict that the probability to find the particle in any Δ is 0 . Since this conclusion is not acceptable, the claim assumes the status of a no-go theorem for a particle ontology.

Discussion

\square Two options on the table:

1) Malament's theorem shows how it is physically impossible to have a consistent theory with a particles ontology;
2) Bohmian QFT, a quantum field theory of particles which is empirically adequate since it recovers all the set of predictions of standard QFT;

Discussion

\square Two options on the table:

1) Malament's theorem shows how it is physically impossible to have a consistent theory with a particles ontology;
2) Bohmian QFT, a quantum field theory of particles which is empirically adequate since it recovers all the set of predictions of standard QFT;
\square Questions:
> Could we apply Malament's result to the structure of Bohmian QFT?
> If it were not the case, which kind of arguments do we have to dismiss this theorem?

Discussion

\square Malament's theorem is based on the usual SQM formalism: the description of a physical system is provided only in terms of the wave function;
\square The theorem is concerned with measurements of position operator, it is not about particles

$$
\downarrow
$$

here is valid the same argument against SQM

Discussion

\square Malament's theorem is based on the usual SQM formalism: the description of a physical system is provided only in terms of the wave function;
\square The theorem is concerned with measurements of position operator, it is not about particles

```
\downarrow
```

here is valid the same argument against SQM
$B M$ and BQFT have a richer and clearer ontological structure: we assume that our world is made of particles, our primitive variables, which have definite positions at any given time;
\square The "primitiveness" of $\mathrm{PO} \Rightarrow$ two different aspects:
a) primitive variables are "irreducible" to others notions, they are not inferred o derived from other entities;
b) explanatory function of the primitive variables: they are primitive because every physical object or phenomenon must be connected and explained in terms of PO ;

Discussion

\square Realism about operators, two quotations:
\square The concept of 'measurement' becomes so fuzzy on reflection that it is quite surprising to have it appearing in physical theory at the most fundamental level. [...] Does not any analysis of measurement require concepts more fundamental than measurement? And should not the fundamental theory be about these more fundamental concepts? (Bell, 1981)

Discussion

\square Realism about operators, two quotations:
\square The concept of 'measurement' becomes so fuzzy on reflection that it is quite surprising to have it appearing in physical theory at the most fundamental level. [...] Does not any analysis of measurement require concepts more fundamental than measurement? And should not the fundamental theory be about these more fundamental concepts? (Bell, 1981)
\square Here are some words which, however legitimate and necessary in application, have no place in a formulation with any pretension to physical precision: system; apparatus; environment; microscopic, macroscopic; reversible, irreversible; observable; information; measurement. [...] The notions of "microscopic" and "macroscopic" defy precise definition. [...] Einstein said that it is theory which decides what is "observable". I think he was right. [...]"observation" is a complicated and theory-laden business. Then that notion should not appear in the formulation of fundamental theory. (Bell, 1990)

Discussion

\square Malament's argument excludes non local interactions, while BQFT incorporate non locality in its dynamical equation for the primitive variables \downarrow
as in the non relativistic regime, the velocity of particles depends on the entire configuration
\square The point here is that within the bohmian framework one is not trying to "make the standard QFT a bohmian one", rather one is trying to built up a new physical theory with different features respect standard QFT;

Discussion

\square Malament's argument excludes non local interactions, while BQFT incorporate non locality in its dynamical equation for the primitive variables \downarrow
as in the non relativistic regime, the velocity of particles depends on the entire configuration
\square The point here is that within the bohmian framework one is not trying to "make the standard QFT a bohmian one", rather one is trying to built up a new physical theory with different features respect standard QFT;
\square In conclusion we have a different structure for the definition and the description of a quantum system than $\left(\mathcal{H}, \Delta \mapsto P_{\Delta}, \mathbf{a} \mapsto U(\boldsymbol{a})\right)$

\downarrow

a description which includes physical assumptions about the primitive ontology;

Conclusions

\square BQFT is a counterexample to Malament's theorem, so it is possible to have a theory with a particle ontology;
\square BQFT is however an effective theory: we have to introduce cut offs (UV and IR) in order to have well defined Hamiltonians;

Conclusions

\square BQFT is a counterexample to Malament's theorem, so it is possible to have a theory with a particle ontology;
\square BQFT is however an effective theory: we have to introduce cut offs (UV and IR) in order to have well defined Hamiltonians;
\square Here effective means only that this theory is not strictly speaking a fundamental theory \rightarrow e.g. gravitational phenomena are not explained (this is also the case of any QFT)

$$
\downarrow
$$

Effectiveness has not to be regarded as a negative feature: it says only that a certain theory has limits in its applications: we cannot say anything under certain physical energies!

Conclusions

\square Lorentz invariance: BQFT requires a preferred reference frame, therefore it is not Lorentz invariant
\square However, the theory is empirically equivalent to a Lorentz-invariant theory

$$
\downarrow
$$

Experimentally there are no possibilities for an observer to determine which frame is the preferred one, so the BQFT's empirical predictions are Lorentz invariant

$$
\downarrow
$$

BQFT is equivalent to a fully Lorentz-invariant theory.

References

\square J.S. Bell, Speakable and unspeakable in Quantum Mechanics, CUP, 2004.
\square D. Dürr, S. Goldstein, R. Tumulka, N. Zanghì, Trajectories and Particle Creation and Annihilation in Quantum Field Theory, Journal of Physics A, 36, 2003.
\square D. Dürr, S. Goldstein, R. Tumulka, N. Zanghì, Bell-type Quantum Field Theories, Journal of Physics A, 38, R1-R43, 2005.
\square D. Dürr, S. Goldstein, R. Tumulka, N. Zanghì, Bohmian Mechanics and Quantum Field Theory, Phys. Rev. Lett., 2004.
\square D. Dürr, S. Goldstein, N. Zanghì, Quantum Physics without Quantum Philosophy, Springer 2013.
\square D. Malament, In defence of Dogma: Why There Cannot Be A Relativistic Quantum Mechanics of (Localizable) Particles, In Rob Clifton, ed., Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, pp. 181-201. The University of Western Ontario Series in Philosophy of Science, 57. Dordrecht \& Boston: Kluwer, 1996.
\square Figure 1 and figure 2 (R. Tumulka) have been taken from DGTZ 2004.

