BOHMIAN-TYPE QFT AND
MALAMENT NO GO THEOREM
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Ontology

Ontology of BQFT: particles moving in 4D spacetime — as in NRBM
particles have a definite position at any given time;

Q¢ = Q(t) is a possible configuration of particles in configuration space Q
of possible positions;

Here we can consider two cases:

a) Single particles species, this is the disjoint union of the n-particle

configuration space
ro = U o

b) for several por’rlcles ecies, ’rhere is the Cartesian product of several
copies of I'Q = U, 0™l one for each species. One obtains a
configuration space which i |s an union of sectors Q " where n = (nq, .., Nyp)
is the £-tuple of the particles number for a certain species of particles.



Ontology

E.g.:
QED — Q is a product of 3 copies of

ro = OQ["]
n=0

Particles species involved: electrons, positrons and photons;

In this case, a configuration space specifies number and position of all
- L+
e ,e",v.
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Ontology

In BQFT particles are unlabelled: they are identical and pointlike

l

RBn

the sector QI is defined as R3™ modulo permutations: ~

In this case we could permute the particles without changing their world
lines

NB: in the usual NRBM we cannot permute particles since they are labelled: if
there is a permutation, it will entails a different trajectory for the particle;
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Ontology

In BQFT a state of a physical system is described by a pair (Q¢, ¥;) where
Y, is a vector in the appropriate Fock space

\J

Bosonic Fock space: it can be understood as a space of square-integrable

. 3n
functions on U, ® /Sn;

Fermionic Fock Space: consists of square-integrable functions on U,, R3"
which are antisymmetric under permutations;

As a consequence, we can consider W, as a function on configuration space;

Here, as in NRBM, W, has a double role: it guides the particles’ motion and
determines the statistical distribution of the positions.



Ontology

To sum up:
Particles have positions at any given time in a real physical space

l

Possible configurations of particles have a representation in a position’s space

rotnl;

Y, is a vector in an appropriate Fock space;
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Dynamics

The dynamics of the local beables, as in NRBM, depends on W¥; (and on H);

Here particles follow world lines which have begin and end at some
spacetime points )

it corresponds to a creation/annihilation event

These events are the novel element respect standard bohmian trajectories,
but trivially they are essential to explain processes involving particle
creation and annihilation;

NB: these events are intrinsically stochastic, so the evolution of a physical
system in this theory will not be deterministic, in opposition to the non
relativistic regime (here we will call these random events “jumps”).
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Dynamics

The law of motion of BQFT specifies for the configuration of particles:

When to jump;

stochastic terms

Where to jump;

How to move between the jumps deterministic evolution;

The state vector evolves according to the Schrodinger equation;

NB: generally speaking, world lines follow classical bohmian trajectories
interrupted randomly by stochastic jumps which correspond to particle
creation/annihilation events.
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Dynamics

What do we mean when we say that a certain configuration follows
classical bohmian trajectories?

The law of motion for (J; depends on the state vector and on its
Hamiltonian

l

the “continuous” path of a world line is governed by a first-order differential
equation which is very close to the bohmian guidance equation:

d0: _ g, _ o P (Q@¥DQ

dt EAGRTAC
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Dynamics

Jumps are stochastic in nature — they occur at random times and lead to
random destinations

In BQFT, as in standard QFT, Hamiltonian is a sum of terms:

Hiot = Hy + Hipy

It corresponds to a deterministic motion

given by a velocity field in configuration space

It defines the deterministic path of the world lines between the jumps;
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Dynamics

Hiot = Hy + Hypy

It is the interaction term corresponding to a random jump defined by jump
rates

oc=0(q',q,t)=c?¥(q q)

o is a transition from a configuration g to a configuration g’ at time t;

H;,; appears in the Schrédinger equation for W, thus it becomes clear how
the law of motion for the configuration of particles depends on W and H; ;.
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Dynamics

When the actual configuration Qat time t is g, then with probability
a(q’,q,t) Q will jump from q to q’ in the time interval (¢t,t + dt).

The jump rate, which depends on the configuration, on the state vector and
on H;,¢, is given by

o(q',q,t) = E(Imm(q”{inthr)w(q,))_l_
e Y(@¥(q)

To sum up, the total Hamiltonian gives a “deterministic” motion with velocity v
randomly interrupted by jumps with rate o after each of which the
deterministic motion is resumed (and again interrupted).
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Dynamics

The possible jumps are very restricted and they can change the particles’
number only by +1

appearance of a particle (e.g. emission)
disappearance of a particle (e.g. absorption)
replacement of one particle by two particles (creation)

replacement of two particles by one particle (annihilation)

What is stochastic about Q42
The times at which jumps occur;

The destination of the jumps;
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Equivariance

The probabilities for a) and b) are governed by the wave function
)

If Q(to) is chosen at random with distribution |¥(ty)|?, then at every later
time t > t, Q(t)is distributed with density |W(t)|?

This process is equivariant, and it establishes the empirical equivalence
between BQFT and standard QFT;

NB: equivariance in BQFT is differently understood respect NRBM in virtue
of the stochastic nature of the events which are observed at the QFT level.
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Equivariance

Here Markov processes are candidates for the equivariant motion of the
configuration;

Markovian processes involve transition probabilities from one configuration
to another — this is completely adherent to the stochasticity of jumps rates
for creation/annihilation events;

These probabilities are characterized by a linear operator called forward
generator L;

The distribution p; of Q; evolves according to

9pr _

0t Lep:.



Equivariance

Generalization of equivariance from deterministic to Markovian processes:

given the transition probabilities, the |W|?- distribution is equivariant iff for all
times tand t’ with t' > t the distribution Q, with distribution |¥’|? evolves into a
configuration Q;, with distribution |¥, |?.

Therefore, the transition probabilities are equivariant.



Equivariance

Generalization of equivariance from deterministic to Markovian processes:

given the transition probabilities, the |W|?- distribution is equivariant iff for all
times tand t’ with t' > t the distribution Q, with distribution |¥’|? evolves into a
configuration Q;, with distribution |¥, |?.

Therefore, the transition probabilities are equivariant.

To close the circle: “A jump process is a Markov process on configuration
space for which the only motion that occurs is via jumps”.
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Main claim: there cannot be a relativistic quantum theory of localizable
particles;

All talk about particles has to be understood as talk about fields —
particles are defined as field’s excitations — fields are the beables of the
theory;

Malament’s aim: to show the physical impossibility to have a quantum filed
theory with a particle ontology;

The notion of “particle” entails some peculiar features among which its
localizability: this result is concerned with this property

l

The theorem is about position measurement of a (supposed) localized particle
in Minkowski spacetime and shows how we cannot localize a particle in this
space, no matter where we perform the measurement;

NB: in SQM particles are not localized but localizable
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Malament’s theorem

The arena: Minkowski spacetime;

Let M be a Minkowski spacetime, and let S be a family of parallel
spacelike hyperplanes that cover M;

Let us take a spatial set A to be any bounded open set within some
particular Sj;

NB: for the following argument it is no important how large is A;

Definition of a quantum state:
H Hilbert space, the rays of which represent the pure state of our system;
An assignment to each spatial set A of a projection operator Py on H;

A unitary @ = U(Q) representation in H of the translation group in M;
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Malament’s theorem

Here P, means the event that the particle would be found in A if a
particular detection experiment were performed;

Conditions on the structure (H, A Pp,a - U(Q))

Translation Covariance Condition:
Ppya = U(a)PpU(—a)

where P, ., is a result one obtains translating A by a;

This condition means that the statistics of a measurement does not change with
spatial translations: We can suppose to conduct the experiment not at its
original site, but translated in another place, which is displaced from the first
by a: Py, represents the event that if a particular experiment were
performed, the particle would be found in A + a.
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For all future directed timelike vectors a in M, if H(a) is the unique self-
adjoint hamiltonian operator satisfying

U(t,a) = e"H@
then the spectrum of H(Q) is bounded below;

This condition says that a particle has a ground energy state;
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Energy Condition:

For all future directed timelike vectors a in M, if H(a) is the unique self-
adjoint hamiltonian operator satisfying

U(t,a) = e"H@
then the spectrum of H(Q) is bounded below;
This condition says that a particle has a ground energy state;
Localizability Condition:

If A{, A, are disjoint spatial sets of a single S, then
PAlpAz — PAZPAl =0

this condition rules out the “infinite speed” possibility for a particle: a particle
cannot be detected in two disjoints (spacelike related) spatial sets at the same
given time;



Malament’s theorem

Locality Condition:

If A{, A, are spatial sets (not necessarily on the same hyperplane) that are
spacelike related, then

PA1PA2 = PAZPAl

Here it is imposed the “stamp of relativity”, the independence of outcomes
holds in time — the statistical independence of position measurements is
propagated and preserved in time!



Malament’s theorem

Claim: Malament’s theorem

If the structure (H, A= Pp,a = U(a)) satisfies condition (1)-(4), then

P, = 0,in every A

Conclusion: any candidate of a particle relativistic quantum theory that
satisfies these conditions must predict that the probability to find the
particle in any A is 0. Since this conclusion is not acceptable, the claim
assumes the status of a no-go theorem for a particle ontology.
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Two options on the table:

Malament’s theorem shows how it is physically impossible to have a
consistent theory with a particles ontology;

Bohmian QFT, a quantum field theory of particles which is empirically
adequate since it recovers all the set of predictions of standard QFT;
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Two options on the table:

Malament’s theorem shows how it is physically impossible to have a
consistent theory with a particles ontology;

Bohmian QFT, a quantum field theory of particles which is empirically
adequate since it recovers all the set of predictions of standard QFT;

Questions:
Could we apply Malament’s result to the structure of Bohmian QFT?

If it were not the case, which kind of arguments do we have to dismiss this
theorem?
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Discussion

Malament’s theorem is based on the usual SQM formalism: the description
of a physical system is provided only in terms of the wave function;

The theorem is concerned with measurements of position operator, it is not
about particles

)
here is valid the same argument against SQM

BM and BQFT have a richer and clearer ontological structure: we assume that
our world is made of particles, our primitive variables, which have definite
positions at any given time;

The “primitiveness” of PO = two different aspects:

primitive variables are “irreducible” to others notions, they are not
inferred o derived from other entities;

explanatory function of the primitive variables: they are primitive because
every physical object or phenomenon must be connected and explained in
terms of PO;
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Realism about operators, two quotations:

The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite
surprising to have it appearing in physical theory at the most fundamental
level. [...] Does not any analysis of measurement require concepts more
fundamental than measurement? And should not the fundamental theory be
about these more fundamental concepts? (Bell, 1981)



Discussion

Realism about operators, two quotations:

The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite
surprising to have it appearing in physical theory at the most fundamental
level. [...] Does not any analysis of measurement require concepts more
fundamental than measurement? And should not the fundamental theory be
about these more fundamental concepts? (Bell, 1981)

Here are some words which, however legitimate and necessary in
application, have no place in a formulation with any pretension to physical
precision: system; apparatus; environment; microscopic, macroscopic;
reversible, irreversible; observable; information; measurement. [...] The
notions of “microscopic” and “macroscopic” defy precise definition. [...]
Einstein said that it is theory which decides what is “observable”. | think he
was right. [...]“observation” is a complicated and theory-laden business.
Then that notion should not appear in the formulation of fundamental
theory. (Bell, 1990)
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incorporate non locality in its dynamical equation for the primitive variables
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as in the non relativistic regime, the velocity of particles depends on the entire
configuration

The point here is that within the bohmian framework one is not trying to
“make the standard QFT a bohmian one”, rather one is trying to built up a
new physical theory with different features respect standard QFT;



Discussion

Malament’s argument excludes non local interactions, while BQFT
incorporate non locality in its dynamical equation for the primitive variables

\)

as in the non relativistic regime, the velocity of particles depends on the entire
configuration

The point here is that within the bohmian framework one is not trying to
“make the standard QFT a bohmian one”, rather one is trying to built up a
new physical theory with different features respect standard QFT;

In conclusion we have a different structure for the definition and the
description of a quantum system than (H, A Pjy,a — U(a))

l

a description which includes physical assumptions about the primitive ontology;
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Conclusions

BQFT is a counterexample to Malament’s theorem, so it is possible to have
a theory with a particle ontology;

BQFT is however an effective theory: we have to introduce cut offs (UV and
IR) in order to have well defined Hamiltonians;

Here effective means only that this theory is not strictly speaking a
fundamental theory — e.g. gravitational phenomena are not explained (this
is also the case of any QFT)

\J

Effectiveness has not to be regarded as a negative feature: it says only that a
certain theory has limits in its applications: we cannot say anything under
certain physical energies!



Conclusions

Lorentz invariance: BQFT requires a preferred reference frame, therefore it
is not Lorentz invariant

However, the theory is empirically equivalent to a Lorentz-invariant theory

l

Experimentally there are no possibilities for an observer to determine which
frame is the preferred one, so the BQFT’s empirical predictions are Lorentz
invariant

l

BQFT is equivalent to a fully Lorentz-invariant theory.



References

J.S. Bell, Speakable and unspeakable in Quantum Mechanics, CUP, 2004.

D. Dirr, S. Goldstein, R. Tumulka, N. Zanghi, Trajectories and Particle Creation
and Annihilation in Quantum Field Theory, Journal of Physics A, 36, 2003.

D. Dirr, S. Goldstein, R. Tumulka, N. Zanghi, Bell-type Quantum Field Theories,
Journal of Physics A, 38, R1-R43, 2005.

D. Dirr, S. Goldstein, R. Tumulka, N. Zanghi, Bohmian Mechanics and Quantum
Field Theory, Phys. Rev. Lett., 2004.

D. Dirr, S. Goldstein, N. Zanghi, Quantum Physics without Quantum Philosophy,
Springer 201 3.

D. Malament, In defence of Dogma: Why There Cannot Be A Relativistic
Quantum Mechanics of (Localizable) Particles, In Rob Clifton, ed., Perspectives on
Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, pp. 181-201.
The University of Western Ontario Series in Philosophy of Science, 57.
Dordrecht & Boston: Kluwer,1996.

Figure 1 and figure 2 (R. Tumulka) have been taken from DGTZ 2004.



