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 𝑄𝑡 = 𝑄(𝑡) is a possible configuration of particles in configuration space 𝒬 
of possible positions; 

 Here we can consider two cases: 

o a) Single particles species, this is the disjoint union of the n-particle 
configuration space  

Γ𝒬 =  𝒬[𝑛]
∞

𝑛=0

 

o b) for several particles species, there is the Cartesian product of several 
copies of Γ𝒬 =  𝒬[𝑛]∞

𝑛=0 , one for each species. One obtains a 
configuration space which is an union of sectors 𝒬[𝑛] where 𝑛 = (𝑛1, … , 𝑛ℓ) 
is the ℓ-tuple of the particles number for a certain species of particles. 

 



Ontology 

E.g.: 

QED → 𝒬 is a product of 3 copies of  

Γ𝒬 =  𝒬[𝑛]
∞

𝑛=0

 

Particles species involved: electrons, positrons and photons; 

In this case, a configuration space specifies number and position of all 

𝑒−, 𝑒+, 𝛾. 
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                                              ↓     

     the sector 𝒬[𝑛] is defined as ℝ3𝑛 modulo permutations: 
ℝ3𝑛

𝑆𝑛
 

 In this case we could permute the particles without changing their world 

lines 

 

NB: in the usual NRBM we cannot permute particles since they are labelled: if 

there is a permutation, it will entails a different trajectory for the particle;  
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functions on  ℝ3𝑛
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b) Fermionic Fock Space: consists of square-integrable functions on  ℝ3𝑛
𝑛  

which are antisymmetric under permutations; 

 

As a consequence, we can consider Ψ𝑡 as a function on configuration space; 

 

Here, as in NRBM, Ψ𝑡 has a double role: it guides the particles’ motion and 

determines the statistical distribution of the positions.  

 



Ontology 

 To sum up: 

• Particles have positions at any given time in a real physical space 

                                                   ↓ 

Possible configurations of particles have a representation in a position’s space 

Γ𝒬[𝑛]; 

 

•  Ψ𝑡 is a vector in an appropriate Fock space; 
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Dynamics 

 The dynamics of the local beables, as in NRBM, depends on Ψ𝑡 (and on H); 

 Here particles follow world lines which have begin and end at some 

spacetime points                                                   ↓ 

                                               it corresponds to a creation/annihilation event 

 These events are the novel element respect standard bohmian trajectories, 

but trivially they are essential to explain processes involving particle 

creation and annihilation; 

 NB: these events are intrinsically stochastic, so the evolution of a physical 

system in this theory will not be deterministic, in opposition to the non 

relativistic regime (here we will call these random events “jumps”). 
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 The law of motion of BQFT specifies for the configuration of particles: 

• When to jump;                                                       

                                                       stochastic terms 

• Where to jump;            

• How to move between the jumps           deterministic evolution; 

 

• The state vector evolves according to the Schrödinger equation; 

• NB: generally speaking, world lines follow classical bohmian trajectories 

interrupted randomly by stochastic jumps which correspond to particle 

creation/annihilation events.  
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Dynamics 

 What do we mean when we say that a certain configuration follows 

classical bohmian trajectories? 

 The law of motion for 𝑄𝑡 depends on the state vector and on its 

Hamiltonian 

                                   ↓ 

the “continuous” path of a world line is governed by a first-order differential 

equation which is very close to the bohmian guidance equation: 

 
𝑑𝑄𝑡
𝑑𝑡

= 𝑣Ψ𝑡 = Re
Ψ𝑡 (𝑄𝑡)(𝑞 Ψ𝑡)𝑄𝑡

Ψ𝑡(𝑄𝑡)Ψ𝑡(𝑄𝑡)
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given by a velocity field in configuration space 

 

 

It defines the deterministic path of the world lines between the jumps; 
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It is the interaction term corresponding to a random jump defined by jump 
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𝜎 = 𝜎 𝑞′, 𝑞, 𝑡 = 𝜎Ψ 𝑡 (𝑞′, 𝑞) 

 

 𝜎 is a transition from a configuration q to a configuration q’ at time t; 

 𝐻𝑡𝑜𝑡 appears in the Schrödinger equation for Ψ, thus it becomes clear how 

the law of motion for the configuration of particles depends on Ψ and 𝐻𝑡𝑜𝑡.  
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To sum up, the total Hamiltonian gives a “deterministic” motion with velocity v 

randomly interrupted by jumps with rate 𝜎 after each of which the 

deterministic motion is resumed (and again interrupted). 
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 What is stochastic about 𝑄𝑡? 

a) The times at which jumps occur; 

b) The destination of the jumps; 



Equivariance 

 The probabilities for a) and b) are governed by the wave function 

                                                ↓ 

If 𝑄(𝑡0) is chosen at random with distribution |Ψ(𝑡0)|
2, then at every later 

time 𝑡 > 𝑡0 𝑄 𝑡 is distributed with density |Ψ(𝑡)|2 

 



Equivariance 

 The probabilities for a) and b) are governed by the wave function 

                                                ↓ 

If 𝑄(𝑡0) is chosen at random with distribution |Ψ(𝑡0)|
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time 𝑡 > 𝑡0 𝑄 𝑡 is distributed with density |Ψ(𝑡)|2 

 

 This process is equivariant, and it establishes the empirical equivalence 

between BQFT and standard QFT; 

 NB: equivariance in BQFT is differently understood respect NRBM in virtue 

of the stochastic nature of the events which are observed at the QFT level.  
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Equivariance 

 Here Markov processes are candidates for the equivariant motion of the 

configuration; 

 Markovian processes involve transition probabilities from one configuration 

to another → this is completely adherent to the stochasticity of jumps rates 

for creation/annihilation events; 

 These probabilities are characterized by a linear operator called forward 

generator 𝐿𝑡 

 The distribution 𝜌𝑡 of 𝑄𝑡 evolves according to 

 

𝜕𝜌𝑡
𝜕𝑡

= 𝐿𝑡𝜌𝑡. 
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times 𝑡and 𝑡′ with 𝑡′ > 𝑡 the distribution 𝑄𝑡 with distribution |Ψ|2 evolves into a 
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 Generalization of equivariance from deterministic to Markovian processes: 

 

given the transition probabilities, the |Ψ|2- distribution is equivariant iff for all 

times 𝑡and 𝑡′ with 𝑡′ > 𝑡 the distribution 𝑄𝑡 with distribution |Ψ|2 evolves into a 

configuration 𝑄𝑡′ with distribution |Ψ𝑡′|
2. 

 

Therefore, the transition probabilities are equivariant. 

 To close the circle: “A jump process is a Markov process on configuration 

space for which the only motion that occurs is via jumps”.  
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 All talk about particles has to be understood as talk about fields → 

particles are defined as field’s excitations → fields are the beables of the 

theory; 

 Malament’s aim: to show the physical impossibility to have a quantum filed 

theory with a particle ontology;  

 The notion of “particle” entails some peculiar features among which its 

localizability: this result is concerned with this property 

↓ 

The theorem is about position measurement of a (supposed) localized particle 

in Minkowski spacetime and shows how we cannot localize a particle in this 

space, no matter where we perform the measurement; 

NB: in SQM particles are not localized but localizable 
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spacelike hyperplanes that cover ℳ; 

 Let us take a spatial set Δ to be any bounded open set within some 

particular 𝑆𝑖; 

 NB: for the following argument it is no important how large is Δ; 

 Definition of a quantum state: 

1) ℋ Hilbert space, the rays of which represent the pure state of our system; 

2) An assignment to each spatial set Δ of a projection operator 𝑃Δ on ℋ; 

3) A unitary 𝐚 ↦ 𝑈(𝐚) representation in ℋ of the translation group in ℳ; 
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 Here 𝑃Δ means the event that the particle would be found in ∆ if a 
particular detection experiment were performed; 

 Conditions on the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝐚)) 

1) Translation Covariance Condition: 

 
𝑃Δ+𝐚 = 𝑈(𝐚)𝑃Δ𝑈(−𝐚) 

 

where 𝑃Δ+𝐚 is a result one obtains translating Δ by 𝐚; 

This condition means that the statistics of a measurement does not change with 
spatial translations: We can suppose to conduct the experiment not at its 
original site, but translated in another place, which is displaced from the first 
by 𝐚: 𝑃Δ+𝐚 represents the event that if a particular experiment were 
performed, the particle would be found in Δ + 𝐚. 
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For all future directed timelike vectors 𝐚 in ℳ, if 𝐻(𝐚) is the unique self-

adjoint hamiltonian operator satisfying  
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then the spectrum of 𝐻(𝐚) is bounded below; 

This condition says that a particle has a ground energy state; 
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For all future directed timelike vectors 𝐚 in ℳ, if 𝐻(𝐚) is the unique self-

adjoint hamiltonian operator satisfying  

𝑈 𝑡, 𝐚 = 𝑒−𝑖𝐻(𝐚) 

then the spectrum of 𝐻(𝐚) is bounded below; 

This condition says that a particle has a ground energy state; 

3) Localizability Condition: 

If ∆1, ∆2 are disjoint spatial sets of a single 𝑆, then 

𝑃∆1𝑃∆2 = 𝑃∆2𝑃∆1 = 0 

this condition rules out the “infinite speed” possibility for a particle: a particle 

cannot be detected in two disjoints (spacelike related) spatial sets at the same 

given time; 

 



Malament’s theorem 

4) Locality Condition:  

If ∆1, ∆2 are spatial sets (not necessarily on the same hyperplane) that are 

spacelike related, then 

 
𝑃∆1𝑃∆2 = 𝑃∆2𝑃∆1 

 

Here it is imposed the “stamp of relativity”, the independence of outcomes 

holds in time → the statistical independence of position measurements is 

propagated and preserved in time! 



Malament’s theorem 

 Claim: Malament’s theorem 

If the structure (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝒂)) satisfies condition (1)-(4), then 

 
𝑃∆ = 0, 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 ∆ 

 

 Conclusion: any candidate of a particle relativistic quantum theory that 

satisfies these conditions must predict that the probability to find the 

particle in any ∆ is 0. Since this conclusion is not acceptable, the claim 

assumes the status of a no-go theorem for a particle ontology. 



Discussion 

 Two options on the table: 

1) Malament’s theorem shows how it is physically impossible to have a 

consistent theory with a particles ontology; 

2) Bohmian QFT, a quantum field theory of particles which is empirically 

adequate since it recovers all the set of predictions of standard QFT; 
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 Malament’s theorem is based on the usual SQM formalism: the description 
of a physical system is provided only in terms of the wave function; 

 The theorem is concerned with measurements of position operator, it is not 
about particles 

                                                         ↓ 

                        here is valid the same argument against SQM 

BM and BQFT have a richer and clearer ontological structure: we assume that 
our world is made of particles, our primitive variables, which have definite 
positions at any given time; 

 The “primitiveness” of PO ⇒ two different aspects:  

a) primitive variables are “irreducible” to others notions, they are not 
inferred o derived from other entities;  

b) explanatory function of the primitive variables: they are primitive because 
every physical object or phenomenon must be connected and explained in 
terms of PO; 
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 Realism about operators, two quotations: 

 The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite 

surprising to have it appearing in physical theory at the most fundamental 

level. […] Does not any analysis of measurement require concepts more 

fundamental than measurement? And should not the fundamental theory be 

about these more fundamental concepts? (Bell, 1981)  
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 The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite 
surprising to have it appearing in physical theory at the most fundamental 
level. […] Does not any analysis of measurement require concepts more 
fundamental than measurement? And should not the fundamental theory be 
about these more fundamental concepts? (Bell, 1981)  

 

 Here are some words which, however legitimate and necessary in 
application, have no place in a formulation with any pretension to physical 
precision: system; apparatus; environment; microscopic, macroscopic; 
reversible, irreversible; observable; information; measurement. […] The 
notions of “microscopic” and “macroscopic” defy precise definition. […] 
Einstein said that it is theory which decides what is “observable”. I think he 
was right. […]“observation” is a complicated and theory-laden business. 
Then that notion should not appear in the formulation of fundamental 
theory. (Bell, 1990)  
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 Malament’s argument excludes non local interactions, while BQFT 

incorporate non locality in its dynamical equation for the primitive variables 
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as in the non relativistic regime, the velocity of particles depends on the entire 

configuration 

 The point here is that within the bohmian framework one is not trying to 

“make the standard QFT a bohmian one”, rather one is trying to built up a 

new physical theory with different features respect standard QFT; 
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incorporate non locality in its dynamical equation for the primitive variables 

                                                         ↓ 

as in the non relativistic regime, the velocity of particles depends on the entire 
configuration 

 The point here is that within the bohmian framework one is not trying to 
“make the standard QFT a bohmian one”, rather one is trying to built up a 
new physical theory with different features respect standard QFT; 

 In conclusion we have a different structure for the definition and the 
description of a quantum system than (ℋ, ∆↦ 𝑃Δ, 𝐚 ↦ 𝑈(𝒂)) 

 
↓ 

a description which includes physical assumptions about the primitive ontology; 

 



Conclusions 

 BQFT is a counterexample to Malament’s theorem, so it is possible to have 

a theory with a particle ontology; 

 BQFT is however an effective theory: we have to introduce cut offs (UV and 

IR) in order to have well defined Hamiltonians; 

 



Conclusions 

 BQFT is a counterexample to Malament’s theorem, so it is possible to have 

a theory with a particle ontology; 

 BQFT is however an effective theory: we have to introduce cut offs (UV and 

IR) in order to have well defined Hamiltonians; 

 Here effective means only that this theory is not strictly speaking a 

fundamental theory → e.g. gravitational phenomena are not explained (this 

is also the case of any QFT) 

                                                    ↓ 

Effectiveness has not to be regarded as a negative feature: it says only that a 

certain theory has limits in its applications: we cannot say anything under 

certain physical energies! 

 



Conclusions 

 Lorentz invariance: BQFT requires a preferred reference frame, therefore it 

is not Lorentz invariant 

 

 However, the theory is empirically equivalent to a Lorentz-invariant theory 

 
↓ 

Experimentally there are no possibilities for an observer to determine which 

frame is the preferred one, so the BQFT’s empirical predictions are Lorentz 

invariant 

↓ 

BQFT is equivalent to a fully Lorentz-invariant theory. 
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