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Abstract

This paper proposes a stochastic model of investment with embodied technolog-
ical progress, in which ..rms invest not only to expand the capacity as in Pindyck
(1988) but also to replace old machines. The scrapping decision or the age of the
oldest machine is then endogenous and evolves stochastically. Uncertainty increases
the optimal age of the machines in use, and due to uncertainty, not only capacity
expansion but replacement as well, are postponed. By introducing heterogenous
capital units, the model gets rid from the perfect ’procyclicity” of investment usu-
ally implied in the literature of irreversible investment under uncertainty. The
so-called cleansing exect of recessions appears since replacement can occur even in
bad realizations of the stochastic process.

1. Introduction

At the plant level, Doms and Dunne (1998) observe that investment occurs infrequently
and in burst. Using a 17 years sample, they show that the ..ve years biggest investment
episodes account for more than 50% of total US investment The fact that investment
is lumpy and infrequent is well documented for France by Jamet (2000): on a 13 years
sample the three largest investments account for 75% of total investment in the French
economy. Firms also stay long periods inactive since each year, almost 20% of the ..rms
do not invest at all. Such observations contrast with the result of the neoclassical model
of investment with convex adjustment costs. Pindyck (1988) develops a model of capacity
expansion, showing how uncertainty and irreversibility can acect the decision to invest.
This model is able to reproduce the infrequency and lumpiness of investment at ..rm-level.
Indeed, Pindyck (1988) obtains that ..rms only invest when the stochastic variable reaches

*The authors acknowledge the support of the Belgian research programmes “Poles d’Attraction inter-
universitaires” PAl P4/01, “Action de Recherches Concertée” 99/04-235 and "CAPES”".



its historically most favorable values and investment only occurs to expand capacity. With
homogenous units, all the installed capital (which means all the old machines) must be
used before the ..rm starts investing. This contradicts the observation. For instance,
Figure 1 presents the distribution of capacity utilization of ..rms having an annual growth
of capital higher than 20 percent in the Spanish manufacturing industry® for the period
1991 to 2001. Even if the mode of the distribution is at 100 percent, there is still a large
fraction of expanding ..rms using less than full capacity. Furthermore, the average growth
rate of capital for ..rms with a capacity utilization less than 85% is not much lower than
that for ..rms using full capacity (113.18% against 120.26%)>.

Figure 1- Distribution of Capacity Utilization
of ..rms presenting a peak of investment higher than 20%
in the Spanish Manufacturing Industry - 1991 to 2001.
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There is also evidence that technological progress is largely investment speci..c. We
observe that the probability that a peak of investment occurs is increasing with time
(see among others Caballero, Engle and Haltiwanger, (1995), Cooper, Haltiwanger and
Power (1999)). Moreover, as time passes, the relative price of capital goods is declining
and the ratio equipment-GDP is raising. Therefore, investment decisions and techno-
logical progress seem to be utterly interrelated. It is then relevant to consider models
with embodied technology which are able to generate endogenous scrapping (see for in-
stance Cooley et. alli (1997); Boucekkine, Germain and Licandro (1997), Pommeret and
Boucekkine (2003)) that is, to explain replacement. Nevertheless, these models remain in

IThis represents 3.654 ..rms out of 8.072.
2Computations based on the Encuestas Sobre las Estragegias Empresiales a panel for the spanish
manufacturing ..rms, collected by Fundacion SEPI.



a deterministic environment while it has been recognized that to a large extent, invest-
ment is irreversible and that the stochastic nature of the environment matters therefore
a lot to explain investment undertaken by ..rms.

The question is what drives investment. Surely, ..rms invest for two reasons: to
expand capacity and to replace old machines. In this paper, we propose to explain capital
accumulation by taking into account these two motivations in a stochastic framework.
The model considers embodied technological progress and irreversible investment under
uncertainty. It is shown to be consistent with the following empirical observations:

e Investment is lumpy and infrequent at the ..rm level
e Firms can invest even if they have not reached full capacity.

e Technological progress is largely investment speci..c

We extend the paper of Pindyck (1988), by introducing embodied technological progress®.
The model presented here exhibits interesting characteristics: ..rms invest not only to ex-
pand capacity, as in Pindyck (1988), but also to replace old machines. We compare cases
with disembodied and embodied technological progress under uncertainty, also focusing
on the way uncertainty and the technological progress acect the investment process under
embodied technological progress. To produce, ..rms use irreversible capital, perfectly fex-
ible labor, and energy whose price is stochastic. Capital and energy are complementary.
Under disembodied technological progress, all the machines become more energy saving
at each period, contrasting with the embodied case for which only the new machines are
more e€cient in terms of energy requirements. Results for ..rms under disembodied tech-
nological progress are of course of the same nature as those of Pindyck (1988) in which
there is no technological progress. All the units should be used before the ..rm starts
investing which seems counterfactual (see ..gure 1). On the contrary, under embodied
technology, units are no longer homogenous, and this induces ..rms to replace old energy-
ineCcient units by newer and less energy consuming units even if they do not expand
capacity.

Results are then dicerent from those obtained in a deterministic environment (see
Pommeret and Boucekkine, 2003) : under uncertainty, the endogenous optimal age of the
oldest machine evolves stochastically ; moreover, the optimal exective stock of capital (the
one which is ezectively used as opposed to the total stock of capital) is no more constant
as it is in the deterministic counterpart of the model. Therefore, by allowing a stochastic
environment, this paper contributes to the literature on embodied technological progress.

Introducing embodied technology in a standard model of irreversible investment under
uncertainty allows to get rid of the perfect ”procyclical” behavior observed when capital
units are assumed to be homogenous. Under embodiment, we take into account the fact

3Depreciation was included in some papers, (see for instance Dixit and Pindyck (1994) chapter 6) ,
but none of them have, as far as we are informed, accounted for embodied technological progress.
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that the ..rm can react to shocks in two ways, through a variation in the rate of new units
acquisition or through a variation in the rate of destruction. Investment may therefore
be undertaken even in unfavorable periods when ..rms need to replace old machines by
new ones. This may generate a cleansing excect of recession as pointed out by Bresna-
han and Raa (1991) and studied by Caballero and Hammour (1994, 1996) or Gooslbee
(1998)*. Therefore, by allowing replacement investment, this paper also contributes to
the literature on irreversible investment under uncertainty.

Next section presents a model of investment under uncertainty with disembodied tech-
nology. Section 3 develops the model with embodied technological progress. Section 4
presents a dynamic example to illustrate the theoretical results. Section 5 concludes.

2. Disembodied technological progress under uncertainty: a bench-
mark

As a benchmark, we consider a standard monopolistic competition economy under uncer-
tainty in which the technical progress is disembodied. In fact, this section briety presents
a model that is very similar to the one proposed by Pindyck (1988). Here, the energy
price is uncertain and follows a geometric Brownian motion®.

dPe(t) = pPe(t)dt + o Pe(t)dz(t)

where Pe(t) is the energy price at time ¢. p is the deterministic energy price trend which
is disturbed by exogenous random shocks. dz(t) is the increment of a standard Wiener
process (E(dz) = 0 and V(dz) = dt). o is the size of uncertainty, that is, it gives the
strength with which this price reacts to the shocks. The problem the ..rm has to solve is

max E, [ /0 TIPOO) — Pelt) B(t) — w(t)L(1) — k(t)I(1)] et 2.1)

subject to constraints taking uncertainty into account

Pt) = bQ(t)™" with < 1 (2.2)
Qt) = AK. g (t)°L(t)F (2.3)
dPe(t) = wpPe(t)dt +oPe(t)dz(t) (2.4)
E(t) = Kepp(t)e "dz with y < r (2.5)
w(t) = @™ (2.6)
I(t) = dK(t)>0 (2.7)
K(t) > Ky (2.8)

4He ..nds that after the second oil shock, the probability of retirement of a Boeing 707 has more than
doubled in the aircraft industry.
See Epaulard and Pommeret (2002) for a justi..cation.
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P(t) is the market price of the good produced by the ..rm, Q(¢) is the production, the
demand price elasticity is (—1/6). We assume that any capital unit that has been in-
stalled may temporarily not be used for free. We note K.ss(t) the capital stock which is
eaectively used in the production while K (t) refers to the capital the ..rm has installed
which encompasses used units and unused units. L(t) is labour E(t) stands for the energy
use and I(¢) is investment ; w(t) is the wage rate, Pe(t) is energy price and k(t) is the
purchase cost of capital ; r is the ..rm’s discount rate, and v > 0 represents the rate of
energy-saving technical progress. We assume® ;< and v < r.

The Cobb-Douglas production function exhibits constant returns to scale but there
exists operating costs whose size depends on the energy requirement of the capital’ to any
capital use K (t) corresponds a given energy requirement K (¢) e~7*. Technical progress is
assumed to make machines becoming less energy-consuming over time. In the disesmbodied
case, the total stock of capital goods become more and more energy saving over time
whatever their age. This is a rather unrealistic assumption which will be relaxed in the
next section. We assume that labour may be adjusted immediately and without any cost
and this standard problem reduces to the following conditions for optimal inputs use:

L*(2)

A1 — B)(1— §)] TT T a-a)
- } Kepp(t)=0=m0-0 (2.9)

w

The cash Fow cf(t) provided by one capital unit that is used is then
cf(t) = aBK.pp(t)* ' — Pe(t)e " (2.10)

PR E—
1-(1-p)(1-9)

— _ v A=8)(1-0)
whereazl—_(%andB:[1_(1_5)(1_9)][(A1 eb)[l 10 9] }

Note that for bad realizations of the uncertain variable, it may become negative. Since
we assume that there is no cost to keep the machine unused, it is then optimal for the
..rm to stop using it as soon as the marginal cash-fow becomes negative. Finally, the
marginal cash-tow is thus

aBK.;p(1)* 1 — Pe(t)e " if the unit is used
0 if the unit is not used

®If 4 > 7, the ..rm would have an incentive to in..nitely get into debt to buy an in..nite amount of
energy.

v < r is a standard assumption in the exogenous growth literature since it allows to have a bounded
objective function.

"Such a complementarity is assumed in order to be consistent with the results of several studies
showing that capital and energy are complements (see for instance Hudson and Jorgenson,1974 or Berndt
and Wood, 1975).



We can de..ne the level Pe(t) for which the ..rm stops using units: Pe*P(t) = aBK(t)* ‘e,
Since this problem is only a benchmark, we will solve it very quickly. To get greater de-

tail, the reader can refer to Pindyck (1988), which consider a similar problem except that

there is no technological progress.

2.1. Determination of the value of a marginal unit of capital

e The value v(t), of a unit of capital at time ¢ has to satisfy the following Bellman
equation:
ru(t) = [aBKepp(t)* " — Pe(t)e ] + Ey(dv)/dt

For a given exective capital stock (which means that ..rm does not invest at time
t), this dicerential equation leads to the following solution:

aB o Pe(t) _
v(t) = TKeff O p— +76 " 1 ay(Kegpp(t), t) Pe(t)™

2
where g, =4 — &2 4 \/G%ﬂ —%) + 2 > 1. Note that 93, /0o* < 0.

a1(Keps(t),t)Pe(t)Pr gives the value of the option to stop using the unit; it is of
course an increasing function of the energy price.

e The value w(t) of a unit of capital that is not currently used is not currently providing
any cash-fow. It has to satisfy the following Bellman equation:

rw(t) = Ey(dw)
and the solution of this diaerential equation is:

w(t) = ax(Keps(t), ) Pe(t)”

2
By=1 -l (ﬂu) _l> +28 < 0. Note that 93,/d0> > 0.

o2 o2 2
ay(K(t),t)Pe(t)?2 gives the value of the option to reuse the unit; it is a decreasing
function of the energy price.
e The value ¢(¢) of a unit that has not already been acquired has to satisfy
rq(t) = Ey(dq)

that is
q(t) = as(K(t), t)Pe(t)’



where (3, < 0 is the same as previously. as(K (t),t)Pe(t)": gives the value of the
option the ..rm has to give up if investing at time ¢. Such an option value comes
from the fact that if acquiring a unit of capital at time ¢, the ..rms makes it more
diccult (in the sense that the ..rm will require a better realization of the stochastic
variable) to invest next period since the marginal productivity of the used capital
will be smaller. Note that it is a function of the installed stock of capital (and not
of the exectively used one) since investment only occurs once all the hold units are
used.

2.2. Optimality conditions

The utilization rule allows to derive the value of a unit currently used which in turn
provides the desired stock of capital through the investment rule .

2.2.1. Utilization rule

A unit of capital will only be used if the cash Fow coming from its use is positive. Moreo\er,
the ..rm uses an old machine until it becomes indicerent between using it or keeping it
unused: for the level Pe*(t) of the energy price the value of the oldest machine used must
be same whether it is used or not. Since the model is stochastic, the transition between
these two values of the unit has also to be smooth for the ..rm to be at the optimum. These
two conditions are the value matching and smooth pasting conditions that are standard
in the irreversible investment under uncertainty literature:

v(t) = w(t) for Pe(t) = Pe*P(1)
du(t)  Ow(t)
OPe(t) ~ OPe(t)

for Pe(t) = Pe*P(t)

aB _ Pe*(t) N X
TKeff(t)a T — i 76 7t+a1(Keff(t))Pe D(t)ﬂl = CL2(Keff<t>,t)P€ D(t)’BQ (211)

1

r—p+y

Taking into account he fact that aBK.s;(t) " = Pe*P(t)e™, this leads to the
expression of the marginal value of a unit used at time ¢:

e+ Bray(Kepp(t) Pe*? (8)1 71 = Byag(Kopp(t), t) PP (1)1 (2.12)

aB o Pe(t)
u(t) = —Keps(t) 1—m

_ 1 -1
+\616—252 [aBKeff(t)a_l}l A1 gt (; — %)Jpe(t)ﬁl

et 4 (2.13)

-~

ai (Keff(t)rt)



2.2.2. Investment rule

The ..rm invests until it becomes indicerent between acquiring one more unit and doing
nothing, that is, until the value of one more unit exactly compensates for the constant
cost £ to acquire it and for the value of the option to invest in the future the ..rm has
to give up (it corresponds to the value matching condition). In order for the ..rm to be
at the optimum of this stochastic program, such an equality has also to be true when
the derivatives of these values and of these costs with respect to the energy price are
considered (it corresponds to the smooth pasting condition). These conditions provide
the level of the energy price for which, given the installed stock of capital, it is optimal for
the ..rm to invest in one more unit. Symmetrically, they can be interpreted as providing
the desired stock of capital for a given observed realization of the energy price. Moreover,
since all units are the same, the ..rm will only invest when using the full capacity; this
implies that K.¢f(t) = K(t) in these optimality conditions:

o(t) = qt) +k (2.14)
ov(,t)  9q(t)
DPelt)  OPe(t) (2.15)
=
ab o1 _ _Pelt) e M+a e(t)yr = a e(t)2
—K(1) o R (K (1) Pe(t)’ = ag(K(t)Pe(t)® + k (2.16)
1

——T_M+76‘”t+51a1(K(t))Pe(t)Bl‘1 = Boaz(K (t))Pe(t)®2"! (2.17)

2.3. The desired stock of capital

Solving the system (the desired level of capital K %(t) for an observed level of the stochastic
variable Pe(t) leads to the expression of the desired stock of capital:

diy\(a—1)1(1=B1) B+ By —1 o _1} B,
[aBK“(t) ] e {ﬁz r—nt) * Pe(t) (2.18)
+aBKd(t)(°‘_1) Cka Pe(t)e " (62 — 1)

. r—pty\ B

Results are very to similar to Pindyck (1988) except that the desired stock of capital
moves during time not only through the realization of the stochastic variable but also
through the technological improvement. It can easily be checked that the later (i.e. the
more advanced the technology for) a given realization of the energy price, the greater the
desired stock of capital.




The ..rm’s stock of capital, K (¢),will only equalize the desired one, K9(t), when it is
investing. Note again that because all units are the same, the ..rm ..rst reuse all its old
units before investing in new ones, as in Pindyck (1988). For instance, a ..rm will ..rst
make sure that it uses all its old computers before investing in new ones. This seems
quite unrealistic but it is a standard feature of the models which deal with irreversible
investment under uncertainty. It comes from the fact that all these models abstract
from embodied technological progress. Indeed, this unrealistic feature disappears when
technological progress embodiment is taken into account, as it is the case in the next
section.

2.4. Investment

Investment happens each time the desired stock of capital tends to exceed the installed
stock of capital. Therefore, it crucially depends on the installed stock of capital. Its
dynamics consists into periods with no investment (when the realizations of the energy
price are too high) and period with marginal investment. Note that the introduction of
technological progress leads to a value of the energy price which trigger next investment
decreasing with time. For sake of comparison with next section, note that in the special
case for which we observe that the energy price evolves at the rate of technological progress,
the desired stock of capital is constant which implies no investment.

3. Embodied technological progress under uncertainty

Now, we consider the same program, except that the technological progress is embodied.
The problem the ..rm has to solve becomes then:

max E [/OOO [P(t)Q(t) — Pe(t) E(t) — w(t)L(t) — k(t)I(t)] e "dt 3.1)
subject to constraints taking uncertainty into account

P(t) bQ(t) ™’ with 0 < 1 (3.2)

Q(t) AKep ()L (3:3)

Kos(t) — / I(2)dz (3.4)

dPe(t) = wpPe(t)dt + oPe(t)dz(t) (3.5)

E(t) = /t I(z)e "*dz with v < r (3.6)

w(t) = @ 3.7)

I(t) = dK(t) >0 (3.8)

K(t) = Keyy (3.9)



K. (t) is still the capital stock which is ezectively used but now, units are not equal in
terms of energy requirement and it is oldest units which may not be used. We note 7o the
acquisition date of the oldest machine currently used. Again, we assume that any capital
unit that has been installed may temporarily not be used for free and that labor may be
adjusted immediately and without any cost. The optimal use of labor is then:
A1=0(1 — B)(1 — §)] TG PuD a1-6)
L*(t) = — Keff(t)l—(l—ma—e)
w

It can be deduced that cf(¢,7), the cash-fow generated between time ¢ and (¢t + dt) by
one unit of capital acquired at time 7, depends on whether this unit is used or not:

cf(t,7) = max [0, (aBKess(t)* " — Pe(t)e ") dt] (3.10)

where B is the same as in the previous section.

3.1. Determination of the value of a marginal unit of capital

It is then possible to derive the value of a unit of capital depending on the date of
acquisition of this unit and on whether this unit is currently used or not. Recall that in
the case of disembodied technological progress the acquisition date of the unit was of no
relevance.

e The value V(Pe(t),7,t), of a unit of capital at time ¢ acquired at time 7 and
currently used has to satisfy the following Bellman equation:

rV(t,7) = (aBKess(t)* ' — Pe(t)e ") dt + Ey(dV)

For a given exective capital stock (that is, if it is optimal for the ..rm ..rst not to
reuse old units that were previously unused and second not to invest at time ¢), this
dicerential equation leads to the following solution:

aB o Pe(t)

V() = eff () R

e 4 by(Ke gy (t), 7) Pe(t)™

where 3, > 1 is the same as previously. bi(K.s; (t),7)Pe(t)% gives the value of the
option to stop using the unit.

e The value W (¢, 7) at time ¢ of a unit of capital acquired at time = and not currently
used is not currently providing any cash-fow. It has to satisfy the following Bellman
equation:

rW(t, 1) = Ey(dW)
and the solution of this dicerential equation is:
W (t,7) = ba(Kepf(t), 7)Pe(t)?

where 3, < 0 is the same as previously. ba( K.z (t), 7)Pe(t)?2 gives the value of the
option to reuse the unit.
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e Value O(t) in time ¢ of a unit that has not already been acquired has to satisfy
rO(t) = E(dO)

that is
O(t) = ba(Kepf(t), 7) Pe(t)”

where 3, < 0 is the same as previously. bs(K.ss (), 7)Pe(t)”2 gives the value of the
option the ..rm has to give up if investing at time ¢. Note that contrary to what we
had in the case of a disesmbodied technological progress, the value of the option to
invest ( b3(K.s; (t), 7)Pe(t)?2) is a function of the ezectively used stock of capital
and not of the installed one, since it may be optimal for the ..rm to invest even if it
is not using all the installed units of capital.

3.2. Optimality conditions

The decision scheme is not the same as in the case of disembodied technological progress.
Recall that in the previous section, the ..rm had ..rst to decide whether to invest or not
depending on the relative values of the desired capital stock (given the observed value
of the uncertain variable) and of the already installed stock. In the case in which it
was not optimal to invest, the ..rm must then decide to use all the unit capital it has
installed or only a part of it. Since any unit of capital had the same characteristics
because technological progress bene..ts to all units, the ..rm would ..rst reuse old units
before investing into new ones. In a way, the decisions of using installed units and of
investing in new ones were taken independently since there was no incentive for the ..rm
to replace old units by new ones.

Itis no more the case when technological progress is embodied because capital units dicer
according to their installation date. The intuition is the following: since a new capital
unit may be a lot more energy saving than an old one, it may be interesting for the ..rm
to stop using one old unit and to invest into a new one even if there is an acquisition cost
for the new one while there is none if the ..rm keeps using the old one. Therefore, the
..rm will simultaneously have to decide to invest or not and to determine the age of the
oldest machine to use. Indeed, these two decisions are now closely linked.

3.2.1. Utilization rule

As already stated (see equation (3.10)), a unit of capital will only be used if the cash fow
coming from its use is positive. For an observed energy price level, the acquisition date
of the oldest machine it is optimal to use, 70*, has thus to satisfy

aB {/t ](z)dz} . = Pe(t)e 7™ (3.11)

o*
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This condition states that the marginal productivity, which is the same for any used
machine, has to be equal to the marginal cost of using the oldest machine. Moreover, the
..rm uses an old machine acquired at time 7 until the realization of the energy is Pe*E ()
such that it becomes indicerent between using it or keeping it unused: the value of the
oldest machine used must be same whether it is used or not. Since the model is stochastic,
the transition between these two values of the unit has also to be smooth for the ..rm
to be at the optimum. These two conditions are the usual value matching and smooth
pasting conditions.

Vit,r) = W(t,1) for Pe(t) = Pe*E(t) (3.12)
ovit,r)  IW(trT) I
oPe(t) —8Pe(t) for Pe(t) = Pe*E(t) (3.13)
=
OB Kottt =2 e*f@/jw by (Ko (1), )P () = by(K (1), 7)Pe(t) (3.14)
- e_jT + Bibr (Kep (1), )P ()71 = Byba(Kepg(t), T)Pe™ (1) (3.15)

Taking into account the fact that aBK, ;4(t)(*) = Pe*F(t)e™, this leads to the expres-
sion of the marginal value of a unit acquired at time = and which is currently used:

V() = S Kt - % + (3.18)
By a-111-B1 g 7 <l B M) 8,
P B0 e ) P

N J/

by (Keyr (£),7)

The value of the option to stop using the unit (by(Key(t), 7)Pe(t)%2) negatively de-
pends on its acquisition date 7: the sooner the unit has been installed, the less value it
has to have the opportunity to stop using it.

We illustrate this value function using a numerical example. We assume § = 0.3,
6 = 0.2 (which correspond to a mark-up of 25%), x = 0.02 and B = 100. For the
technological parameter, we choose v = 2%. Other parameters are those used in Pindyck
(1988): r =0.05; k = 10; 0 = 0.2.

The value function is of course a decreasing function of the energy price. Ve can also
observe on ..gure 2 in appendix that for a given energy price, the higher the uncertainty,
the higher the value of the marginal unit, which is standard in the literature of investment
under uncertainty. This is due to the fact that the part of this value which depends on
uncertainty corresponds to the value of the option to stop using the unit which rises with
uncertainty.

12



Figure 3 shows that the value of the option to stop using a unit of generation 7 is
increasing with Kef f(t), since the higher the stock of the capital, the more it is valuable
to have the opportunity to stop using old units. Again, and for the same reason as
previously, uncertainty increases the value of this option.

Figure 3: Value at time ¢ of the option to stop using a unit of generation
as a function of Keff(t) (Pe(t) = 0.5)

V(1)

51 ~

50 A

s=0.25
s=0.2
se----s=0.

49 A

48 { ",

47 A

46 A

45IIIIIIIIIIII.\IIIIIIIIIIIIIII

500 530 560 590 620  Keff(t)

The interesting result that can be seen on ..gure 4 is that, for a high enough 7, the value
of a marginal used unit is the same, no matter how large is the uncertainty parameter.
Indeed, for suc€ciently recent units, the technological progress will be high enough to
reduce drastically the energy requirements, and having the opportunity not to use them
is of very low value, whatever the size of uncertainty.

Figure 4: Value of a marginal used unit
as a function of its acquisition date 7 (Keff(t) =1 and Pe(t) = 10)
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3.2.2. Investment rule

The ..rm invests for an energy price realization such that, for a given exective stock of
capital, it is indicerent between acquiring one more unit and doing nothing, that is, until
the value of a newly used unit exactly compensates for the constant cost &£ to acquire
it and for the value of the option to invest in the future the ..rm has to give up (it
corresponds to the value matching condition, eq 3.17). In order for the ..rm to be at the
optimum of this stochastic program, the standard smooth pasting condition has to be
satis..ed as well. For given ecective capital stock and technology levels, these optimality
conditions provide the expression of the energy price level for which it is optimal for the
..rm to invest in one new unit. This expression may also be converted into that of the
optimal exective stock of capital as a function of the observed energy price level and of
the current level of technology.

Vitr = t)=O) +k (3.17)
V() 00
OPe(t) — OPe(t) (3.18)
=
S UC fﬂ_%e—% b (Kop(t, 7)) Pe(8) = ba(Kops (), ) Pe() + & (3.19)

= e + Brbu(Keps(t), T)Pe(t) ™ = Bybs(Kegs(t), 7) Pe(t)” (3.20)

Note that contrary to what has been obtained in the dissmbodied technological progress
case (see equations 2.16 and 2.17), it is not the total amount of installed capital K (¢) but
the capital which is ecectively used that appears in equations (3.19) and (3.20). To decide
how much to invest, ..rms do not care about how much capital they have but about how
much capital they use. Due to the embodied technology, it may be interesting for the

..rm to acquire new units that are more energy saving even if all the old units are not used.

The resolution under disembodied technological progress leaves us with two conditions:
one giving a requirement for the use of the capital (all the capital will be used if the total
stock is less than K.s¢(t) while if K(t) is greater than K.sr(t), the stock K(t) — Kcf¢(t)
will stay unused) and the other giving a requirement for the investment in capital units
(if K(t) is less than K<(t), the ..rm invests until its stock reaches the desired one whereas
if K (t) is greater than K<(t), there is no investment). Since all the capital units are
the same when the technological progress is disembodied, the desired capital does not
coincides with the ecective one for any realization of the uncertain variable. In fact, the
expression for the desired stock of capital is only valid for the ezective stock when the
uncertain variable reaches its historically most favorable levels (corrected to take account
of the technological progress).
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Under embodied technological progress, the installed stock of capital (which may as
well be in excess) is no more determinant for investment. What is more interesting is the
ecectively used stock of capital, and since the ..rm can always decide the age of the oldest
capital unit in use to adjust the used stock to its optimal level, the desired level of used
capital always coincides with the erective level and the expression for the desired level of
ecectively used capital is valid whatever the realization of the uncertain variable. This
will allow to get the expression of the optimal acquisition date of the oldest machine as a
function of the energy price.

The system (3.19)-(3.20 ) also provides the expression of the value of the option to
invest:

— ﬁ oa— 1_:31 —vB,t ok 1— B2 1 . (ﬁ B 1)
o) = ﬂl—l 5 [aBKpp(t)* ] e Pt PP ()i (T B =) (274_“))} Pe(3)?1)
_e‘W’tPe"‘*E(t)l_@Pe(t)ﬁ2
By (r — ) (3.22)

with Pe**E(t) satisfying:

- —1 1
0B (f) D" m{ By—1 _-] P (1) Pt 3.23
[ ()] G 7 (1) (3.23)
L aBEe (1)) PerP(t)e <ﬁ2 = 1) rk
: r—n \

Figure 5 shows that for a given ¢ and K. ¢, the value of the option decreases with the
energy price, since the higher this price, the less valuable it is to have the opportunity
to invest. Moreover, the higher the uncertainty, the higher this value. Note that even if
uncertainty tends to zero, there will be still one option to wait for newer units because
of the existence of technological progress. It can be easily checked that if 02 — 0 and
~v =0, then O(t) = 0.
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Figure 5: Option to postpone investment as a function of the energy price (¢t = 10 and

Kef f(t) = 1)
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Figure 6 in appendix simply refects decreasing returns: the more one uses the capital,
the less worthy it is to hold the option to invest in future. Figure 7 illustrates one of the
result of our model: as time passes, since units become more and more eC€cient in terms
of energy requirements due to embodied technology progress, it becomes more and more
worthy to have the opportunity to invest in the future.

Figure 7: Option to postpone investment as a function of time (Kef f(t) = 1 and

Pe(t) = 80)
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3.3. Optimal erxective capital stock

Given the observed level of the energy price and the current state of the energy-saving
technology, it is optimal for the ..rm to have an exective capital stock equal to K.¢¢ *(t)
which is given by the following implicit equation :

* o— (7 1) /8 _ 1 1 1,—0P1
[OzBKeff(t)( 1)] 7 {m —;] Pe(t)Pre Pt (3.24)
LOBE (0D Pe(t)e (62 — 1) +k
r r—p By

Note that thanks to potential decreases in the optimal age of the oldest machine used,
it is possible for the optimal exective capital stock to be decreasing even if the total
installed stock of capital is irreversible (as we have already seen, under embodiment,
the installed stock of capital does not really matter as far as the ..rm’s decisions are
concerned). The optimal exective stock of capital has an expression close to® that derived
under disembodiment for the desired stock of capital, but remember that in this latter
case, K,(t) does not always match the exective stock of capital (it only does for good
enough realizations of the stochastic variable).

Figure 8 in appendix shows that uncertainty reduces the optimal erective stock of
capital. Of course the higher is the price of energy, the less ..rms use the machines. For a
given energy price,the ecective stock of capital increases with time (see ..gure 9), because
more recent machines consume less energy. The higher the uncertainty, the smaller this
exect.

Figure 9 : Optimal ecective stock of capital as a function of time (Pe(t) = 10)
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8Here of course, the discounting of the energy requirement ignores technical progress.
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3.4. Optimal age of the oldest machine used

Since in this model there exists no cost to temporally not use a machine®, there is no
incentive for the ..rm to de..nitively scrap any machine. Thus we only derive an optimal
age for the oldest machine used but not really an optimal scrapping age. This is a signi-
..cative departure from what is obtained in a deterministic environment (see Boucekkine
and Pommeret, 2001). Using equations (3.11) and (3.24) provides an implicit expression
for the optimal acquisition date of the oldest machine as a function of the observed price:

TN rk + (ﬂZ — 1) Te—ﬁt _ (_2_(ﬂ _ 1)T _ 1) e Bt o ()(B1—1)
Pe(t) B (r —p) Ba(r—p)
We also can express the optimal age of the oldest machine used 7% (t) =t — 70*(t):

e VBT (1) — Bolp—1) {1 e T ((52 —1r n rk )evt)}
t

Bopr — By(r—p)  Pe(

Given the observed level of the energy price and the current state of the energy-saving
technology, the ..rm desires to use only capital units that have been acquired at time
T0*(t) or more recently. Firms dealing with uncertainty are more reluctant to renew the
machines (see ..gure 10) ; replacement is in some sense postponed. It is also possible to see
that a a higher energy price reduces the age of the oldest machine ; one could claim that
the model can reproduce the cleansing ecect” : ..rms would tend to use newer machines
in periods of higher energy prices and eventually acquire new units.

Figure 10: Optimal age of the oldest machine
as a function of the energy price (¢t = 1)
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%It is also the case in Pindyck (1988). Introducing a cost to keep the machine unused would generate
an option to scrap the machine ; this would complicate the model a lot without signi..cantly alter the
results.
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For a given energy price, as time passes, new technology becomes available and we
have seen that the optimal ecective stock of capital increases. Newertheless, ..gure 11
shows that rising K.¢r *(t) is not achieved through the use of older machine. Indeed, the
optimal age of the oldest machine used is a decreasing function of time. This means that
not only capacity is expanded through investment but that there is also replacement of
old machine by new ones which takes place.

Figure 11 : Optimal age of the oldest machine
as a function of time (Pe(t) = 10)
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3.5. Optimal investment

Equation (3.4) implies

. wdro* Al

= I*(t) = I(10") o + o
Current investment is therefore the sum of the destruction term” I(70")(dro*/dt)
that can be positive or negative, and of the variation over time of the desired ecective
capital stock ; that is, past history of investment matters for contemporaneous investment.
Newertheless it cannot be stated that investment exhibits echoes since variations in both
the optimal date of acquisition of the oldest machine and the optimal desired capital

highly depend on the realization of the uncertain variable.
Let us consider the special case for which we observe that during a time period dt the
energy price evolves exactly to compensate for the gains in technology : dPe(t)/Pe(t) =
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~dt. The optimal stock of ecective capital becomes then constant as it is also the case
in a deterministic framework (see Boucekkine and Pommeret, 2001): dK?;(t) = 0. This
does not mean that no investment is undertaken, since the optimal acquisition date of the
oldest machine is not constant:

dTO*(t):ldpe(t) - aB efyro* * (t)(a—l)dK:ft(t) —dt
v Pe(t)  yPe(t)y e K1)

Therefore, in this special case, the optimal acquisition date of the oldest machine
increases exactly with time and old machines are replaced by new ones:

I*(t) = I(ro0")

4. Dynamics of the exective stock of capital, age of the oldest
machine and investment

In this dynamic example, we use the same parameters as previously. Simulations are
driven over 100 periods. In order to get the dynamics of Pe(t), a geometric brownian
motion is simulated using parameters p = 0.02, 0 = 0.04 and Pe(0) = 10 as a starting
value. Figure 12 gives the sample path for Pe(t). The ..rm observes the energy price
and derives how much exective capital it is going to use. It should then decide whether
it should only use more or less hold units or it should invest in new units, which would
increase its total stock of capital.

Replacement

The so-called lumpiness of investment can be reproduced by all models considered here
(in fact, investment irreversibility is su€cient to generate such a characteristics). However
it is only under the assumption of embodied technological progress that replacement is
possible. In the case of homogenous units, the ..rm should reach full capacity before
investing. In such cases, the ..rm will present a very strong ”procyclical” behavior, since
the energy price should reach its historically lowest level (corrected to take account of the
rate of technological progress if relevant) to induce the ..rm to use all its units and invest.
In .gurel4, it can be seen that, under no technological progress or under disembodied
technological progress, .rms barely invest : they increase their total stock of capital
only twice in this example, at the beginning of the program and at the very end of
the period considered, when there is a signi..cative decrease in the energy price. In the
embodied case, investment is driven part by the willingness to increase the ecective stock
of capital and part by the possibility to acquire a more e@cient machine in terms of
energy requirements, that is, replacement. Indeed, in our example, investment occurs
more often when technological progress is embodied rather than disembodied and periods
of investment correspond to peaks in the energy price: clearly, replacement occurs which
explain investment.

Uncertainty
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Comparing the two cases of embodied technology shows (see ..gure 14) that the echoes
exects is no more identi..able when ..rms operate in a stochastic environment. Moreo\er,
the total stock of capital become smaller (see ..gure 13) and ..rms are more reluctant to
renew the machines, leading to a higher optimal age for the oldest machine in use® (see
..gure 15). For these two reasons, ..rms under uncertainty will tend to invest less in new
capital (see ..gure 14).

Technological progress

Not surprisingly, a higher rate of technological progress induces more capital accumu-
lation (see ..gure 16 in appendix) ; investment peaks are higher and more frequent (see
..gure 17 in appendix). Replacement occurs more intensively since the age of the oldest
machine used is smaller (see ..gure 18 in appendix).

To sum up, our model manages to reproduce the following stylized facts:

e Investment occurs in spurts, and the so-called lumpiness of the investment appears

e In the embodied case, ..rms can invest even if they are not using all the units they
have, or in other words, it is the exective stock of capital (as opposed to the total
one) that determines investment, which seems to be a much more realistic result. In
this case, ..rms can invest for very unfavorable realizations of the uncertain variable.
The higher the rate of technological progress, the more active the replacement. To
some extent, this model support the cleansing exect of recessions argument.

e Uncertainty reduces both the total stock of capital and the proportion of new ma-
chines in this stock. Both capacity expansion and replacement are postponed.

10Since the ..rm may not own old enough machines, its maximal age of the oldest machine may be
smaller than the optimal one. This would not azect the ezective capital stock which can still be optimal,
but it would of course arect investment.
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Figure 12: Energy Price as a Geometric Brownian Motion, 1 = 0.02 and o2 = 0.04

140 7 Pe(t)
120 A
100 A
80
60
40
20

O rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 117111 111111171711

1 11 21 31 41 51 61 71 81 91 t

Figure 13- : Total Stock of Capital
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Figure 14: Investment
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Figure 15: Age of the Oldest Machine
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5. Conclusion

The literature on investment under uncertainty has mainly focused on the expansion of
capacity as driving investment ; however, replacement is an important part of the story
of capital accumulation, as suggested by the large literature on vintage capital. This
paper has proposed a model of irreversible investment under uncertainty with embodied
technological progress, in which ..rms invest not only to expand the capacity but also to
replace old machines. The scrapping decision or the age of the oldest machine is then
endogenous, but it is no longer constant as in the literature of vintages, and evolves
stochastically. As shown by a dynamic example, uncertainty increases the optimal age of
the machines in use, and due to uncertainty, not only capacity expansion but replacement
as well, are postponed. By introducing heterogenous capital units, the model gets rid from
the perfect “procyclicity” of investment usually implied in the literature of irreversible
investment under uncertainty. The discussion on the ..rms behavior with respect to capital
accumulation and on the exect of shocks on the economy is indeed signi..cantly enriched.
The so-called cleansing ecect of recessions appears since replacement can occur in bad
realizations of the stochastic process.

One clear extension of this paper is to introduce heterogenous ..rms to study the dy-
namics of the aggregate capital stock, and to eventually test it empirically. Note moreover
that the discussion of energy utilization as well as some recent crisis in this sector have
strengthened debates on how society should deal with macroeconomic impacts of energy
price shocks ; an extension of the model proposed in this paper could compute the social
bene..ts of energy policies, for instance by predicting the impact of an energy tax on the
opportunity of replacement and more broadly on the economy.
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7. Appendix

Figure 2: Value at time ¢ of a marginal unit acquired at time 7
and currently used as a function of the energy price (Kef f(t) = 1 and 7o*(t) = 1)
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Figure 6: Option to postpone investment as a function of the emective stock of capital
(t =10 and Pe(t) = 50)
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Figure 8: Optimal exective stock of capital
as a function of the energy price (¢t = 1)
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Figure 16- : Total Stock of Capital

90 1

------- ¢=0.01 g=0.02 ¢=0.03

Figure 17: Investment
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Figure 18: Age of the Oldest Machine
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