|le savoir vivant|

# Course directory 2014.2015 school of Biology (FBM-BIO) Master

\* your selection

> Biology > Master of Science in Molecular Life Sciences

UNIL | Université de Lausanne

School of Biology (FBM-BIO)

#### SUMMARY

| Notice          | iv |
|-----------------|----|
| Legend          | V  |
|                 |    |
| List of courses | 1  |

This course catalogue was produced using data from the *SylviaAcad* information system of the University of Lausanne. Its database contains all information about courses proposed by the different faculties and their times. This data can also be consulted online at the address :

#### https://applicationspub.unil.ch/interpub/noauth/php/Ud/index.php.

Web site of the faculty : http://www.unil.ch/ecoledebiologie/

Generated on : 03.03.2016

#### NAME OF THE COURSE Teacher Type of Teaching language Status Hours per week Hours per year course Semester Credits Levels N: Programme requirements P: O: Objective C: Content

**STATUS** 

- B: Bibliography
- I: Additional information

#### **ABBREVIATIONS**

#### **TYPE OF COURSE**

| Attest.<br>C<br>C/S<br>Cp<br>E | Attestation<br>Course<br>Course - seminar<br>Camp<br>Exercises        | Fac<br>Obl<br>Opt<br>Fac/Comp/Op | Facultative<br>Compulsory<br>Optional<br>t Facultative, compulsory or optional<br>(according to the study programme) |
|--------------------------------|-----------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Exc<br>Lg<br>S<br>T<br>TP      | Excursion<br>Guided lecture<br>Seminar<br>Fieldwork<br>Practical work | <b>SEMESTER</b><br>Sp<br>A       | Spring<br>Autumn                                                                                                     |

School of Biology (FBM-BIO)

# SCIENTIFIC RESEARCH IN ALL ITS FORMS - THEME FOR 2014-15: COOPERATION AND KINSHIP

Christine Clavien

|    | С                                                                                                                                                                                                                                                       | Opt                |                         | 2                         | french                  | 14 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|---------------------------|-------------------------|----|
|    | А                                                                                                                                                                                                                                                       | 1.50               |                         |                           |                         |    |
| N: | Master                                                                                                                                                                                                                                                  |                    |                         |                           |                         |    |
| P: | * Bachelor                                                                                                                                                                                                                                              | degree * Passive   | knowled                 | lge of Frei               | nch                     |    |
| O: | - Synthesize<br>- Transpose                                                                                                                                                                                                                             | e information fro  | n differe<br>sults fror | ent discipli<br>m one aca | ademic field to another |    |
| C: | This course offers a multidisciplinary perspective on the influence of kinship (or family networks) on cooperative interactions. While addressing this topic, speakers from different faculties will shed light on their own way o practicing research. |                    |                         |                           |                         |    |
| l: | http://www                                                                                                                                                                                                                                              | v.unil.ch/sciences | aucarre/p               | bage8648                  | 7.html                  |    |

#### **BIOLOGICAL SECURITY**

Patrick Michaux

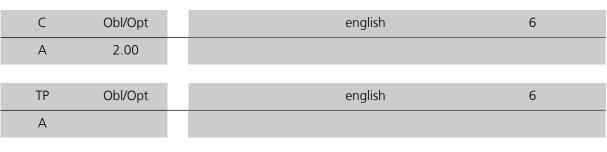
| A | С | Obl | french | 3 |
|---|---|-----|--------|---|
|   | А |     |        |   |

N: Master

- P: A basic knowledge of microbiology and vegetal science
- O: To familiarise future researchers with legislation concerning genetic engineering. In addition, possible biological risks associated to different applications of this technology will be discussed with the help of examples.
- C: \* Legislation: article 24 of the Federal Constitution; law concerning environmental protection; law concerning epidemics; ordnance on protection against major accidents; Swiss commissions on biological security: notification and registration of projects.

\* Biological security in the laboratory: containment; security equipment; technical measures: laboratory construction; standard laboratory (microbiological) practice; classification of biological material: plasmids, microorganisms, cell lines, primary cells; security levels 1-4.

\* Release of genetically modified bacteria in the environment: monitoring, survival and dissemination, ecological impact, transfer of genes, containment systems.


\* Potential biological risks associated with the use of transgenic plants: dissemination, cross-pollination, gene transfer.

- \* The problem of recombinant vaccines: vectors, DNA vaccines.
- \* Somatic genetic therapy I: Illnesses accessible to treatment by somatic genetic therapy, gene transfer methods.

\* Somatic genetic therapy II: Evaluation of the biological risk for the patient and his environment.

#### ADVANCED DATA ANALYSIS IN BIOLOGY I

Frédéric Schütz



N: Master

#### **ADVANCED DATA ANALYSIS IN BIOLOGY II**

#### Frédéric Schütz

| С  | Opt  | english | 6 |
|----|------|---------|---|
| А  | 2.50 |         |   |
| ТР | Opt  | english | 6 |
| А  |      |         |   |

N: Master

#### BACTERIA GENOMES AND GENOME EVOLUTION

Jan Roelof Van Der Meer

|    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Opt  | english | 14 |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----|--|--|
|    | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.50 |         |    |  |  |
| N: | Master                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |    |  |  |
| 0: | : Discover and understand the variety and diversity in global energy metabolism among bacteria<br>Interpret bacterial metabolism with the help of genomic data                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |    |  |  |
| C: | <ul> <li>The class is a mix of subjects that are introduced by the teacher, classical reading and questioning, and metabolism with the help of genomic data</li> <li>The class is a mix of subjects that are introduced by the teacher, classical reading and questioning, and metabolism database practicing <ol> <li>Overview of utilities for interpretation of bacterial genomes (databases, online programs) - Self-learning a practise using specific examples</li> <li>Selected examples of bacterial genomes in relation to their energy metabolism (phototrophs, hydrog)</li> </ol> </li> </ul> |      |         |    |  |  |

producers, electricity producers, alkane degradation)

3) Understanding bacterial genome evolution (literature reading)

B: Ad hoc research articles.

#### IMMUNOLOGY WITH RELEVANCE TO INFECTUOUS DISEASES

Denise Nardelli Haefliger

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

N: Master

#### VIRUS-HOST INTERACTIONS

Stefan Kunz

|    | С                                                                                                                                                                                                                                                                                                                                                                                                                                              | Opt                                                                                                                                           | english                                                                                                                                    | 14 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | А                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50                                                                                                                                          |                                                                                                                                            |    |
| N: | Master                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                               |                                                                                                                                            |    |
| P: | Cours virolo                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogie générale 5th                                                                                                                             | emester (20 hours) Kunz                                                                                                                    |    |
| O: | <ul> <li>To understand fundamental principles of virus-host interaction at an advanced level.</li> <li>To understand basic principles of virus cell pathology.</li> <li>To understand the molecular and cellular mechanisms of innate anti-viral immunity, including pathoge recognition, signaling, and the cellular interferon response.</li> <li>To understand the basic principles of viral pathogenesis at the systemic level.</li> </ul> |                                                                                                                                               |                                                                                                                                            |    |
| C: | Basic princip<br>Innate defe<br>Receptors a<br>The interfer<br>Virus infect<br>Virus invasio<br>Anti-viral de<br>Viral pathog                                                                                                                                                                                                                                                                                                                  | nse against virus<br>nd signaling of in<br>on response<br>ion and anti-viral<br>on of the central<br>efense in the ner-<br>genesis at the lev | molecular viral pathogenesis (P. Meylan)<br>(S. Kunz)<br>ate anti-viral defense<br>efense in the nervous system (S. Kunz)<br>ervous system |    |

B: Sera donnée lors du cours

#### FUNGAL VIRULENCE AND PATHOGENICITY

#### Dominique Sanglard

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

N: Master

O: The lecture will illustrate the importance of different human fungal pathogens and give their principal characteristics. General principles of fungal pathogenesis will be given with illustrative examples

- C: A first part of the lecture will be given by D. Sanglard (8h)
  - 1) Characteristics of principal fungal pathogens
  - Candida, Cryptococcus, Aspergillus, Pneumocystis, Dermatophytes
  - 2) Fungal cell walls: interface with the environment
  - 3) Host/pathogen interactions, virulence and dimorphism
  - 4) Strategies of fungi used for host survival
  - 5) Papers discussions
  - A second part will be given by P. Hauser:
  - Pneumocystis and dimorphic fungal pathogens
  - 1) Presentation of the medical aspects, epidemiology, virulence factors, and pathogenicity of Pneumocystis jirovecii and dimorphic fungal pathogens (2 h).
  - 2) Analysis of a research related article (1 h)
  - 3) Demonstration in the laboratory of the methods used for identification and drug sensitivity measurement of
  - clinically important fungi (1 h).
  - A third part will be given by M. Monod:
  - 1) Aspergilli
  - 2) Relevance of aspasrtic proteases in virulence (2h)
  - 3) Demonstration in the laboratory of the methods used for identification of clinically important fungi (1 h)
  - 4) Analysis of a research related article (1 h).

### PLANT INTERACTIONS WITH MICROBES AND INSECTS

Christoph Keel

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

#### N: Master

- O: to provide students with knowledge on how intricate interactions between plants and beneficial or detrimental organisms are operating at the molecular level
- C: Part C. Keel

"Molecular basis of host specificity in phytopthogenic bacteria"

The course illustrates the sophisticated molecular mechanisms by which plant pathogenic bacteria subvert plant defense mechanisms, focusing on bacterial injection devices (type III secretion systems) and virulence and avirulence proteins delivered directly into the plant host cell. The effector injection machinery of the plant pathogens is compared to that of human pathogenic bacteria to highlight the conservation of the virulence strategy. Part P. Reymond

"Molecular study of plant-insects interactions"

The course describes the molecular mechanisms by which a plant detects the presence of an herbivore attack and responds to it by inducing hundreds of genes. It presents recent findings on the suppression of plant defense responses by insects. Finally, examples of insects that are useful for defending plants against other enemies are provided.

Exercise: Students designing research

In a final part of the course, students will design research approaches based on the topics presented during the three lecture parts and on questions provided by the lecturers. Student inputs will be discussed collectively, with the aim to highlight common and contrasting aspects occurring during interaction of microbes and insects with plants.

#### PROTEIN HOMEOSTASY AND ADAPTATION OF ORGANISMS TO STRESS

Pierre Goloubinoff

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

N: Master

O: Study of the physiology and biochemisty of the response to abiotic stresses in bacteria, animals and plants.

C: Introduction. Definitions of stress. The concept of dose. The study of various types of abiotic stress : high/low temperatures, excess or lack of water, excess or lack of ions, salt,. Oxydative stress. How are these stresses perceived? Transduction of the signal. Defense and repair mechanisms in animals and higher plants. Molecular chaperones. Proteases. Osmolites. The ROS detoxification enzymes. Conclusion the role of abiotic stress in the evolution of species.

#### MOLECULAR MECHANISMS OF EVOLUTION

**Richard Benton** 

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

N: Master

P: Students should have a solid background in molecular genetics and developmental/cell biology.

O: To acquire an understanding of the genetic, molecular and cellular mechanisms underlying major developmental processes in insects and plants.

To appreciate the evolutionary similarities and differences in these processes between closely- and distantly-related organisms.

To acquire skills in reading, analysis, criticism, oral presentation and written summary of scientific research articles.

C: "Mechanisms of evolution of plant structure and function":

- How do differences in leaf shape arise?

- How is flower morphology changed and selected for?

- Adaptations of plants to differences in growth environments

- Mechanisms driving speciation

These topics will be introduced through 2 hours lectures, and 6 hours of student paper presentations.

"Germline and sex determination in insects and beyond":

- Genetic basis of germline specification and development in Drosophila and comparison with other invertebrates and vertebrates.

- Genetic basis of sex determination in Drosophila and comparison with other invertebrates and vertebrates. These topics will be introduced through 2 hours lectures, and 6 hours of student paper presentations.

#### DEVELOPMENT OF THE NERVOUS SYSTEM

**Olivier Braissant** 

| С | Opt  | english | 14 |
|---|------|---------|----|
| А | 1.50 |         |    |

N: Master

| PLANT FUNCTIONAL GENETICS<br>Yve: |                                                                                                                                 |                                        |                        |                                                              |                               |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------------------------------------------------------------|-------------------------------|--|
|                                   | С                                                                                                                               | Opt                                    |                        | english                                                      | 14                            |  |
|                                   | А                                                                                                                               | 1.50                                   |                        |                                                              |                               |  |
| N:                                | Master                                                                                                                          |                                        |                        |                                                              |                               |  |
| P:                                | Good und                                                                                                                        | erstanding of mo                       | lecul                  | ar biology                                                   |                               |  |
| 0:                                |                                                                                                                                 | erview of the spe<br>various aspects o |                        | m of genetic and genomic tools used to isolate a ant biology | nd decipher the role of genes |  |
| C:                                | Agrobacte<br>Transient v<br>Inducible p<br>Viral vecto<br>Transforma<br>B Tools use<br>Mutagene<br>T-DNA and<br>Tilling<br>RNAi |                                        | mati<br>I reve<br>ping | on<br>erse genetics                                          |                               |  |

#### BIOTECHNOLOGY

Nicolas Mermod, Yves Poirier

|    | С                                                                                                                                                                                                               | Opt                                                                                                                                                                               | english                                                                                                                                                                     | 14                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|    | А                                                                                                                                                                                                               | 1.50                                                                                                                                                                              |                                                                                                                                                                             |                                   |
| N: | Master                                                                                                                                                                                                          |                                                                                                                                                                                   |                                                                                                                                                                             |                                   |
| P: | None                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                             |                                   |
| 0: |                                                                                                                                                                                                                 | re to some then<br>nd the biotechno                                                                                                                                               | ; in animal, plant and microbial biotechnologies a<br>gy business.                                                                                                          | as well as to aspects relating to |
|    | What is bio<br>Do I wish to<br>What is a p<br>How do uni<br>Some exam<br>Biopolymers<br>Pollutant re<br>Biofactories<br>Biosensors<br>Cells as fact<br>Gene engin<br>Cell enginee<br>Red biotech<br>Agriculture | o pursue a career<br>atent and is it us<br>versities and scie<br>ples of themes in<br>mediation<br>cories for medicir<br>eering<br>ering<br>unology (e.g. for<br>and transgenesis | nat is it good for?<br>biotechnology?<br>Il to submit one as a biologist?<br>ists valorize their research findings?<br>iotechnology will be:<br>and industry<br>edical use) |                                   |
| B: | W.J. Thiema                                                                                                                                                                                                     | n to Biotechnolog<br>an and M. A. Pal<br>ernational Editior                                                                                                                       |                                                                                                                                                                             |                                   |

#### HUMAN MOLECULAR GENETICS

Carlo Rivolta

| С         | Opt  | english | 14 |
|-----------|------|---------|----|
| А         | 1.50 |         |    |
| N: Master |      |         |    |

| P: | - Knowledge of concepts of | genetics and molecular biology |  |
|----|----------------------------|--------------------------------|--|
|    |                            |                                |  |

- O: Provide advanced knowledge on human molecular genetics
  - Learn how to exploit the massive amounts of data stored in in silico repositories for specific experimental purposes - Understand the bases of functional analyses of genes involved in inherited disease via the use of cellular and animal models

## C: - The course will take monogenic hereditary conditions in humans as an example to describe the link between DNA variants and phenotypes

- Classes will follow the threads "from observation to the DNA", "from the DNA to the gene" and "from gene to function" to illustrate classical scenarios of genetic investigations in humans

- Several experimental strategies leading to the identification and the validation of DNA variants determining simple human phenotypes will be described

- The program will rely heavily on "hands-on" approaches, allowing the student to perform practical exercises by using the information present in on-line databases. All classes will be held in a room equipped with individual computers connected to the internet

B: Voir version anglaise

#### RETREAT AND BIG SEMINARS

#### Christian Fankhauser, Jan Roelof Van Der Meer

| СР | Obl | english | 18 |
|----|-----|---------|----|
| А  |     |         |    |
|    |     |         |    |
| S  | Obl | english | 3  |
| А  |     |         |    |
|    |     |         |    |
| S  |     | english | 3  |
| S  |     |         |    |

#### N: Master

O: Research seminars are a very important mode of communication/information sharing in the scientific community. The goal is to get students exposed to this important part of life of a scientist. The goal of the MLS master retreat is to inform students about courses, labs in which they can perform their experiments and other practical aspects related to the program. Each year we also invite a speaker from the non-academic world (e.g. in the past we had speakers from Nestlé, Novartis,...). We also start the course "write a review" during the retreat.

C: BIG seminars: seminar series given by world-class scientists. MLS retreat: 1 and a half days in the mountains for conferences, courses and discussions.

### SEQUENCE A GENOME (PART I)

Marc Robinson-Rechavi, Jan Roelof Van Der Meer

| С | Obl  | english | 14 |
|---|------|---------|----|
| А | 3.00 |         |    |
|   |      |         |    |
| E | Obl  | english | 30 |
| А |      |         |    |
|   |      |         |    |

#### N: Master

O: The goals of this class are to understand and practice the road map of sequencing, assembly and annotating a (bacterial) genome.

C: The class is a combination of both practical aspects, theory, bioinformatics and presentation of genome analysis. We will work in small student groups.

The class starts with a short introduction on the biology of the microorganisms to be sequenced, introductions to high-throughput sequence technology and assembly.

This is followed by a practical session isolating and purifying total DNA and visits to the Lausanne Genomics Facilities to hand over the purified DNA.

After that a number of sessions in bioinformatics follow, first to learn to communicate in Unix, then to run assemblies on the sequence data sets produced by LGF, and finally to propose strategies for gap closure by PCR. In the second (8th) semester, the class is followed with another practical part, annotation of the major important functions in the genome and presentation of results.

I: http://www.unil.ch/sequenceagenome/

#### WRITE A REVIEW

#### Christian Fankhauser

| A         4.00           E         Obl         english         42           A         4         4         4         4 | С | Obl  | english | 15 |
|-----------------------------------------------------------------------------------------------------------------------|---|------|---------|----|
|                                                                                                                       | А | 4.00 |         |    |
|                                                                                                                       |   |      |         |    |
| A                                                                                                                     | E | Obl  | english | 42 |
|                                                                                                                       | А |      |         |    |

#### N: Master

O: Establish the current state of the art in a chosen research field. Formulate the current knowledge in the form of a review article. Learn basic aspects of scientific writing. Learn how to work as a team.

C: Students form groups of 2-3 and work under the guidance of an expert of the field (the tutor) to write a review article. Students have to follow precise guidelines regarding the review format.

#### BIOLOGICAL CONSERVATION OF THE MEDITERRANEAN REGION

Alexandre Roulin

|    | Т                                                                                                                                                                                                                                                                                                                                                                  | Opt                 | english, french | 40 |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|----|--|
|    | A S                                                                                                                                                                                                                                                                                                                                                                | 1.50/2.00           |                 |    |  |
| N: | Master                                                                                                                                                                                                                                                                                                                                                             |                     |                 |    |  |
| P: | None                                                                                                                                                                                                                                                                                                                                                               |                     |                 |    |  |
| 0: | Faunistic knowledge on birds, insects, crustaceans, mammals and reptiles with an emphasis on conservation issues.<br>We will visit several places (Extermadura, Andalucia around the Doñana national parc, Tarifa and Brazo del Este)<br>where the fauna is fundamentally different and habitats have suffered from human activities to different degrees.         |                     |                 |    |  |
| C: | Excursions and group field work. Discussion of scientific articles about conservation issues of Spanish endangered species. Additionnally, each student shall be responsible for the study of one endangered species. Discussion of projects that could be carried out in Spain to answer questions on evolutionary biology, behavioural ecology and conservation. |                     |                 |    |  |
| B: | Polycopió                                                                                                                                                                                                                                                                                                                                                          | distributé aux part | inants          |    |  |

#### FIRST STEP PROJECT

Christian Fankhauser, Olivier Staub, Claus Wedekind

| TP | Obl   | english | 224 |
|----|-------|---------|-----|
| А  | 15.00 |         |     |
|    |       |         |     |
| TP | Obl   | english | 230 |
| А  | 15.00 |         |     |
|    |       |         |     |
| TP | Obl   | english | 250 |
| А  | 14.00 |         |     |

#### N: Master

P: Practicals performed during the bachelor (molecular biology, genetics, biochemistry, bioinformatics)

O: - An initiation to the work of a scientist

- Conduct experimental work in research lab (wet bench or in silico)

- Interpretation of research results

- Implement basic principles in experimental design (e.g. include the appropriate controls, statistical significance of the results etc...)

- Present your experimental work in a written report which will be organized like a typical research article (intruduction, results, discussion, materials and methods)

- present your work orally (seminar style)

C: Perform laboratory work for about 12 weeks during the time when the student does not follow theoretical classes. This research project will typically be performed under the guidance of a PhD student or a post-doc from the host laboratory.

#### EVOLUTIONARY BIOLOGY WORKSHOP

Tadeusz Kawecki

|        | С                                                                                                                                                                                                                                                                                                                                                                                                                   | Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | english                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                               |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | S                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
|        | TP                                                                                                                                                                                                                                                                                                                                                                                                                  | Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | english                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                               |  |
|        | S                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
| N:     | Master                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
| P:     | Background                                                                                                                                                                                                                                                                                                                                                                                                          | knowledge and                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nterest in evolutionary biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
| O:<br> | The main goals are to develop the following skills:<br>- developing your scientific ideas through discussions in groups<br>- thinking critically and expressing oneself clearly<br>- turning a general idea into a research project<br>- writing a grant proposal and defending it<br>- doing it all in English                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |  |
|        | Invited Prof<br>Mark Kirkpa<br>John Taylor<br>Target part<br>universities<br>This course<br>"Guarda" w<br>place in a b<br>landscape a<br>It is you, the<br>what the in<br>research pro-<br>and provide<br>seat. Additi<br>with individ<br>Provisional 9<br>Day 1: arriv.<br>Day 2: Discu<br>Day 3: Discu<br>feedback by<br>Day 4: Mor<br>on the prop<br>Day 5: Grou<br>Day 6: Morn<br>project to tl<br>Day 7: clear | atrick (University<br>(University of Ca<br>icipants: advance<br>in Switzerland ar<br>is based on a cor<br>workshop (organ<br>beautiful small Al<br>and the Alpine flo<br>e students, who v<br>nportant question<br>bject that will add<br>e coaching and t<br>onally, the faculty<br>ual students.<br>schedule:<br>al in the afternoor<br>ussions in groups<br>ussions in groups<br>y the faculty.<br>ning: free half-da<br>bosals. A research<br>ups continue wor<br>ning: groups get | f Texas, Austin)<br>ifornia, Berkeley)<br>d Master students and PhD students from University of Laus<br>d abroad.<br>cept developed by Steve Stearns and John Maynard Smith and<br>zed by the University of Basel since 1987). It has a character<br>bine village (La Fouly), which will allow you to focus while be<br>a.<br>ill be in charge in this course. You will work with your ideas, y<br>s in broadly defined evolutionary biology are, you will choos<br>ess it. The faculty will visit the groups during the discussions to<br>rev will give you feedback on your proposal, but they will ge<br>will give informal talks about their research and be available f<br>h; students are divided in groups of 4-5. A research talk.<br>3 sessions), faculty visit the groups on rotational basis. A resear<br>proposal writing. The first version of the proposal due at din<br>y for hiking/birdwatching/botanizing/relaxing. Afternoon: gro<br>talk in the evening.<br>ting on the proposals, the second version delivered in the ever<br>eedback about their proposals and prepare presentations. Each<br>his is run by the students, the faculty sit back. Evening-next m<br>ture. | d implemented in their<br>r of a retreat; it takes<br>eing able to enjoy the<br>ou will decide yourself<br>se one, and propose a<br>answer your questions<br>enerally take the back<br>for informal discussion<br>rch talk in the evening.<br>ner time. After dinner<br>ups continue working<br>hing. A research talk.<br>h group presents their |  |

Daniel Cherix

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

- P: knowledge of fauna and flora
- O: To understand the fundements of biological invasions in relation to conservation biology
- C: Introduction Origin and basics of biological invasion Characteristics of invasive species Diffusion mechanisms -Ecological consequences. Examples are taken in Switzerland, Europe and World, including animal species and plant species regarding accidentally introduced species, voluntary introduced species, re-introductions and extensions
- B: Neobiota volume 3, 2004. « Biological Invasions Challenge for Science » Ingolf Kühn and Stefan Klots (Eds.), Neobiota volume 6, 2005. « Biological Invasions - from Ecology to Control" Wolfgang Nentwig, Sven Bacher, Matthew J.W.Cock, Hanjörg Diez, Andreas Gigon & Rüdiger Wittenberg (Eds).

#### **CO-EVOLUTION, MUTUALISM AND PARASITISM**

Ian Sanders

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

P: Must understand english and be prepared to give presentations

O: To understand the evolutionary consequences of organisms living together in mutualism or parasitism and how to investigate it experimentally

- C: The course comprises some introductory talks given by me about concepts in co-evolution and theoretical frameworks for studying co-evolution. Afterwards, students give presentations on chosen key publications in this field and the group discusses these subjects after the presentations.
- B: : All bibliography is made available in pdf format before the course begins. For an example of the publications discussed you can find last years publications in my docunil public folder.

#### APPLIED ECOLOGY

#### Jérôme Pellet

| С         | Opt  | english | 14 |
|-----------|------|---------|----|
| S         | 2.50 |         |    |
| TP        | Opt  | english | 28 |
| S         |      |         |    |
| N: Master |      |         |    |

P: BSc level in biology, including ecology

O: Applied ecology is a young crisis discipline undergoing a major effectiveness revolution. In most situations, urgent action is necessary, even in the absence of reliable information. How do we gather sound ecological information? How do we use it to plan natural communities conservation? In the process of answering these questions, wildlife ecologists often realize that research and practice are just two sides of the same coin.

- C: The goal of the course is to teach students some of the skills they will need as evidence-based conservationists. Practical examples will be drawn from various ecosystems, communities and species. The course will revolve around the stages of adaptive management:
  - monitoring ecological resources, monitoring occupancy and abundance
  - research syntheses (systematic reviews and meta-analyses)
  - ecological triage (systematic conservation planning and red lists)
  - natural communities conservation planning and legislative context.

Field-based case studies will provide students an opportunity to apply and discuss some of the principles illustrated in the course. Practical work will include meeting with practitioners, discussing and analyzing their approach and methods through the prism of adaptive management.

« There is no such thing as a special category of science called applied science; there is science and its applications, which are related to one another as the fruit is related to the tree that has borne it. » Louis Pasteur

#### HONEYBEE ECOLOGY, EVOLUTION AND CONSERVATION

Vincent Dietemann

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

O: This series of lectures will show the complexity of insect societies and will give the opportunity to see how concepts learned elsewhere by the students can be placed within the context of a single species.

C: Since honeybees are economically important insects, they have been studied early in history and the knowledge we possess about them is greater than for any other social insect. Our understanding of the honeybee reveals the complex organisation reached by insects when they form societies. This series of lectures will present some aspects of this complexity that will be replaced within its evolutionary context. Various aspects of honeybee ecology and evolution, including geophylogeny, biology, reproduction at individual and colony level, division of labour, communication, economical value, pathogens will be presented.

After a general introduction of this model species describing the diversity and biogeography of the taxon, we will dissect the communication abilities of European honeybees and compare it with related Asian species. We will see how this communication is used to organise foraging tasks sustaining colony growth. Reproductive conflicts will be described to show that the altruism commonly attributed to the colony members is tainted by selfishness. Honeybee health is a current concern and we will review the pathogens affecting them and comment the role of humans in their spread and control in an evolutionary context. Since honeybees are globally threatened, we will see what economical losses their decline could have and some conservation projects to invert the trend will be put in context.

B: Seeley T, 1985. Honeybee Ecology. Princeton University Press.
 Seeley T, 1995. The wisdom of the hive. Harvard University Press.
 Moritz RFA, Southwick EE, 1992. Bees are superorganisms. Spiringer Verlag
 Oldroyd B, Wongsiri S, 2006. Asian Honey Bees. Harvard University Press.
 Koeniger N, Koeniger G, Tingek S, 2010. Honey Bees of Borneo. Natural History Publications
 Winston ML, 1987. The Biology of the honey bee. Harvard University press.

#### ECOLOGY OF THE FISHES OF SWITZERLAND

Jean-François Rubin

| С | Opt  | english | 7 |
|---|------|---------|---|
| S | 1.50 |         |   |

|    | TP                                                                                                  | Opt                                                        | english | 10 |
|----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|----|
|    | S                                                                                                   |                                                            |         |    |
| N: | Master                                                                                              |                                                            |         |    |
| P: | none                                                                                                |                                                            |         |    |
| 0: | Know the b                                                                                          | ne different habi<br>iology of the prir<br>problems linked |         |    |
| C: | Generalities<br>Lakes<br>Watercourse<br>Plankton an<br>Systematic of<br>Anatomy of<br>The fish of S | es<br>d plants<br>of fish<br>fish                          |         |    |

#### **EVOLUTION OF LIFE HISTORY AND AGING**

Thomas Flatt

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

- N: Master
- P: This is an advanced course for students with a solid background in evolutionary ecology, evolutionary genetics and quantitative genetics with a strong interest in understanding Darwinian fitness and natural selection. The course will be strongly based on a book by Stearns (Stearns, S.C. 1992. The evolution of life histories. Oxford: Oxford University Press). The course requires proficiency in English and the willingness to actively engage in discussing, asking questions, reading, presenting material, etc. An understanding of basic statistics and mathematics (including calculus) is helpful. At the end of the course, the students will take an oral exam.

O: (1) To learn about fundamental concepts in evolutionary biology in the context life history evolution.
(2) To learn what fitness and life history traits are; to learn how life history traits evolve; and to understand the diversity of different life history strategies among different organisms and environments.

(3) To learn what life history trade-offs are; to learn what life history plasticity and reaction norms are.

(4) To learn how we can understand the existence of aging, as well as differences in lifespan and the rate of aging among individuals and among species, by using evolutionary thinking.

(5) To learn about why life history evolution is one of the major explanatory frameworks in evolutionary biology. To be able to define its main concepts and explain its main approaches and limitations.

(6) To be able to explain fundamental concepts in evolutionary biology to lay persons using examples from life history evolution.

(7) To be able to explain to lay persons why evolution matters in terms of explaining why organisms age and die.(8) To improve your ability to have educated conversations about science in English.

(9) To improve your ability to read and understand scientific texts in English.

- This course introduces the field of life history evolution, a branch of evolutionary ecology and evolutionary genetics C: that deals with the evoluton of fitness-related traits. A female North Pacific Giant Octopus (Enteroctopus dofleini) lives three to four years; it lays thousands of eggs in a single bout and then dies. By contrast, a mature Coast Redwood Tree (Sequoia sempervirens) lives for many hundreds of years and produces millions of seeds each year. As these examples illustrate, organisms differ dramatically in how they develop, the time they take to grow, when they become mature, how many offspring of a particular size they produce, and how long they live. Together, the age-, size-, or stage-specific patterns of development, growth, maturation, reproduction, survival, and lifespan define an organism's life cycle, its life history. The principal aim of the field of life history evolution is to explain the remarkable diversity in life histories among species. But there is another, more compelling reason for why life history evolution is important: adaptation by natural selection is based on variation in Darwinian fitness among individuals, and since life history traits determine survival and reproduction they are the major components of fitness. The study of life history evolution is thus about understanding adaptation, the most fundamental issue in evolutionary biology: to explain the remarkable diversity of life histories among species we must understand how evolution shapes organisms to optimize their reproductive success. I will introduce the basics of life history theory and review what biologists have learned about life history evolution. A particular focus of the course will be on lifespan and aging: Why do we age? And why does natural selection not prevent such a deleterious process? In the course we will discuss evolutionary explanations for why organisms grow old and die. In addition to these evolutionary concepts and explanations, we will also discuss the genetic and physiological mechanisms underyling the evolution of life histories and aging. The course will consist of a series of interactive overview lectures, mixed with reading/discussion sessions.
  - Parts:
  - (1) Overview of life history theory
  - (2) Basic demography
  - (3) Quantitative genetics and reaction norms
  - (4) Age and size at maturity
  - (5) Number and size of offspring (Clutch Size and Reproductive Investment)
  - (6) Reproductive lifespan and aging

Remark no. 1: The overview lectures should be followed and these lecture notes be used in conjunction with reading the chapters in Stearns' 1992 book.

Remark no. 2: We won't cover sex allocation theory; modular life histories; complex life histories. Most of the material presented is based on animal life histories, not plant life histories.

- B: Fabian, D., and T. Flatt. 2012. Life history evolution. Nature Education Knowledge 3(10):24.
  - Fabian, D., and T. Flatt. 2011. The evolution of aging. Nature Education Knowledge 3(10):9.

- Flatt, T., and Heyland, A., eds. (2011). Mechanisms of Life History Evolution - The Genetics and Physiology of Life History Traits and Trade-Offs. (Oxford: Oxford University Press).

- Flatt, T., and Schmidt, P.S. (2009). Integrating evolutionary and molecular genetics of aging. Biochimica et Biophysica Acta 1790, 951-962.

- Roff, D.A. (1992). The Evolution of Life Histories: Theory and Analysis. (New York: Chapman and Hall).

- Rose, M.R. (1991). Evolutionary Biology of Aging (New York and Oxford: Oxford University Press).

- Stearns, S.C. (1992). The evolution of life histories. (Oxford: Oxford University Press).

- Stearns, S.C. (2000). Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476-486.

#### **EVOLUTION OF SEX DETERMINATION**

#### Nicolas Perrin

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

#### SOCIAL EVOLUTION

Laurent Lehmann

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

O: The goal of the course is to introduce the student to the foundations of social evolution and to an understanding of the main selective forces underlying the emergence of cooperation, altruism, and conflict within animal societies.

C: The course will consist of an analysis of various models of social interactions (games) by using and providing an introduction to evolutionary game theory and inclusive fitness theory. These models will include the analysis of one shot interactions settings, such as the prisoner's dilemma, the stag-hunt, and the snow-drift games, as well as multimove games including reciprocity and reputation. Models for the evolution of punishment and policing will also be analysed, along with tragedy of the commons type of situations and their resolutions. Interactions occurring in well mixed as well as in family and spatially structured populations will be considered. The course will emphasize the similarities and differences between all these situations.

#### CONSERVATION GENETICS

Luca Fumagalli

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

- N: Master
- P: None
- O: To give a comprehensive introduction to genetic principles involved in conservation
- C: loss of genetic diversity in small populations; inbreeding and loss of fitness; population fragmentation; management of intraspecific genetic diversity; genetic management of captive populations; non-invasive genetic sampling; fragmented populations and translocations; genetically viable populations; forensic zoology; detecting hybridization
- B: Frankham, Ballou & Briscoe. 2002. Introduction to Conservation Genetics. Cambridge University Press.
  - Avise & Hamrick. 1996. Conservation Genetics: case histories from nature. Chapman & Hall.
  - Allendorf & Luikart. 2007. Conservation and the Genetics of Populations. Blackwell Publishing.

#### SCIENTIFIC MEDIATION AND COMMUNICATION

Alain Kaufmann, Liliane Michalik

| С | Opt  | french | 28 |
|---|------|--------|----|
| S | 3.00 |        |    |

N: Master

#### PREDICTIVE MODELS OF SPECIES' DISTRIBUTION

Antoine Guisan

| С                     | Opt  | english | 14 |
|-----------------------|------|---------|----|
| S                     | 2.50 |         |    |
|                       |      |         |    |
| E                     | Opt  | english | 14 |
| S                     |      |         |    |
| N <sup>.</sup> Master |      |         |    |

P: Spatial analyses course from previous semester (not strictly required).

O: Predictive habitat distribution models are being increasingly used in conservation biology, to predict the distribution of species and higher levels of biological organization (e.g. communities, biomes). This course intend to present the main approaches used, and their main domains of applications: invasive species, rare species, climate change impacts, reserve design and so on. The course will be supported by computer exercises

C: Chap 1. General introduction. Biological theory behind these models, niche concepts, species assemblages, pseudo-equilibrium, competition, dispersal, spatial autocorrelation, niche conservatism, model robustness ; Overview of main predictive approaches ; required data and associated sampling designs.

Chap. 2. Presence-only models. Problem of obtaining absences, use of pseudo-absences, related theory, use vs unused habitats, use vs available, specific predictive approaches and evaluation.

Chap. 3. Presence-absence/abundance/diversity models. Statistical theory behind these models, probability distributions, model fitting, maximum likelihood regression, predictor selection, link between statistical models and ecological theory, implementing the models in a GIS, uncertainty mapping,p/a, abundance and diversity measures and related models (binomial, Poisson, ordinal, etc..); predictions and evaluation.

Chap. 4. Model evaluation: for p/a, po, abundance/diversity. Internal (resampling) vs external (truly independant data.) evaluation: cross-validation, jackknife, bootstrap, transfer into distinct area

Chap. 5. Modelling species assemblages - reconstructing communities/diversity. Multi-species models : CCA, multivariate CART, multivariate ANN - assemblages predictions from individual species models - alternative approaches (e.g. GDM, Global Dissimilarity Modelling)

Chap. 6. Deriving climate change impact scenarios- migrations d'espèces et incertitudes dans les projections. Range shifts, projections uncertainties, implications for conservation

B: Guisan, A. & Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135(2-3): 147-186.

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.

I: http://www.unil.ch/ecospat

#### PHYLOGENY AND COMPARATIVE METHODS

Nicolas Salamin

|    | С      | Opt  | english | 7  |
|----|--------|------|---------|----|
|    | S      | 1.50 |         |    |
|    |        |      |         |    |
|    | Е      | Opt  | english | 14 |
|    | S      |      |         |    |
| N: | Master |      |         |    |
| P: | none   |      |         |    |

- O: Phylogenetic reconstruction methods and their application in evolutionary biology. To know and understand phylogenetic reconstruction methods in order to test the processes leading to genes and organisms evolution.
- C: The subjects will be presented during lectures as well as practicals.
  - I. Reconstruction methods
  - What is a phylogenetic tree and how to interpret it?
  - Tree reconstruction:
  - a) optimisation criteria and models of evolution
  - b) search for the optimum tree
  - c) Bayesian methods- Can we trust the inferred tree?
  - II. Uses for phylogenetic trees
  - Detecting positive selection in a coding gene
  - Testing coevolution and cospeciation
  - Macroevolution:
  - a) dating evolutionary events
  - b) tempo and mode of evolution
  - c) testing for key innovations
  - Phylogeny and conservation

#### B: Felsenstein, J. 2003. Inferring phylogenies. Sinauer Associates.

Page, R. 2003. Tangled trees: Phylogeny, cospeciation, and coevolution. University of Chicago Press.
Purvis, A., Gittleman, J.L. and Brooks, T. 2005. Phylogeny and conservation. Cambridge University Press.
Swofford, D.L., Olsen, G.K., Waddell, P.J. and Hillis, D.M. 1996. Phylogeny reconstruction. Pages 407-514 In Molecular Systematics (D.M. Hillis, C. Moritz, B.K. Mable, eds.). Sinauer Associates.
Yang, Z.H. 2006. Computational Molecular Evolution. Oxford University Press.

I: http://www.unil.ch/phylo/teaching/pmc.html

#### SEXUAL SELECTION

Patrick Stefan Fitze

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

#### ECOLOGY AND FAUNISTICS OF THE SEA SHORE, ROSCOFF

Nicolas Perrin

|    | Т                                                                                                                                                                                                                                                                       | Opt                |                     | english, french                                                                                                                                                                 | 56                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|    | S                                                                                                                                                                                                                                                                       | 3.00               |                     |                                                                                                                                                                                 |                    |
| N: | Master                                                                                                                                                                                                                                                                  |                    |                     |                                                                                                                                                                                 |                    |
| P: | !!! Please, o                                                                                                                                                                                                                                                           | contact the perso  | n in                | charge before your inscription !!!                                                                                                                                              |                    |
| 0: | To allow a first, integrated approach of the itertidal biotope, and to understand the role played by the tides, the substrate and other conditions on the faunistic composition of littoral communities and on the physical and behavioural adaptations of the species. |                    |                     |                                                                                                                                                                                 |                    |
| C: | Excursions<br>estuaries ar<br>Lab experim                                                                                                                                                                                                                               | nd so on). Additic | wor<br>onna<br>imen | c: analysis of zonation and biodiversity in various habins, each student shall be responsible for the study of one tal design and realisation of an experiment in etho-ecology. | e taxonomic group. |

School of Biology (FBM-BIO)

Ν

#### MATING STRATEGIES AND SEX AMONG PLANTS

John Pannell

|          | С                                                                          | Opt  | english | 7  |  |  |
|----------|----------------------------------------------------------------------------|------|---------|----|--|--|
|          | S                                                                          | 1.50 |         |    |  |  |
|          |                                                                            |      |         |    |  |  |
|          | TP                                                                         | Opt  | english | 14 |  |  |
|          | S                                                                          |      |         |    |  |  |
| 1:       | Master                                                                     |      |         |    |  |  |
| <u>.</u> | To discover some of the remarkable diversity of plant reproductive systems |      |         |    |  |  |

O: To discover some of the remarkable diversity of plant reproductive systems
 To explore hypotheses for the function and evolution of several key sexual-system polymorphisms
 To understand the ways in which plant reproductive traits have evolved in the context of ecological and genetic interactions

C: The course will comprise a mix of:

1. lecture material presented to students

2. exercises aimed at securing a conceptual understanding of the key topics explored

3. discussion and presentation of research papers dealing with important concepts in the evolution of plant mating and reproduction.

#### CURRENT PROBLEMS IN CONSERVATION BIOLOGY

Claus Wedekind

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 3.00 |         |    |
|   |      |         |    |
| E | Opt  | english | 14 |
| S |      |         |    |
|   |      |         |    |

N: Master

P: Lectures, discussions, and proposal writing in English.

O: Introduction into

- some important problems of conservation biology

- funding opportunities for conservation projects

- the planning and writing of grant proposals

- peer reviewing of grant proposals

Own ideas shall be developed, presented and discussed in class.

C: Some current research topics within the field of conservation biology will be further introduced in lectures, guest lectures, and discussion in class. Each student then develops an own idea of a research project within these topics. After an introduction into funding agencies and the planning and writing of grant proposals, each student (or groups of two) write(s) up an own proposal and present(s) it to the class. The proposals of colleagues will then be peer-reviewed after an introduction into peer-reviewing of grant proposals.

#### BEHAVIOUR AND BEHAVIOURAL ECOLOGY OF SOCIAL INSECTS

Christoph Grüter

| C | C Opt | english | 14 |
|---|-------|---------|----|
| 5 | 1.50  |         |    |

N: Master

O: The aim of this course is to learn about the fascinating world of social insects

- C: Social insects are an extremely diverse animal group of major ecological, economic and scientific importance. The course will mainly focus on ants, bees, wasps and termites. We approach behaviour and behavioural differences between species from an ecological and evolutionary perspective. Why is there division of labour and why does it differ between species? What is self-organisation and how does it work? Why do some ant queens mate with 10 males while others are strictly monogamous? Why do termites have exploding bodies and why do stingless bees build prisons for virgin queens? These are some of the topics we will discuss.
- B: Hölldobler B. & Wilson E.O. (2009) The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. W. W. Norton & Company, New York.

## EVOLUTIONARY CONSEQUENCES OF HYBRIDIZATION AND WHOLE GENOME DUPLICATION

Nils Arrigo

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

#### **ANTI-INFECTIVE AGENTS**

Dominique Sanglard

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

O: Description:

The aims of this class is to understand the mode of action and resistance to principal anti-infective agents used for the therapy of infectious diseases. Diverse classes of agents will be discussed which are used to combat bacterial, viral, fungal and parasitic infections. The molecular basis of resistance to these agents will be also illustrated by several examples.

The class is also associates with paper reading and presentations Learning outcomes:

- to learn about the mode of actions of anti-infective agents
- to learn about molecular resistance mechanisms developing in microbial pathogens.

C: Part Ciuffi: Antiviral agents (2h) Part Greub and Hauser: antibacterial agen

Part Greub and Hauser: antibacterial agents (4 each); paper discussion and presentation Part Sanglard: Antifingal agents (3h)

#### CYTOSKELETON FROM MICROBES TO MAN

Sophie Martin

|    | С                                                                                                                                                                                                                                                                             | Opt                                                 |                                       | english                                              | 14 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------------------------|----|
|    | S                                                                                                                                                                                                                                                                             | 1.50                                                |                                       |                                                      |    |
| N: | Master                                                                                                                                                                                                                                                                        |                                                     |                                       |                                                      |    |
| P: |                                                                                                                                                                                                                                                                               | nowledge of molection of cellular process           |                                       | cellular biology Bachelor-level courses.             |    |
| 0: | The objectives of this course are to:<br>1) gain general knowledge on the organisation and function of the cytoskeleton in prokaryotes and eukaryotes<br>2) learn to read scientific articles in a critical manner, by discussing the strong and weak points of each article. |                                                     |                                       |                                                      |    |
| C: | - general p<br>- cytoskele<br>- motor pr<br>- organisa                                                                                                                                                                                                                        | etal dynamics (dyn<br>oteins<br>tion and role of th | tin and m<br>amic insta<br>e cytoskel | icrotubule cytoskeleton<br>ability and treadmilling) |    |

- organisation and role of the cytoskeleton in eukaryotic cells (several themes will be covered, depending on the choice of the articles to be discussed, for instance: mitotic spindle, cell division, cell polarity,...)

B: Les papiers à lire et discuter seront annoncés lors du premier cours

## FROM RECEPTORS TO GENES : SELECTED CHAPTERS OF MOLECULAR ENDOCRINOLOGY

Nicolas Mermod

| С | Opt  | english | 24 |
|---|------|---------|----|
| S | 3.00 |         |    |

#### N: Master

P: Introductory courses in molecular biology, genetics and biochemistry.

O: Presentation of the molecular principles and the mechanisms of regulatory signaling pathways from the cellular membrane to the genes. This will be explored from an experimental point of view, with the help of genetics, molecular biology and biochemistry tools. Special emphasis will be given to the role of particular transcription factors as intermediates of these regulating pathways. Moreover, this course illustrates the coordination between various regulating pathways. Part of the course is given as formal lectures, the other part consisting of round-table discussions on scientific articles.

#### C: Introduction and reminders

- 1. General principles of signaling
- Transmission of mediated signals by 7 transmembrane domain receptors
- 2. The cAMP pathway
- 3. The calcium pathway
- 4. The diacylglycerol pathway
- Transmission mediated signals by 1 transmembrane domain receptors
- 5. One transmembrane domain receptors
- 6. The MAP kinase pathway
- 7. The JAK-STAT pathway
- 8. Other one transmembrane domain receptors.

I: http://www.unil.ch/biotech/page38684.html

#### MICROBIAL ECOLOGY

Jan Roelof Van Der Meer

| TP | Opt  | english | 35 |
|----|------|---------|----|
| S  | 1.50 |         |    |

N: Master

P: Ideally: The class in Microbial ecology and environmental microbiology (BSc 3, Block Behaviour and ecology)

## O: The goals of this practical course are to practice a number of microbial community analysis methods on a complex community such as a wastewater treatment plant.

C: The main methods that will be learned during this practical course are:

- Fluorescent in situ hybridization

Using a set of fluorescently labeled probes directed against the ribosomal RNAs of different taxonomic groups we will study the composition of wastewater communities in the different parts of a treatment plant and relate this to the functional aspects of the treatment process in different stages.

- Terminal restriction fragment length polymorphism

T-RFLP will be used as molecular marker to characterize the same communities as for FISH and to compare the differences and total diversity of the microbial communities in the different parts of the wastewater treatment plant.

#### SUPPLEMENT : SEQUENCE A GENOME II AND WRITE A FELLOWSHIP

Jan Roelof Van Der Meer

| S         1.50           TP         Opt         english         10           S <th>E</th> <th>Opt</th> <th>english</th> <th>10</th> | E  | Opt  | english | 10 |
|-------------------------------------------------------------------------------------------------------------------------------------|----|------|---------|----|
| TPOptenglish10S                                                                                                                     | S  | 1.50 |         |    |
| TPOptenglish10S                                                                                                                     |    |      |         |    |
| S                                                                                                                                   | TP | Opt  | english | 10 |
|                                                                                                                                     | S  |      |         |    |

N: Master

#### **EPIDEMIOLOGY**

#### Dominique Blanc, Dominique Sanglard

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

O: Acquire principles of epidemiology by the study of several examples of pathogens. Knowledge on molecular typing methods and their applications. Knowledge on bacterial population genetics.

C: General concepts. Molecular typing in epidemiology. Bacterial population genetics.
 Viral infections: relation between the host range, timing of infection, mode of infection and the resulting epidemiology.
 Epidemiology of Staphylococcus aureus.
 Epidemiology of Pneumocystis.
 Epidemiology of Candida.

#### **GENOMICS, PROTEOMICS AND QUANTITATIVE GENETICS**

Paul Franken

| С | Opt  | english, french | 24 |
|---|------|-----------------|----|
| S | 3.00 |                 |    |

N: Master

- O: Get acquainted with the various experimental approaches and technologies to address fundamental principles of gene and genome function
- C: As stated in the title this course consists of three components. Together these components introduce and give an overview of functional genomics from gene transcription to the protein, and, finally, the phenotype. Besides providing a background, the techniques applied in the various approaches will be emphasized. Genomic technologies and applications
  - Advanced techniques in microarray analysis: Tiling arrays, SNP detection, ChIP on chip experiments.
  - Biology of non-coding RNAs and their detection
  - qPCR, theory and applications.
  - Proteomics

- Introduction to expression proteomics (analysis of protein expression levels and their changes) and functional proteomics (functional relationships between proteins).

- Introduction to separation techniques (liquid chromatography, 2D electrophoresis, mass spectrometry), typical workflows in which these techniques can be applied, and bioinformatics analysis.

- Discussion of the potential and limitations of the proteomics approach to study complex biological systems.

- Analysis of Quantitative Traits
- Introduction into quantitative genetics.
- How to map quantitative traits in model organisms (mice, fruitfly)?
- Mapping strategies in humans and in non-model organisms.

- Introduction to the use of Quantitative-Trait-Loci mapping tools (WebQTL, MapManager, MapMaker) and statistical issues in QTL mapping.

#### **HERBIVORY : WHY IS THE EARTH GREEN**

#### Edward Elliston Farmer

| С | Opt  | english | 24 |
|---|------|---------|----|
| S | 3.00 |         |    |

N: Master

P: Admission into the Masters programme and Bachelors in biology or a related subject

O: Understand why leaves are so abundant on earth

C: Leaf energetics and herbivore diets, physical defenses, coevolution of leaves and stomachs, molecular targets of leaf defense chemicals, the growth/defence dilemma Note: this is an interactive, guestion-based course requiring active participation

B: Fourni sur MyUNIL avant et durant le cours

#### MICROBES AS TOOLS IN EXPERIMENTAL BIOLOGY

Dominique Sanglard

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

O: The general aim of this class is to get detailed knowledge on the use of microbial systems (including viruses, bacteria and yeast) as tools in several fields of experimental biology (microbial pathogenesis, genetic engineering applications, gene therapy).

The class is associated with reading and presentations of paper related to this topic.

C: Part Ciuffi

Description :

The aim of this class is to open up your mind and make you think out of the box, thereby making you look at viruses beyond their pathogenicity and more as potential tools that can be used for many diverse applications. To appreciate the potential of viruses as tools in molecular biology, this class will give you a non-exhaustive list of applications in which viruses are used as tools.

Examples will include the use of viruses as pesticides, gene delivery vehicles, vaccines, tools in gene expression studies and in cellular biology studies.

Learning outcomes :

- To realize that viruses are not only pathogens.

- To realize that viruses can be used as tools in multiple applications.
- To understand that fundamental knowledge about viruses can be useful for secondary applications.

- To appreciate the diversity of viruses and their differences in replication, and thus the diversity of applications in which they can be exploited.

- To identify the viral steps that can be manipulated. To know how to manipulate these viral steps and why.

- To appreciate impact of viruses in the current society.

Part Sanglard

Description:

The aims of this class is to show the importance of genetic screens for the identification of novel biological functions related to microbial virulence and to therapeutic targets. Specifically, the aims are the following:

- To understand how genetic screens can contribute to identify virulence factors in bacteria and yeast.

- To show how genetic screens can serve the identification of genes involved in the recognition of fungal PAMP by the immune system.

- To show how genetic screens can contribute to identify novel therapeutic targets in pathogenic yeast. Learning outcomes:

- To appreciate how methodologies can be employed in genetic screens.

- To realize how bacterial and yeast genetics can address and solve biological problems.

#### VIRAL PATHOGENESIS AND EMERGING VIRUSES

Stefan Kunz

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

P: Cours Virologie BSc. 5th semester (S. Kunz)

O: To understand fundamental principles of viral pathogenesis at the cellular, systemic, and population level. To cover the pathogenesis of major human viruses and emerging viral diseases. To discuss the basic concepts of viral pathogenesis in the context of landmark papers in the field.

- C: Teaching: Angela Ciuffi, Jérôme Gouttenoire, Stefan Kunz Basic concepts in viral pathogenesis (S. Kunz) Major human pathogenic viruses and emerging viral diseases (S. Kunz) Viral hepatitis (J. Gouttenoire) Human retroviral infections (A. Ciuffi) Genome screening approaches in viral infectious diseases (A. Ciuffi) Introductory lectures will be given by the teachers. Landmark papers will be presented by students and discussed in the group.
- B: Viral Pathogenesis and Immunity. Nathanson, N. (Ed), 2nd Ed. 2007, Academic Press.

#### **RECOMBINANT PROTEINS : APPLICATIONS IN RESEARCH AND MEDICINE**

**Blaise Corthésy** 

| С | Opt  | english | 12 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

#### WRITE A FELLOWSHIP

#### Christian Fankhauser

| С  | Obl  | english | 7  |
|----|------|---------|----|
| S  | 3.00 |         |    |
|    |      |         |    |
| TP | Obl  | english | 21 |
| S  |      |         |    |

N: Master

- O: Construct meaningful hypotheses in the context of a particular open question in the field (typically related to the master project of the student)
  - Develop an experimental strategy that tests these hypotheses
  - Formulate this experimental strategy in the form of a grant application
  - Present your work in a concise oral presentation
  - Appreciate the granting system used to fund biological research
- C: The student writes a research proposal that is typically addressing questions in the research area related to his master project. The research proposal has to follow precise guidelines. The student is closely supervised by his master supervisor who serves as the tutor for this course. The written proposal and a short oral presentation are both is evaluated.

#### SEQUENCE A GENOME (PART II)

Marc Robinson-Rechavi, Jan Roelof Van Der Meer

| С | Obl  | english | 14 |
|---|------|---------|----|
| S | 3.00 |         |    |

|    | E                                      | Obl                                                        | english                                                                                                                                                  | 42                           |
|----|----------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|    | S                                      |                                                            |                                                                                                                                                          |                              |
| N: | Master                                 |                                                            |                                                                                                                                                          |                              |
| P: | Sequence a                             | a genome I (comp                                           | ulsory)                                                                                                                                                  |                              |
| 0: | 0                                      |                                                            | of this class are to learn and complete the annotation proce<br>annotation to the biology of the organism in question                                    | ess of the bacterial genome, |
| C: | - Combina<br>- PCR sequ<br>- Introduct | torial and multiple<br>encing to finish se<br>ion to GenDB | follow up on the first semester:<br>x PCR to detect contig linkages<br>gments between contigs<br>notation of relevant parts of the genome under scrutiny |                              |

- Linkages to KEGG database for metabolic interpretations
- Evolutionary comparisons
- Writing and presenting the results
- I: http://www.unil.ch/sequenceagenome/

#### **BACTERIAL VIRULENCE AND PATHOGENESIS**

Gilbert Greub

| С | Opt  | english | 14 |
|---|------|---------|----|
| S | 1.50 |         |    |

N: Master

#### PERCEPTION OF ENVIRONMENTAL SIGNALS IN PLANTS

Christian Fankhauser

| С | Opt  | english | 24 |
|---|------|---------|----|
| S | 3.00 |         |    |

N: Master

P: Bachelor classes in plant biology Good understanding of molecular genetics

Light perception in plants will be studied, in particular

1) How do plants alter their growth and development in response to changes in their light environment.

2) Different photoreceptors in plants

3) Mechanisms of signal transduction from photon perception to induction of a new gene expression program.

4) Interaction between an external factor (light) and the developmental program of plants.

The students will have to critically evaluate scientific papers, summarize the main findings and highlight the weak and strong points of such publications.

This analysis will also include the methodology which is used in those papers. The most commonly used techniques used in the publications are molecular genetics, biochemistry and cell biology.

O: This course is a combination of lectures and paper reading/discussions. The objective of the lectures is to prepare the students for the scientific papers that they will read and discuss.

- C: Light perception in higher plants
  - Historical aspects regarding the identification of plant photoreceptors

Effects of light during the whole life cycle of plants (germination, de-etiolation, vegetative development, transition to flowering).

Circadian clock and photoperiodism (flowering + tuberization). Basics of circadian biology, external coincidence model to explain photoperiodism.

Different plant photoreceptors (UV-B, phytochromes, cryptochromes, phototropins).

Signal transduction, from light perception by the photoreceptor to the physiological response Interaction between gravitropism and phototropism.

Auxin signaling and transport. This important plant hormone will in particular be covered in relationship with gravi and phototropism.

B: Lorrain, S. Fankhauser C., Les plantes se font une place au soleil, Pour la science, n°49, Nov. 2006. Chen, M. Chory, J. and Fankhauser, C. Light signal transduction in higher plants. Annual Reviews in Genetics volume 38 pages 87-117 (2004).

LIST OF COURSES

www.unil.ch