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Abstract

Species distribution models (SDM) are widely used in conservation biology to identify
conservation priorities or predicting the effect of changes in landuse or climate. Based on the
ecological niche, a key assumption of SDM is that relevant environmental gradients have been
sampled in a way that the realized niche faithfully represents the set of conditions that the
species can tolerate. However, there are several cases where this assumption can be violated
e.g. when a geographically restricted dataset is used to calibrate the model or when the margins
of the realized niche coincide with the margins of the available environmental space, i.e. the
conditions available on Earth. Here we show an evidence for truncation in bird species realized
niche. A majority of 49 bird species niche showed truncation, which suggest they can tolerate
more conditions than the actual available conditions on Earth. Furthermore, this issue was
proved to be more acute for generalist species with larger niche. We anticipate our exploratory
study to be a starting point to develop methods to estimate truncation and experiment tools in
order to take this truncation into account in species distribution models for spatial predictions

or predictions using climate change scenarios.

Keywords
Niche truncation ; Environmental conditions ; Species Distribution Models ; Climate change

scenarios ; projections



Introduction

Nowadays, climate change is widely recognized as a reality (Stocker et al., 2013). This
phenomenon is a great concern for many fields, among them, conservation biology. It is largely
accepted by the scientific community that global climate change is a threat to biodiversity and
ecosystems which are not able to adapt to the actual stress that is beyond the natural climate
change that occurred in the past (Omann, Stocker, & Jéager, 2009; Wilson & Peter, 1988).
Several response to climate change effects have been observed such as adaptive evolution or
tolerance, spatial or temporal shift, with a failure to respond by one of these means leading to
population range reduction and local, regional, or even complete extinction (Holt, 1990;
Nogués-Bravo et al., 2018). With the hope to avoid species extinctions and develop adapted
conservation strategies for the different species, species distribution models (SDM) and
environmental niche modelling (ENM) are useful tools. SDM are based on the notion of
environmental niche conceptualized by Hutchinson (Hutchinson, 1953) and are built by
statistically linking species occurrence (presence-absence or presence-only) and environmental
data to identify an n-dimensional space representing a set of suitable environmental and biotic
conditions for the species: the realized niche. SDMs have been developed in the mid-1980s
(Pecchi et al., 2019) and are widely used since the early 20th century for a large panel of
purposes including quantifying species ecological niches, informing conservation decision and
identifying conservation priorities (Loiselle et al., 2003) or predicting the effect of a range of
changes such as land use or climate (Hallstan, 2011). A key assumption of SDMs is that relevant
environmental gradients have been sampled in a way that the realized niche faithfully represents
the set of conditions that the species can tolerate.

However, there are several cases where this assumption can be violated e.g. when a
geographically restricted dataset is used to calibrate the model or when the margins of the
realized niche coincide with the margins of the available environmental space, i.e. the
conditions available on Earth. It is also important to keep in mind that niche truncation can also
be caused by restricted access to certain area due to species dispersal limitations (Soberén &
Nakamura, 2009) or biotic interactions (Peterson, Cobos, & Jiménez-Garcia, 2018). However
these two latter situations will not be assessed in this study.

In the first case, when the scale of the study is a geographically restricted area, a
truncation in the data will occur. This is the case for instance if, in the idea of predicting future
distribution of one species in Switzerland, only the species occurrences in this country are taken
into account. The study will thus not capture the whole realized niche that one species occupies
and will then generate bias in the estimate of future species distribution (Titeux et al., 2017).
This truncation induce other effect as for instance an overestimation of local extinction rate
(Barbet-Massin, Thuiller, & Jiguet, 2010) or more conservative scenarios for projections of

distribution changes (Thuiller, Brotons, Araujo, & Lavorel, 2004). But this situation can easily



be avoided by using distribution data beyond the boundaries of the study area (Titeux et al.,
2017). Taking into account data from the neighbourhood allows to capture the response of the
species for climatic conditions that are expected within the area in the future.

The second case where the SDM assumption is violated is linked to the available
conditions on Earth. It happens when the margins of the niche of interest coincide with the
margins of available environmental conditions on Earth. We hypothesize that it induces
truncation in the niche since all the conditions that the species could tolerate are not observed.
Since no solution is proposed in the literature to palliate to this issue, the predictions are only
based on actual environmental conditions and the species behaviour is not known nor taken into
account for future climate predictions. This is a big issue when extrapolation is used to model
species distribution with non-analogous conditions to predict future changes in the distribution
(Thuiller et al., 2004), species extinctions or potential of invasive species (Smolik et al., 2010).

To our knowledge, there is no estimation of the extent to which the limits of the
environmental conditions that are available on our planet are causing niche truncation. The aim
of the study is to analyse through an exploratory approach whether or not realized niche are
truncated and to provide a quantitative assessment to which extend this realized niche is
truncated for bird species due to environmental restrictions.

In order to answer this question, datasets for 49 birds species coming from two different
sources, the Global Biodiversity Information Facility (GBIF) and the International Union for
Conservation of Nature (IUCN), were analysed. 19 bioclimatic variables and species
occurrences at worldwide scale were used to estimate (i) the world background envelope
characterizing the range of environmental conditions available on Earth and (ii) the
environmental envelope of each species characterizing the environmental conditions
experienced by species across their geographical range. The realized niche envelope was
compared to the environmental background envelope (i.e. environmental conditions available
on Earth) to estimate truncation. This truncation was defined as the percentage of the realized
niche that exceeds the environmental background margins.

Since a large niche has more chance to reach the margins of the environmental
background, we hypothesize a higher truncation for species with a larger realized niche. Since
generalist species tend to have larger niche than specialist species (Pagani-Nuiiez et al., 2019),
this hypothesis suggest higher truncation for generalist species. A second hypothesis is that
more or less truncation is to be expected depending on groups species and their characteristic
traits, e.g. climate change sensibility, diet, thermic tolerance. Since some traits can influence
species distribution (Aubin et al., 2018) we expect them to potentially influence niche
truncation as well.

Our results suggest a niche truncation for the vast majority of the species tested. It appears
to be a tendency for species with the largest niche to have the more truncation in the realized

niche.



Methods

All analyses were performed using the R environment software (R Core Team, 2018).

Data

Analyses were performed using data for 49 birds species which were extracted from two major
databases that are commonly used for species distribution modelling: IUCN and GBIF
databases. [UCN data are geographic range maps that are built using existing occurrence
records together with expert knowledge of species ecology (Hawkins, Rueda, & Rodriguez,
2008). These data appear in the form of polygons that overlay a geographical map and within
which the species is assumed present with a high probability (Alhajeri & Fourcade, 2019; Herkt,
Skidmore, & Fahr, 2017). On the other hand, GBIF data are compiled records of georeferenced
observation (Fig 1b) coming from different sources such as citizen science programs, museum
collections and monitoring programs (Edwards, 2004). IUCN and GBIF data are commonly
used in conservation biology e.g. to estimate extinctions probabilities under different climate
change scenarios using niche modelling algorithms, or to quantify species ecological niches.
We here assume that because these data are plentiful and cover a large geographical extent
encompassing large environmental gradients, they would make it possible to characterize the
full-realized niche of species. Differences were nevertheless expected between GBIF and [IUCN
datasets in their assessment of the realized niche owing to the strength and the weaknesses of
the two datasets. For instance, since they are georeferenced observations, GBIF data are
generally precise. However, as they come from different sources such as citizen science
programs, a spatial bias is expected with lower sampling in areas with adverse conditions such
as mountains, desert areas or far away from walking tracks. We thus expect the niche to be
underestimated, especially in the extreme parts of the niche. In the other hand, [IUCN data have
a more coarse resolution which suggest that there are some points in the range where the species
is not found. But in the contrary of GBIF data, [UCN data are not spatially biased. Since there
are no evidence for a dataset to be better than the other and that both of them are widely used
in SDM we decided to use the two datasets independently, as suggested by Alhajeri and
Fourcade (Alhajeri & Fourcade, 2019).

Environmental layer (raster data) for the world were directly downloaded from
WorldClim online database (‘“Bioclimatic variables | WorldClim - Global Climate Data,” n.d.).
This data contains bioclimatic data for 19 variables representing annual trends, seasonality and
extreme or limiting environmental factors. These values are the average for the years 1970 to
2000 and are derived from monthly temperature and rainfall values. Compiling annual trends
but also taking variations throughout the year into account, they are commonly used in niche
modelling analysis. The spatial resolution used is 2.5 minutes, which is about 4.5km at the

equator for each cell. This somewhat coarse resolution is recommended to perform range-map



based analyses (Hurlbert & Jetz, 2007; Lam & Quattrochi, 1992) and was chosen to avoid

putting too much emphasis on extreme climatic conditions that may distort species envelopes.

Defining i : |

In order to obtain a two-dimensional environment space for the 19 bioclimatic variables, a
Principal Component Analysis (PCA) was performed on the bioclimatic variables. This
statistical procedure convert the correlated bioclimatic variables in a set of uncorrelated values

that are the principal components. The first principal component is defined in a way that it
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Figure 1: a) Geographic range map for Eurasian sparrowhawk (Accipiter nisus) obtained with [UCN data and b)
georeferenced observation for Eurasian sparrowhawk obtained with GBIF data.



account for the largest variability as possible in the data and the next components have, in turn
the highest variance possible as long as it is orthogonal to the preceding component. The
environmental background envelope as well as species niche envelopes were then computed in
this two-dimensional space, defined by the first two PCA axis, that were selected as
representing the majority of the variability. 51% of the variance is explained by the first axis of
the PCA and 26% by the axis. The two first axis thus explain 77% of the variance of the

environmental data.

Background envelope

The environmental background was computed using a kernel density estimate. The kernel
density estimate is a way to estimate the probability density function of random variables and
thus estimate the hypervolume defined by the environmental variables. Since this estimate
delimits the boundaries of the hypervolume (Blonder, Lamanna, Violle, & Enquist, 2014), it

delineates the environmental background envelope.

Species envelopes

Two Species niche envelopes were computed for each species, one using [UCN data, the other
using GBIF data. The IUCN polygons and GBIF data were first loaded. GBIF data were
previously cleaned using the CoordinateCleaner R package (Zizka et al.,, 2019). Then,
environmental data were extracted for 10,000 points sampled randomly in the range of ITUCN
data. The points of the two databases were then projected on the PCA axis. A kernel density
estimate was again used to estimate the boundaries around the occurrence points and delineate
the species niche envelope. Since this method is based on density occurrence, where only 99%
of occurrences were used (limit with this method), the species niche envelope can thus go
beyond the environmental background envelope. For instance, if a high density of occurrence
is found at the margins of the background envelope, the kernel density will delimit the
boundaries around our occurrence points further from the points and thus outside of the
background envelope. These are these particular area where the niche envelope goes beyond

the environmental background envelope that was considered as a niche truncation mark.

Nict .
Two approaches were used to estimate the extent to which the realized niche of species might
be truncated by the available environmental space. These two methods are based on the part of
the niche envelope that overlay the environmental background envelope, and both the area and
the perimeter of these surface were used to estimate the truncation. The area and perimeter of
the truncated part of the niche were standardized using a percentage of the total envelope (see

formula in Fig 2).
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Figure 2: Estimation of niche truncation based on the a) area (in blue) and b) the perimeter (in red) of the surface
of the niche species envelope that goes beyond the environmental background envelope.
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A Wilcoxon-Mann-Whitney test was performed between truncation obtained from IUCN and
GBIF data for both area and perimeter approach in order to compare the two datasets.

In a second time, an analysis was performed taking into consideration the size of the
realized niche to verify the first hypothesis that higher truncation is expected for species with a
larger niche. A plot of the estimated truncation in function of niche size was drawn in order to
establish whether or not a relation between truncation and niche size exists. The relation was
analysed with a linear model.

In order to analyse the second hypothesis which stipulate that a difference in niche
truncation is to be expected between groups of species and their characteristics traits, the
truncation was analysed in functions of groups of species. In this case, groups of species were
based on the taxonomic order of the species which was one of the traits that we could find with
our actual data and that is a first hint if we expect other species traits to influence the extent of

niche truncation.



Results

The superposition of the two realized niche envelopes obtained with GBIF and IUCN data and
the environmental background envelope allows to notice that they differ considerably between
GBIF and IUCN data for a majority of the 49 species analysed (Tabl, Fig3). The envelope
computed with IUCN data are bigger than when computed with GBIF data for all species (Tab.
1).

Background and environmental envelopes for the Eurasian sparrowhawk (Accipiter nisus)
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Figure 3: a) Environmental background envelope (black line) and species niche envelope based on IUCN (orange)
and GBIF (green) datasets of the Eurasian sparrowhawk (Accipiter nisus) projected on the 2 dimensional scale
provided by the Principal component axis 1 and 2 with b) truncated area (red area) with GBIF dataset, c) truncated
perimeter (red line) with GBIF dataset, d) truncated area (red area) with [UCN dataset and ¢) truncated perimeter
(red line) with ITUCN dataset.

The truncation, considered as the percentage of the realized niche that goes beyond the
environmental background envelope varied between 0 and 10.50% for the area and between 0
and 32.66% for the perimeter of niches obtained with GBIF data. The range of truncation value
obtained with [IUCN data was from 0 to 9.15% for the area and from 0 to 54.93% for the
perimeter (Tabl, Fig4). Out of 49 species, 29 species showed niche truncation when analysed
with GBIF data whereas all except four showed niche truncation based on the [UCN dataset
(Tabl).

The mean area truncation for the GBIF dataset was 1.05% whereas this values was 2.45% for
the [UCN dataset. The mean perimeter truncation with GBIF data was estimated at 5.62% and
at 17.92% for the [UCN dataset.
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Figure 4: Estimated percentage of niche truncation in function of the database (GBIF in
green, [IUCN in orange) and measure method (area, perimeter).

The Wilcoxon-Mann-Whitney test indicates significant differences between GBIF and IUCN
data regarding the area-based estimate of truncation level (p-value = 3.741e-05). The same
conclusion was reached regarding the truncated perimeter of realized niches (p-value = 3.057e-
00).

For both datasets, the perimeter outside the environmental background is higher than the
area.

The figure 5 shows the percentage of truncation in function of the niche size in order to
analyse whether there is a relation between the size and the degree of truncation of the niche.
A strong relation is revealed indicating that we expect more truncation for species with a larger
niche (Fig. 5). It implies that generalist species tend to have more niche truncation since their
niche are bigger than specialist species.

The last analysis allowed to reveal differences between groups of species based on the
taxonomic order of the 49 species. The mean estimated truncation is higher for some of the
orders. For instance, Coraciiformes and Falconiformes order show a high estimated truncation
based on GBIF and IUCN data, whereas Galliiformes shows a high estimated truncation only
with [UCN data.
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Figure 5: Estimated percentage of truncation in function of the niche size. Niche truncation percentage was
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SP.NAMES

ACCIPITER NISUS
ALCEDO ATTHIS

ANAS PLATYRHYNCHOS
ASIO OTUS
BOMBYCILLA GARRULUS
BUTEO BUTEO
CARDUELIS CARDUELIS
CHLORIS CHLORIS
CICONIA CICONIA
COLUMBA PALUMBUS
CORVUS CORONE
COTURNIX COTURNIX
CYANISTES CAERULEUS
DELICHON URBICUM
DENDROCOPOS MAJOR
DENDROCOPOS MEDIUS
EMBERIZA CITRINELLA
FALCO PEREGRINUS
FALCO SUBBUTEO
FALCO TINNUNCULUS
FICEDULA HYPOLEUCA
FRINGILLA COELEBS
GARRULUS GLANDARIUS
HIRUNDO RUSTICA

JYNX TORQUILLA
LOXIA CURVIROSTRA
MERGUS MERGANSER
ORIOLUS ORIOLUS
OTUS SCOPS

PARUS MAJOR
PASSER DOMESTICUS
PERIPARUS ATER

PHOENICURUS
OCHRUROS
PICA PICA

PICUS VIRIDIS
PODICEPS NIGRICOLLIS
REGULUS REGULUS
SCOLOPAX RUSTICOLA
SITTA EUROPAEA
STRIX ALUCO
STURNUS_VULGARIS
SYLVIA ATRICAPILLA
SYLVIA BORIN
TACHYMARPTIS MELBA

TROGLODYTES
TROGLODYTES
TURDUS MERULA

TURDUS PHILOMELOS
TURDUS PILARIS
TYTO ALBA

SP.NAMES

Epervier d'Europe
Martin pécheur
Canard colvert

Hibou moyen-duc
Jaseur boréal

Buse variable
Chardonneret élégant
Verdier d'Europe
Cigogne blanche
Pigeon ramier
Corneille noire

Caille des blés
Mésange bleue
Hirondelle de fenétre
Pic épeiche

Pic mar

Bruant jaune

Faucon pélerin
Faucon hobereau
Faucon crécerelle
Gobemouche noir
Pinson des arbres
Geai des chénes
Hirondelle rustique
Torcol fourmilier
Bec-croisé des sapins
Harle biévre

Loriot d'Europe
Petit-duc scops
Mésange charbonniére
Moineau domestique
Mésange noire

Rougequeue noir

Pie bavarde

Pic vert

Greébe a cou noir
Roitelet huppé
Bécasse des bois
Sitelle torchepot
Chouette hulotte
Etourneau sansonnet
Fauvette a téte noire
Fauvette des jardins
Martinet a ventre blanc

Troglodyte mignon

Merle noir
Grive musicienne
Grive litorne

Effraie des clochers

ORDRE

Accipitriformes
Coraciiformes
Anseriformes
Strigiformes
Passeriformes
Accipitriformes
Passeriformes
Passeriformes
Ciconiiformes
Columbiformes
Passeriformes
Galiiformes
Passeriformes
Passeriformes
Piciformes
Piciformes
Passeriformes
Falconiformes
Falconiformes
Falconiformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Piciformes
Passeriformes
Anseriformes
Passeriformes
Strigiformes
Passeriformes
Passeriformes
Passeriformes

Passeriformes

Passeriformes
Piciformes
Podicipediformes
Passeriformes
Charadriiformes
Passeriformes
Strigiformes
Passeriformes
Passeriformes
Passeriformes
Apodiformes

Passeriformes

Passeriformes
Passeriformes
Passeriformes

Strigiformes

GBIF

TRUNCATION

AREA
1.08470795

10.5043716
0.82973846
0

0
0.15422489
0.49331937
0.02323289
0

0
0.88737797
0

0
0.0015611
0.0390543
0
1.59381487
2.89301164
0
1.93478488
0
2.37071472
0.45781248
1.46646513
0
3.52370405
0.57138332
0

0

0
1.53032366
3.31751444
4.12580852

0

0

0
1.20693194
0
0.42962955
0
0.00302687
1.11554913
0.17957714
4.2436525
2.85396538

2.81423595
0
0
0.62530905

GBIF

TRUNCATION

PERIMETER
6.75158087

32.6620949
7.29514677
0

0
1.75324774
4.48263804
1.4073951
0

0
8.21713767
0

0
0.1569264
1.00628037
0
10.2013918
25.0726785
0
9.97330983
0
15.6780354
4.65654618
18.2569583
0
15.4070452
4.52211202
0

0

0
13.0875233
12.1644503
12.3895075

0

0

0
9.24150156
0
4.36122856
0
0.4032178
7.9750782
1.83961772
13.2683013
13.3754511

13.8446541
0
o}
5.75132544

GBIF

TOTAL

AREA
28.0635434

54.4336769
35.4793091
17.8873705
13.0499068
24.7392955
21.0193218
19.2926148
21.5906424
15.3182567
21.4913802
22.6590278
13.0949811
28.2905178
16.5601075
7.45168448
15.2207965
62.7111125
26.5167946
50.6868402
10.2834732
23.4820368

17.18323
59.9998295
16.7152818

32.04886
31.7456774
18.6095008
11.4441606
19.9840297
53.414389%
21.9287296
35.2657784

20.7537816
8.47684087

23.459069
14.2856858
12.8146544
16.8437624
10.9669312
29.9878891
16.4342719

19.920339
12.6004372
19.1845639

23.9912039
15.8304872
12.5135581
46.3289109

IUCN

TRUNCATION

AREA
4.4723486

5.29769588
4.14698322
0.97745081
1.69031399
0.4165062
0.45193431
0
4.08176604
0.43995904
2.28388133
6.44222245
0.16197606
2.12311491
0.91766497
0
0.67479778
9.15376523
4.32392688
5.60606764
2.9518979
0.04608601
0.7357089
8.36272301
4.19090965
1.02578379
3.31129368
3.41474523
3.49425574
1.42853395
4.13690687
0.94293352
4.85058324

1.25896631
0
0.55514801
0.00551509
0.62401031
1.74666347
0.13366124
1.576731
3.23921733
3.55869096
4.56142889
0

2.1333194
1.46157166
0.61905747

5.9644834

IUCN

TRUNCATION

PERIMETER
31.4035631

39.248252
25.775725
11.717624
16.3195143
4.23413139%
5.8984872
0
30.2180575
4.5944933
22.8456101
42.4470721
1.45131567
17.3793149
7.38697182
0
7.24353838
53.2988742
37.704494
36.6105511
15.7738531
1.23816936
7.82773304
54.929244
23.1450281
9.12358903
25.0841548
29.1479196
22.6458929
10.3788001
35.9488867
9.94444183
36.4003247

13.6338679
0
5.61410281
0.57276845
3.08300766
14.6712086
2.90285378
10.1560127
23.7421554
25.0155254
22.912417
0

9.2000377
11.4872294
7.72903535
50.1070941

IUCN

TOTAL

AREA
60.5620091

72.4730176
58.3645711
39.0402346
30.8474918
35.6733773
23.6282288
21.9867647
35.5285499
27.9425845
38.8044183
49.5431368
18.6857512

50.484781
37.2961034
9.79767889
21.7695919
85.5057288
54.3897284
63.9838262
30.9534199
23.8218871
26.2586297

82.319702
52.1059626
41.2382897
44.9107201
43.2411191
40.9768354
57.9418705
60.4792858
35.5105381
53.7826278

42.2160399
14.7407036
39.9906987
28.7765805
44.7972615
329295468
21.0377516
45.5191938
39.7811753
46.5926271
46.8165293
38.4033903

29.9636915
26.8957123
28.4088905
61.9474136

Table 1: Estimated niche truncation for the two databases (IUCN and GBIF) and the two methods (Area and Perimeter). Total
area represents the total niche size.
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Discussion

From the two cases where the species model distribution assumption is violated, the first one,
i.e. the truncation induced by geographically restricted datasets was already assessed and a
solution to avoid this problem proposed (Titeux et al., 2017). The second case consisting of a
truncation induced by a limit of the environmental background in which we suppose not to
observe all the conditions that a species can tolerate had never been assessed. Based on bird
species niche, this study assess the extent to which the realized niche can be truncated.

The main result is that niche truncation could be observed in the majority of species with
both datasets. With realized niche truncation ranging from 0 to more than 50%, this empirical
result give rise to an important questioning about the accuracy of predictions for future species
distribution models (Peterson et al., 2018) but also for spatial prediction as it is done with SDMs
for invasive species (Jiufeng, Zhao, Zhao, & Zhang, 2018). As it was hypothesized, a niche
truncation exists in the margins of the environmental conditions available on Earth. The
predictions based on actual realized niche thus does not take into account the environmental
conditions that are not available nowadays but that may become available in the future. For
species with a part of the margins of the realized niche corresponding to the margins of the
environmental conditions, we expect the realized niche to be larger in the future due to the
change in the environmental conditions. If new environmental conditions that the species can
tolerate become available in the future, the realized niche will increase. And this opportunity is
for now not taken into account in predictions using climate change scenarios.

The Wilcoxon Mann-Whitney test, performed between [IUCN and GBIF perimeter or area
truncation also confirm that the two datasets have significant difference in their perimeter and
area truncation distribution (p-values = 3.057e-06 and 3.741e-05 respectively). It would be
interesting to analyse which of the two datasets represents the best realized niche models, but
nowadays, they remain the most used in the Niche modelling and Species Distribution
Modelling (Alhajeri & Fourcade, 2019; Hawkins et al., 2008).

The analyse performed with the two datasets obtained from GBIF and IUCN values
allowed to notice that the two realized niche computed with these values differed considerably.
However, this is a different result than what showed Alhajeri & Fourcade who found no
considerable difference in environmental data estimates between IUCN and GBIF data
(Alhajeri & Fourcade, 2019). Both study yet used large spatial and taxonomic scale. Since this
study showed no better database than the other, we thus need to consider both results and take
the strength and weakness of the two datasets into account to explain the truncation that is
expected. The maps displaying the [IUCN polygons and GBIF dots representing the occurrences
of the species shows that GBIF points are relatively close to the IUCN data in area such as the
western part of Europe, South-Africa and Northern America but displays a noteworthy
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difference for other regions. It can be explained by the fact that GBIF data comes from species
presence observations by scientists and average citizen whereas the IUCN data are not only
evaluated by presence-observations but also by experts predictions. We expect a sampling bias
for the GBIF data since the species observation occurrences are less likely to be realized in
regions with adverse conditions, far away from populated area and out of the tracks. This results
in an underestimation of the species occurrences and thus of the realized niche. A shift bias can
also result from these data if the extreme values are not taken into account due to a lack of
occurrence observations in adverse environmental conditions. On the other hand, the expert
prediction extrapolations in the [UCN data that also have a more coarse resolution are expected
to overestimate presence occurrence of species in area with sudden spatial environmental
conditions changes such as mountain, different land use, etc. For instance, with this kind of
coarse resolution, a sudden altitude elevation on a mountain can not to be taken into account
and a species living in low elevation habitat would be considered as present in our occurrence
sampling since with the extrapolation this area is part of the IUCN polygons although the
species is not found in reality. We thus expect the percentage of truncation to be in between the
values obtained with these two datasets.

Although truncation was noticed with both methods, i.e. when analysing the area or the
perimeter of the realized niche that was beyond the environmental background envelope, the
perimeter truncation proved to be higher. We can then question which is the best mean to
analyse truncation and define more precisely the realized niche truncation, now that these
results revealed it, with these two experimental methods. The perimeter is thought to
overestimate the truncation since the n-environmental space is probably rugged (Blonder et al.,
2014) which will largely increase the perimeter whereas the area will remain approximately the
same. Since holes can also be found in the niche (Blonder et al., 2014), this will also increase
the perimeter while reducing the area. For these reasons we expect the perimeter to overestimate
the percentage of truncation but further analysis are required. Other methods are also
conceivable in order to estimate truncation with the best accuracy.

The analyse of the truncation extent in function of the realized niche size returned a strong
relation for all data test and, all the more, a positive relation. It thus confirm the hypothesis that
a higher truncation is linked with a larger realized niche. And since generalist species tend to
have larger niche than specialist species (Pagani-Nufiez et al., 2019), the niche truncation issue
is then more acute for generalist species. Other hypothesis that should be tested are if specialist
species can also present truncation if their environmental suitable conditions are near the
environmental conditions margins and if species with extreme conditions tolerance would be
more exposed to niche truncation, since they are more susceptible to have realized niche

margins that coincide with environmental conditions margins.
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The last hypothesis expecting differences in the niche truncation depending on species
groups raise questions about other species characteristic traits that could influence the extent to
which the realized niche is truncated. Since the results revealed different niche truncation in
function of the taxonomic order of the species, we expect the niche truncation to be related to
other species traits than niche size and taxonomic order. Knowing which species traits influence
the extent of niche truncation is important since they species traits are a key to species
vulnerability assessment (Aubin et al., 2018). Other life-history traits either affecting
populations dynamics such as dispersal distance, generation time, affecting species distribution
such as thermic tolerance or affecting biotic relations such as trophic level, home range size
(Santini et al., 2016) would be interesting to analyse the effects of these traits on niche
truncation.

This exploratory study revealed several limits. Besides the IUCN and GBIF databases
used to estimate species, other limits were encountered. The dataset that was used to compute
the environmental background space consisted of temperature and precipitation variables.
Other environmental variables should also be taken into account in order to estimate the
environmental conditions available with the best accuracy. For instance, soil occupation, tree
cover, light exposure are variables that could be interesting to analyse as well. The kernel
density estimate tool is also a limiting parameter of this study. Other estimates are available
such as convexhull (Blonder et al., 2014) and alphahull (Arias-Castro & Casal, 2015) to define
the envelopes. As Blonder et al. shown, the convexhull estimate is sensitive to outlier
occurrences points and the kernel density estimate allows to model holes in the envelope
(Blonder et al., 2014). The kernel density estimate was thus chosen for this first study, but other
estimates should be tested in future studies.

In conclusion, this study revealed the extent to which the realized niche is truncated for
bird species with [IUCN and GBIF data. We expect this study to be the trigger of further analyses
on other species, and with different methods in order to determine which is the best mean to
estimate truncation. This exploratory study revealed niche truncation and pave the way to
numerous other studies. The next step will be to test other methods to define the more acute
way to estimate niche truncation and experiment tools in order to take this truncation into
account when modelling niche and species distribution models for spatial predictions for

instance for invasive species analysis or for predictions using climate change scenarios.
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