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Abstract  

Species distribution models (SDM) are widely used in conservation biology to identify 

conservation priorities or predicting the effect of changes in landuse or climate. Based on the 

ecological niche, a key assumption of SDM is that relevant environmental gradients have been 

sampled in a way that the realized niche faithfully represents the set of conditions that the 

species can tolerate. However, there are several cases where this assumption can be violated 

e.g. when a geographically restricted dataset is used to calibrate the model or when the margins 

of the realized niche coincide with the margins of the available environmental space, i.e. the 

conditions available on Earth. Here we show an evidence for truncation in bird species realized 

niche. A majority of 49 bird species niche showed truncation, which suggest they can tolerate 

more conditions than the actual available conditions on Earth. Furthermore, this issue was 

proved to be more acute for generalist species with larger niche. We anticipate our exploratory 

study to be a starting point to develop methods to estimate truncation and experiment tools in 

order to take this truncation into account in species distribution models for spatial predictions 

or predictions using climate change scenarios.  
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Introduction 

 

Nowadays, climate change is widely recognized as a reality (Stocker et al., 2013). This 

phenomenon is a great concern for many fields, among them, conservation biology. It is largely 

accepted by the scientific community that global climate change is a threat to biodiversity and 

ecosystems which are not able to adapt to the actual stress that is beyond the natural climate 

change that occurred in the past (Omann, Stocker, & Jäger, 2009; Wilson & Peter, 1988). 

Several response to climate change effects have been observed such as adaptive evolution or 

tolerance, spatial or temporal shift, with a failure to respond by one of these means leading to 

population range reduction and local, regional, or even complete extinction (Holt, 1990; 

Nogués-Bravo et al., 2018). With the hope to avoid species extinctions and develop adapted 

conservation strategies for the different species, species distribution models (SDM) and 

environmental niche modelling (ENM) are useful tools. SDM are based on the notion of 

environmental niche conceptualized by Hutchinson (Hutchinson, 1953) and are built by 

statistically linking species occurrence (presence-absence or presence-only) and environmental 

data to identify an n-dimensional space representing a set of suitable environmental and biotic 

conditions for the species: the realized niche. SDMs have been developed in the mid-1980s 

(Pecchi et al., 2019) and are widely used since the early 20th century for a large panel of 

purposes including quantifying species ecological niches, informing conservation decision and 

identifying conservation priorities (Loiselle et al., 2003) or predicting the effect of a range of 

changes such as land use or climate (Hallstan, 2011). A key assumption of SDMs is that relevant 

environmental gradients have been sampled in a way that the realized niche faithfully represents 

the set of conditions that the species can tolerate.  

However, there are several cases where this assumption can be violated e.g. when a 

geographically restricted dataset is used to calibrate the model or when the margins of the 

realized niche coincide with the margins of the available environmental space, i.e. the 

conditions available on Earth. It is also important to keep in mind that niche truncation can also 

be caused by restricted access to certain area due to species dispersal limitations (Soberón & 

Nakamura, 2009) or biotic interactions (Peterson, Cobos, & Jiménez‐García, 2018). However 

these two latter situations will not be assessed in this study.  

In the first case, when the scale of the study is a geographically restricted area, a 

truncation in the data will occur. This is the case for instance if, in the idea of predicting future 

distribution of one species in Switzerland, only the species occurrences in this country are taken 

into account. The study will thus not capture the whole realized niche that one species occupies 

and will then generate bias in the estimate of future species distribution (Titeux et al., 2017). 

This truncation induce other effect as for instance an overestimation of local extinction rate 

(Barbet‐Massin, Thuiller, & Jiguet, 2010) or more conservative scenarios for projections of 

distribution changes (Thuiller, Brotons, Araújo, & Lavorel, 2004). But this situation can easily 
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be avoided by using distribution data beyond the boundaries of the study area (Titeux et al., 

2017). Taking into account data from the neighbourhood allows to capture the response of the 

species for climatic conditions that are expected within the area in the future.  

The second case where the SDM assumption is violated is linked to the available 

conditions on Earth. It happens when the margins of the niche of interest coincide with the 

margins of available environmental conditions on Earth. We hypothesize that it induces 

truncation in the niche since all the conditions that the species could tolerate are not observed. 

Since no solution is proposed in the literature to palliate to this issue, the predictions are only 

based on actual environmental conditions and the species behaviour is not known nor taken into 

account for future climate predictions. This is a big issue when extrapolation is used to model 

species distribution with non-analogous conditions to predict future changes in the distribution 

(Thuiller et al., 2004), species extinctions or potential of invasive species (Smolik et al., 2010).  

To our knowledge, there is no estimation of the extent to which the limits of the 

environmental conditions that are available on our planet are causing niche truncation. The aim 

of the study is to analyse through an exploratory approach whether or not realized niche are 

truncated and to provide a quantitative assessment to which extend this realized niche is 

truncated for bird species due to environmental restrictions.  

In order to answer this question, datasets for 49 birds species coming from two different 

sources, the Global Biodiversity Information Facility (GBIF) and the International Union for 

Conservation of Nature (IUCN), were analysed. 19 bioclimatic variables and species 

occurrences at worldwide scale were used to estimate (i) the world background envelope 

characterizing the range of environmental conditions available on Earth and (ii) the 

environmental envelope of each species characterizing the environmental conditions 

experienced by species across their geographical range. The realized niche envelope was 

compared to the environmental background envelope (i.e. environmental conditions available 

on Earth) to estimate truncation. This truncation was defined as the percentage of the realized 

niche that exceeds the environmental background margins.  

Since a large niche has more chance to reach the margins of the environmental 

background, we hypothesize a higher truncation for species with a larger realized niche. Since 

generalist species tend to have larger niche than specialist species (Pagani-Núñez et al., 2019), 

this hypothesis suggest higher truncation for generalist species. A second hypothesis is that 

more or less truncation is to be expected depending on groups species and their characteristic 

traits, e.g. climate change sensibility, diet, thermic tolerance. Since some traits can influence 

species distribution (Aubin et al., 2018) we expect them to potentially influence niche 

truncation as well.  

Our results suggest a niche truncation for the vast majority of the species tested. It appears 

to be a tendency for species with the largest niche to have the more truncation in the realized 

niche.  



 5 

Methods 

 

All analyses were performed using the R environment software (R Core Team, 2018).   

 

Data 

Analyses were performed using data for 49 birds species which were extracted from two major 

databases that are commonly used for species distribution modelling: IUCN and GBIF 

databases. IUCN data are geographic range maps that are built using existing occurrence 

records together with expert knowledge of species ecology (Hawkins, Rueda, & Rodríguez, 

2008). These data appear in the form of polygons that overlay a geographical map and within 

which the species is assumed present with a high probability (Alhajeri & Fourcade, 2019; Herkt, 

Skidmore, & Fahr, 2017). On the other hand, GBIF data are compiled records of georeferenced 

observation (Fig 1b) coming from different sources such as citizen science programs, museum 

collections and monitoring programs (Edwards, 2004). IUCN and GBIF data are commonly 

used in conservation biology e.g. to estimate extinctions probabilities under different climate 

change scenarios using niche modelling algorithms, or to quantify species ecological niches. 

We here assume that because these data are plentiful and cover a large geographical extent 

encompassing large environmental gradients, they would make it possible to characterize the 

full-realized niche of species. Differences were nevertheless expected between GBIF and IUCN 

datasets in their assessment of the realized niche owing to the strength and the weaknesses of 

the two datasets. For instance, since they are georeferenced observations, GBIF data are 

generally precise. However, as they come from different sources such as citizen science 

programs, a spatial bias is expected with lower sampling in areas with adverse conditions such 

as mountains, desert areas or far away from walking tracks. We thus expect the niche to be 

underestimated, especially in the extreme parts of the niche. In the other hand, IUCN data have 

a more coarse resolution which suggest that there are some points in the range where the species 

is not found. But in the contrary of GBIF data, IUCN data are not spatially biased. Since there 

are no evidence for a dataset to be better than the other and that both of them are widely used 

in SDM we decided to use the two datasets independently, as suggested by Alhajeri and 

Fourcade (Alhajeri & Fourcade, 2019). 

Environmental layer (raster data) for the world were directly downloaded from 

WorldClim online database (“Bioclimatic variables | WorldClim - Global Climate Data,” n.d.). 

This data contains bioclimatic data for 19 variables representing annual trends, seasonality and 

extreme or limiting environmental factors. These values are the average for the years 1970 to 

2000 and are derived from monthly temperature and rainfall values. Compiling annual trends 

but also taking variations throughout the year into account, they are commonly used in niche 

modelling analysis. The spatial resolution used is 2.5 minutes, which is about 4.5km at the 

equator for each cell. This somewhat coarse resolution is recommended to perform range-map 
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based analyses (Hurlbert & Jetz, 2007; Lam & Quattrochi, 1992) and was chosen to avoid 

putting too much emphasis on extreme climatic conditions that may distort species envelopes.   

 

Defining the environmental space 

In order to obtain a two-dimensional environment space for the 19 bioclimatic variables, a 

Principal Component Analysis (PCA) was performed on the bioclimatic variables. This 

statistical procedure convert the correlated bioclimatic variables in a set of uncorrelated values 

that are the principal components. The first principal component is defined in a way that it 

b) 

a) 

b) 

Figure 1: a) Geographic range map for Eurasian sparrowhawk (Accipiter nisus) obtained with IUCN data and  b) 

georeferenced observation for Eurasian sparrowhawk obtained with GBIF data. 
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account for the largest variability as possible in the data and the next components have, in turn 

the highest variance possible as long as it is orthogonal to the preceding component. The 

environmental background envelope as well as species niche envelopes were then computed in 

this two-dimensional space, defined by the first two PCA axis, that were selected as 

representing the majority of the variability. 51% of the variance is explained by the first axis of 

the PCA and 26% by the axis. The two first axis thus explain 77% of the variance of the 

environmental data. 

 

Background envelope 

The environmental background was computed using a kernel density estimate. The kernel 

density estimate is a way to estimate the probability density function of random variables and 

thus estimate the hypervolume defined by the environmental variables. Since this estimate 

delimits the boundaries of the hypervolume (Blonder, Lamanna, Violle, & Enquist, 2014), it 

delineates the environmental background envelope.  

 

Species envelopes 

Two Species niche envelopes were computed for each species, one using IUCN data, the other 

using GBIF data. The IUCN polygons and GBIF data were first loaded. GBIF data were 

previously cleaned using the CoordinateCleaner R package (Zizka et al., 2019). Then, 

environmental data were extracted for 10,000 points sampled randomly in the range of IUCN 

data. The points of the two databases were then projected on the PCA axis. A kernel density 

estimate was again used to estimate the boundaries around the occurrence points and delineate 

the species niche envelope. Since this method is based on density occurrence, where only 99% 

of occurrences were used (limit with this method), the species niche envelope can thus go 

beyond the environmental background envelope. For instance, if a high density of occurrence 

is found at the margins of the background envelope, the kernel density will delimit the 

boundaries around our occurrence points further from the points and thus outside of the 

background envelope. These are these particular area where the niche envelope goes beyond 

the environmental background envelope that was considered as a niche truncation mark.   

 

Niche truncation 

Two approaches were used to estimate the extent to which the realized niche of species might 

be truncated by the available environmental space. These two methods are based on the part of 

the niche envelope that overlay the environmental background envelope, and both the area and 

the perimeter of these surface were used to estimate the truncation. The area and perimeter of 

the truncated part of the niche were standardized using a percentage of the total envelope (see 

formula in Fig 2).  
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Testing differences in truncation assessments 

A Wilcoxon-Mann-Whitney test was performed between truncation obtained from IUCN and 

GBIF data for both area and perimeter approach in order to compare the two datasets.  

In a second time, an analysis was performed taking into consideration the size of the 

realized niche to verify the first hypothesis that higher truncation is expected for species with a 

larger niche. A plot of the estimated truncation in function of niche size was drawn in order to 

establish whether or not a relation between truncation and niche size exists. The relation was 

analysed with a linear model.  

In order to analyse the second hypothesis which stipulate that a difference in niche 

truncation is to be expected between groups of species and their characteristics traits, the 

truncation was analysed in functions of groups of species. In this case, groups of species were 

based on the taxonomic order of the species which was one of the traits that we could find with 

our actual data and that is a first hint if we expect other species traits to influence the extent of 

niche truncation.  

 

  

Figure 2: Estimation of niche truncation based on the a) area (in blue) and b) the perimeter (in red) of the surface 

of the niche species envelope that goes beyond the environmental background envelope.  

a) b) 
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Results 

 

The superposition of the two realized niche envelopes obtained with GBIF and IUCN data and 

the environmental background envelope allows to notice that they differ considerably between 

GBIF and IUCN data for a majority of the 49 species analysed (Tab1, Fig3). The envelope 

computed with IUCN data are bigger than when computed with GBIF data for all species (Tab. 

1).  

 

Figure 3: a) Environmental background envelope (black line) and species niche envelope based on IUCN (orange) 

and GBIF (green) datasets of the Eurasian sparrowhawk (Accipiter nisus) projected on the 2 dimensional scale 

provided by the Principal component axis 1 and 2 with b) truncated area (red area) with GBIF dataset, c) truncated 

perimeter (red line) with GBIF dataset, d) truncated area (red area) with IUCN dataset and e) truncated perimeter 

(red line) with IUCN dataset.  

 

The truncation, considered as the percentage of the realized niche that goes beyond the 

environmental background envelope varied between 0 and 10.50% for the area and between 0 

and 32.66% for the perimeter of niches obtained with GBIF data. The range of truncation value 

obtained with IUCN data was from 0 to 9.15% for the area and from 0 to 54.93% for the 

perimeter (Tab1, Fig4). Out of 49 species, 29 species showed niche truncation when analysed 

with GBIF data whereas all except four showed niche truncation based on the IUCN dataset 

(Tab1). 

The mean area truncation for the GBIF dataset was 1.05% whereas this values was 2.45% for 

the IUCN dataset. The mean perimeter truncation with GBIF data was estimated at 5.62% and 

at 17.92% for the IUCN dataset.  
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The Wilcoxon-Mann-Whitney test indicates significant differences between GBIF and IUCN 

data regarding the area-based estimate of truncation level (p-value = 3.741e-05). The same 

conclusion was reached regarding the truncated perimeter of realized niches (p-value = 3.057e-

06).  

For both datasets, the perimeter outside the environmental background is higher than the 

area.  

The figure 5 shows the percentage of truncation in function of the niche size in order to 

analyse whether there is a relation between the size and the degree of truncation of the niche. 

A strong relation is revealed indicating that we expect more truncation for species with a larger 

niche (Fig. 5). It implies that generalist species tend to have more niche truncation since their 

niche are bigger than specialist species.  

The last analysis allowed to reveal differences between groups of species based on the 

taxonomic order of the 49 species. The mean estimated truncation is higher for some of the 

orders. For instance, Coraciiformes and Falconiformes order show a high estimated truncation 

based on GBIF and IUCN data, whereas Galliiformes shows a high estimated truncation only 

with IUCN data. 

 

Figure 4: Estimated percentage of niche truncation in function of the database (GBIF in 

green, IUCN in orange) and measure method (area, perimeter). 
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Figure 5: Estimated percentage of truncation in function of the niche size. Niche truncation percentage was 

estimated with a) truncated area with GBIF dataset , b) truncated perimeter with GBIF dataset, c) truncated area 

with IUCN dataset, d) truncated perimeter with IUCN dataset.   

 

Figure 6: Estimated percentage of truncation in function of groups of species based on taxonomic order. 

Truncation estimated with a) truncated area with GBIF dataset, b) truncated perimeter with GBIF dataset, c) 

truncated area with IUCN dataset, d) truncated perimeter with IUCN dataset. 

a) c) 

d) b) 

a) c) 

d) b) 



 12 

  

Table 1: Estimated niche truncation for the two databases (IUCN and GBIF) and the two methods (Area and Perimeter). Total 

area represents the total niche size.  
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Discussion 

 

From the two cases where the species model distribution assumption is violated, the first one, 

i.e. the truncation induced by geographically restricted datasets was already assessed and a 

solution to avoid this problem proposed (Titeux et al., 2017). The second case consisting of a 

truncation induced by a limit of the environmental background in which we suppose not to 

observe all the conditions that a species can tolerate had never been assessed. Based on bird 

species niche, this study assess the extent to which the realized niche can be truncated.  

The main result is that niche truncation could be observed in the majority of species with 

both datasets. With realized niche truncation ranging from 0 to more than 50%, this empirical 

result give rise to an important questioning about the accuracy of predictions for future species 

distribution models (Peterson et al., 2018) but also for spatial prediction as it is done with SDMs 

for invasive species (Jiufeng, Zhao, Zhao, & Zhang, 2018).  As it was hypothesized, a niche 

truncation exists in the margins of the environmental conditions available on Earth. The 

predictions based on actual realized niche thus does not take into account the environmental 

conditions that are not available nowadays but that may become available in the future. For 

species with a part of the margins of the realized niche corresponding to the margins of the 

environmental conditions, we expect the realized niche to be larger in the future due to the 

change in the environmental conditions. If new environmental conditions that the species can 

tolerate become available in the future, the realized niche will increase. And this opportunity is 

for now not taken into account in predictions using climate change scenarios.  

The Wilcoxon Mann-Whitney test, performed between IUCN and GBIF perimeter or area 

truncation also confirm that the two datasets have significant difference in their perimeter and 

area truncation distribution (p-values = 3.057e-06 and 3.741e-05 respectively). It would be 

interesting to analyse which of the two datasets represents the best realized niche models, but 

nowadays, they remain the most used in the Niche modelling and Species Distribution 

Modelling (Alhajeri & Fourcade, 2019; Hawkins et al., 2008).  

The analyse performed with the two datasets obtained from GBIF and IUCN values 

allowed to notice that the two realized niche computed with these values differed considerably. 

However, this is a different result than what showed Alhajeri & Fourcade who found no 

considerable difference in environmental data estimates between IUCN and GBIF data 

(Alhajeri & Fourcade, 2019). Both study yet used large spatial and taxonomic scale. Since this 

study showed no better database than the other, we thus need to consider both results and take 

the strength and weakness of the two datasets into account to explain the truncation that is 

expected. The maps displaying the IUCN polygons and GBIF dots representing the occurrences 

of the species shows that GBIF points are relatively close to the IUCN data in area such as the 

western part of Europe, South-Africa and Northern America but displays a noteworthy 
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difference for other regions. It can be explained by the fact that GBIF data comes from species 

presence observations by scientists and average citizen whereas the IUCN data are not only 

evaluated by presence-observations but also by experts predictions. We expect a sampling bias 

for the GBIF data since the species observation occurrences are less likely to be realized in 

regions with adverse conditions, far away from populated area and out of the tracks. This results 

in an underestimation of the species occurrences and thus of the realized niche. A shift bias can 

also result from these data if the extreme values are not taken into account due to a lack of 

occurrence observations in adverse environmental conditions. On the other hand, the expert 

prediction extrapolations in the IUCN data that also have a more coarse resolution are expected 

to overestimate presence occurrence of species in area with sudden spatial environmental 

conditions changes such as mountain, different land use, etc. For instance, with this kind of 

coarse resolution, a sudden altitude elevation on a mountain can not to be taken into account 

and a species living in low elevation habitat would be considered as present in our occurrence 

sampling since with the extrapolation this area is part of the IUCN polygons although the 

species is not found in reality. We thus expect the percentage of truncation to be in between the 

values obtained with these two datasets.  

Although truncation was noticed with both methods, i.e. when analysing the area or the 

perimeter of the realized niche that was beyond the environmental background envelope, the 

perimeter truncation proved to be higher. We can then question which is the best mean to 

analyse truncation and define more precisely the realized niche truncation, now that these 

results revealed it, with these two experimental methods. The perimeter is thought to 

overestimate the truncation since the n-environmental space is probably rugged (Blonder et al., 

2014) which will largely increase the perimeter whereas the area will remain approximately the 

same. Since holes can also be found in the niche (Blonder et al., 2014), this will also increase 

the perimeter while reducing the area. For these reasons we expect the perimeter to overestimate 

the percentage of truncation but further analysis are required. Other methods are also 

conceivable in order to estimate truncation with the best accuracy.  

The analyse of the truncation extent in function of the realized niche size returned a strong 

relation for all data test and, all the more, a positive relation. It thus confirm the hypothesis that 

a higher truncation is linked with a larger realized niche. And since generalist species tend to 

have larger niche than specialist species (Pagani-Núñez et al., 2019), the niche truncation issue 

is then more acute for generalist species. Other hypothesis that should be tested are if specialist 

species can also present truncation if their environmental suitable conditions are near the 

environmental conditions margins and if species with extreme conditions tolerance would be 

more exposed to niche truncation, since they are more susceptible to have realized niche 

margins that coincide with environmental conditions margins.  
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The last hypothesis expecting differences in the niche truncation depending on species 

groups raise questions about other species characteristic traits that could influence the extent to 

which the realized niche is truncated. Since the results revealed different niche truncation in 

function of the taxonomic order of the species, we expect the niche truncation to be related to 

other species traits than niche size and taxonomic order. Knowing which species traits influence 

the extent of niche truncation is important since they species traits are a key to species 

vulnerability assessment (Aubin et al., 2018). Other life-history traits either affecting 

populations dynamics such as dispersal distance, generation time, affecting species distribution 

such as thermic tolerance or affecting biotic relations such as trophic level, home range size 

(Santini et al., 2016) would be interesting to analyse the effects of these traits on niche 

truncation. 

This exploratory study revealed several limits. Besides the IUCN and GBIF databases 

used to estimate species, other limits were encountered. The dataset that was used to compute 

the environmental background space consisted of temperature and precipitation variables. 

Other environmental variables should also be taken into account in order to estimate the 

environmental conditions available with the best accuracy. For instance, soil occupation, tree 

cover, light exposure are variables that could be interesting to analyse as well. The kernel 

density estimate tool is also a limiting parameter of this study. Other estimates are available 

such as convexhull (Blonder et al., 2014) and alphahull (Arias-Castro & Casal, 2015) to define 

the envelopes. As Blonder et al. shown, the convexhull estimate is sensitive to outlier 

occurrences points and the kernel density estimate allows to model holes in the envelope 

(Blonder et al., 2014). The kernel density estimate was thus chosen for this first study, but other 

estimates should be tested in future studies.  

In conclusion, this study revealed the extent to which the realized niche is truncated for 

bird species with IUCN and GBIF data. We expect this study to be the trigger of further analyses 

on other species, and with different methods in order to determine which is the best mean to 

estimate truncation. This exploratory study revealed niche truncation and pave the way to 

numerous other studies. The next step will be to test other methods to define the more acute 

way to estimate niche truncation and experiment tools in order to take this truncation into 

account when modelling niche and species distribution models for spatial predictions for 

instance for invasive species analysis or for predictions using climate change scenarios. 
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