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Abstract 

Many macroecological studies are relating species distributions to environmental data to gain 

knowledge about the factors affecting the distribution of species across large spatial ranges. 

This knowledge can be used to quantify the environmental niche of species. Species 

distributions can be obtained through different data sources but there are two sources that 

have global coverage: range maps provided by the International Union for Conservation of 

Nature and georeferenced occurrence records provided by the Global Biodiversity 

Information Facility. Both databases are frequently used for their high taxonomic, temporal, 

and spatial coverage, although both are affected by well-known biases. Therefore, knowing 

how the choice of data influences the tendency of the estimations is very important. A 

previous study concluded that environmental data estimates for rodent species derived from 

the two datatypes are highly correlated. Here I show that a multivariate approach reveals the 

strong influence of the data choice, when estimating environmental niches of rodents. Similar 

discrepancies could also exist for other taxa which would be interesting to investigate further. 

To accurately produce environmental niche models and niche estimations is of great 

importance for many fields in ecology, but especially for conservation research and planning. 
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Introduction 

Many macroecological studies are relating species distributions to environmental data to gain 

knowledge about the factors affecting the distribution of species across large spatial ranges. 

This knowledge can then be used to estimate current species distributions (Soberón, 2007), 

reveal species specialisation (Fernanda Bonetti & Wiens, 2014) and quantify the realized 

niche of a species (Vetaas, 2002), which is the set of suitable and accessible environmental 

conditions constrained by biotic interactions. It can also be used to test biogeographical 

theories like the “abundant centre” hypothesis (Sagarin & Gaines, 2002) or investigate how 

species’ ranges could shift between different time periods, for example due to climate 

change (Guisan & Thuiller, 2005; Pearson & Dawson, 2003; Thuiller, 2004).  

The distribution of species can be obtained through different data sources but there are two 

sources that have global coverage: 1) Range maps from the International Union for 

Conservation of Nature, created by experts in the field. Experts with specific knowledge 

about a specie’s ecology and distribution patterns can identify areas where there has been 

records of the species and where the habitat is suitable. The IUCN has more than >96,600 

species covered for spatial data (IUCN Red List, 2020). The maps are based on simplified 

polygons defined around species locations (Figure 1) according to knowledge about the 

species ecological constraints (Herkt, Skidmore, & Fahr, 2017).  

 

Figure 1: Example of range map provided by the International Union for Conservation of Nature. Black 

polygon represents the estimated distribution of Peromyscus maniculatus.   

2) The second data source is georeferenced species occurrence records from the Global 

Biodiversity Information Facility (GBIF; Figure 2). The occurrences are derived from 

observations in the field and have worldwide records of more than one million species that 

are either registered by professionals in the field or by private individuals. GBIF is based on 

extensive observation data collected mainly through citizen science projects for a diverse 

range of taxonomic groups and across large geographical and temporal scales. This 

database is increasingly valuable for conservation and research because of the wide 

coverage that is made possible through volunteer participation (Schmeller et al., 2009). The 

GBIF occurrence database is frequently used to derive exact environmental variables at the 
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species location which can be used to interpret the macroecological patterns of the species 

(Savage & Vellend, 2015). 

 

Figure 2: Example of georeferenced occurrence records provided by the Global Biodiversity 

Information Facility. Black points represent the estimated distribution of Peromyscus maniculatus.  

Both databases are frequently used to derive information about species realized niches by 

cross-referencing occurrence records with environmental databases (Martínez-Méndez, 

Aguirre-Planter, Eguiarte, & Jaramillo-Correa, 2016; Warren, Price, Graham, 

Forstenhaeusler, & VanDerWal, 2018). This information can be used to train species 

distribution models (SDM) (R. Boria & Blois, 2018; Gaikwad, Wilson, & Ranganathan, 2011), 

which is a way to model a species niche. It is also used to extract specific information about 

niche positions or niche breath (Curtis & Bradley, 2016) and thereby to estimate how 

specialized a species is. 

Although the two data sources provide accessibility to big datasets of importance to many 

ecological studies (Guisan & Thuiller, 2005), both datasets are affected by established 

biases (Beck, Böller, Erhardt, & Schwanghart, 2014; Herkt et al., 2017). The GBIF database 

has many biases that arise from the citizen-science based data collection. Data is collected 

by volunteers and is not done randomly. Sampling sites are often chosen because of their 

accessibility and attractiveness (Romo, García‐Barros, & Lobo, 2006) but also because of 

their proximity to the home base of the recorder and if the sites are considered species hot-

spots (Dennis & Thomas, 2000). The influence of the biases tends to vary depending on the 

taxonomic group, since volunteers usually focus on only a few groups (Snäll, Kindvall, 

Nilsson, & Pärt, 2011). Often, they also do not record every species they see, either because 

of lack of interest in very common species (Snäll et al., 2011), or because of lack of 

identification skills (Dickinson, Zuckerberg, & Bonter, 2010). This means that some areas are 

surveyed a lot, while others receive little or no survey effort, resulting in records that have an 

uneven cover of the whole distribution of the species. GBIF is based on presence-only data 

which gives rise to another bias. When designing distribution models from these 

observations, unintentional weight is given to the absence of records in a site. Without 

absence data, the species distribution cannot be distinguished from the distribution of the 

volunteers (Isaac, van Strien, August, de Zeeuw, & Roy, 2014). These biases are sometimes 
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accounted for by thinning the data (R. A. Boria, Olson, Goodman, & Anderson, 2014; R. 

Boria & Blois, 2018; Fourcade, Engler, Rödder, & Secondi, 2014). In practice this can be 

done by overlaying a raster layer with certain resolution on the occurrence record and only 

keep one occurrence per pixel. 

The IUCN range maps also endure biases, mostly arriving from the design of the polygons. 

The polygons are drawn in a rough manner and the range boundaries usually ignore the fact 

that species may not be found everywhere within the polygon (e.g. mountain tops or lakes) 

(Brown, Stevens, & Kaufman, 1996). Since the IUCN range maps were created to guide 

efforts in conservation, they have been drawn in a conservative manner (Herkt et al., 2017). 

Experts were asked to only use range predictions with presumed suitable habitats, in which 

the species is known to occur, and not include habitats where the species is suspected to 

occur (Herkt et al., 2017). They were also asked to disregard localities that were far from the 

other confirmed presence areas (Schipper et al., 2008). These biases are important to keep 

in mind since they lead to systematic underestimations of the species’ geographical range 

(Feng, Castro, McBee, & Papes, 2017; Gaston & Fuller, 2009). In poorly surveyed regions, 

that often harbour high species richness, these generalisations generate even bigger biases 

(Ficetola et al., 2014). Therefore, to use this kind of range maps for macroecological 

research have been advised against (Herkt et al., 2017), but no consensus have been 

reached on which source of distribution data is best to use for these questions (Alhajeri & 

Fourcade, 2019; Beck et al., 2014; Fourcade, 2016; Tiago, Pereira, & Capinha, 2017). 

The reason why these databases are still used, although their biases, is that they have a 

very high taxonomic, temporal, and spatial coverage. For species distribution and 

environmental niche modelling these databases are very useful, but the biases must be 

considered when choosing the data source. Knowing how the data collection influences the 

tendency of the data is thus very important. Recently, Alhajeri & Fourcade (2019) tested 

whether the environmental conditions used by species across their geographical range are 

consistent between the two databases, IUCN and GBIF. They chose to approach this 

comparison without thinning the GBIF data and using a univariate method, which means that 

they only looked at one environmental variable at a time. They showed a high correlation 

between the environmental data estimates derived from the two datatypes and concluded 

that the two databases would provide similar results and can be used interchangeably. 

The objective of this study is to investigate if there is high uniformity in the environmental 

conditions that can be extracted from the species’ occurrences/ranges in the two different 

databases. First, the same univariate approach as Alhajeri & Fourcade (2019) will be 

assessed and then a multivariate method that is usually used to estimate the niche of a 

species. Therefore, this study will also test whether the two databases provide the same 

environmental niche estimations. To sustain comparability to the results from Alhajeri & 

Fourcade (2019), the same taxonomic group, rodents, will be used. To counteract the 

uneven sampling in the GBIF dataset, the data will be thinned before proceeding with 

calculations, which is expected to increase the similarity between the two databases. The 

thinned GBIF data will be compared to the unthinned data to evaluate the method. The 

results from the multivariate method may shed light on differences not apparent in the 

univariate method and could give important additions to the debate about how different 

geographic range data influence macroecological studies and SDMs. 
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Materials and methods 

Data extraction 

The bioclimatic variables used in this study were downloaded from WorldClim (R. Hijmans, 

Cameron, Parra, Jones, & Jarvis, 2005) with a spatial resolution of 5 km2. The 19 bioclimatic 

variables are derived from monthly temperature and rainfall values and represent annual 

trends, seasonality and extreme limiting environmental factors. The explanation of each 

variable is presented in Table 1. 

Table 1: Explanations of the 19 bioclimatic variables obtained from the WorldClim database (R. 

Hijmans et al., 2005). 

BIO1  Annual Mean Temperature BIO11   Mean Temperature of Coldest Quarter 

BIO2   Mean Diurnal Range (Mean of 

monthly (max temp - min temp)) 

BIO12   Annual Precipitation 

BIO3   Isothermality (BIO2/BIO7) (×100) BIO13   Precipitation of Wettest Month 

BIO4   Temperature Seasonality (standard 

deviation ×100) 

BIO14   Precipitation of Driest Month 

BIO5   Max Temperature of Warmest Month BIO15   Precipitation Seasonality (Coefficient 

of Variation) 

BIO6   Min Temperature of Coldest Month BIO16   Precipitation of Wettest Quarter 

BIO7   Temperature Annual Range (BIO5-

BIO6) 

BIO17   Precipitation of Driest Quarter 

BIO8   Mean Temperature of Wettest Quarter BIO18   Precipitation of Warmest Quarter 

BIO9   Mean Temperature of Driest Quarter BIO19   Precipitation of Coldest Quarter 

BIO10   Mean Temperature of Warmest 

Quarter 

  

IUCN range maps were downloaded in Esri shapefile format (The IUCN Red List of 

Threatened Species, 2020) and loaded into R (R Core Team, 2018) with only the Rodentia 

order kept for all red list categories. For each species, the geographic polygon was rasterized 

using the raster library (R. J. Hijmans, 2020) at a resolution of 5 km2.   
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The GBIF occurrence data for the order Rodentia, was downloaded in a tab-delimited CSV 

format from GBIF (GBIF.org, 2020), and loaded into R (R Core Team, 2018). Before using 

the data, it was cleaned by excluding all records without coordinates, with less precision than 

5 km around the survey location, with invalid coordinates, with equal longitude and latitude 

coordinates and coordinates equal to zero. The remaining occurrences were used when 

proceeding with further calculations. In parallel, the data was thinned as a method to 

counteract the clustering of occurrences, by only keeping one occurrence per climatic pixel. 

This resulted in two GBIF data frames – thinned and unthinned data. 

In both IUCN and GBIF data frames, only the species that were used in Alhajeri & Fourcade 

(2019) was kept to ensure comparability of the results. Among these, only species with at 

least 20 records for both data frames were considered. This resulted in 916 rodent species 

included in the IUCN and unthinned GBIF data frames while the thinned GBIF data frame 

contained 713 species. For every species, the values for each bioclimatic variable, were the 

species is present, were obtained from all datasets (IUCN, unthinned GBIF and thinned 

GBIF) and the mean, median and variance of the climatic variables were extracted (as done 

in Alhajeri and Fourcase 2019).  

Data analysis 

Kendall’s τ coefficient was used to evaluate the association between the bioclimatic variables 

acquired from the three data frames across species. Kendall’s correlation test is a 

nonparametric test that measures the rank correlation between two measured quantities 

(Kendall, 1938). Spearman’s correlation test (Spearman, 1904) is a more commonly used 

correlation test for nonparametric data because of its superiority when there are any ties in 

the data (Puth, Neuhäuser, & Ruxton, 2015). Although, in data without ties, Kendall have 

been argued preferable because of its ability to generate narrower confidence intervals (Puth 

et al., 2015).  

A Kendall’s τ test was performed between the mean environmental data for each bioclimatic 

variable obtained from either IUCN data and both the unthinned and thinned GBIF data, 

separately. This generated two Kendall’s τ of the mean and the same was also done for the 

median environmental data for each climatic variable. To explore whether the variability of 

environmental conditions obtained from the three data frames were the same, Kendall's τ 

was also computed for the variance of each bioclimatic variable. 

For the multivariate approach, a principal component analysis (PCA) of the world’s values for 

the 19 bioclimatic variables was performed. The first and second axis explained 51% and 

26% of the variance. These axes were chosen to define a two-dimensional environmental 

space describing the conditions existing on earth. From this, it was possible to get an 

estimate of the species realized niche by mapping the environmental conditions associated 

to a given species/data source into this two-dimensional space (Figure 3). This was done for 

all species based on data from the three data frames using the ecospat package 

(Broennimann, Di Cola, & Guisan, 2020) in R (R Core Team, 2018). The ecospat package 

was also used to overlay the estimations from the different data frames of the same species 

(Figure 3). To measure how big the overlap was, the Schoener’s D index was used 

(Schoener, 1968). Schoener’s D is a measure that ranges between 0 (no overlap) and 1 

(identical estimations). 
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Figure 3: The estimated realized niche of Peromyscus maniculatus based on data from the 

International Union for Conservation of Nature (top-left) and the Global Biodiversity Information Facility 

(top-right), mapped in the two-dimensional environmental space of the bioclimatic values existing on 

earth. The overlap of the two estimations of the realized niche (bottom). 

To evaluate if the method for reducing the spatial clustering bias in the GBIF dataset, spatial 

thinning, influenced the estimated niche of the species, Schoener’s D from the overlap 

between IUCN and the two GBIF data frames were compared using a Wilcoxon test. 

Results 

Kendall’s correlation between bioclimatic variables 

There was high positive correlation between the mean bioclimatic variables obtained from 

the IUCN range maps and the GBIF occurrence data (Figure 4). Kendall’s τ ranged between 

0.741-0.877 both when the unthinned and thinned GBIF data was used to obtain the 

bioclimatic variables.  

The median bioclimatic variables from the two data sources also indicated high positive 

correlation, both when the thinned and the unthinned GBIF data was used (Figure 4). 
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Kendall’s τ ranged between 0.700-0.865 when using the unthinned data and between 0.728-

0.888 using the thinned data. 

The Kendall’s τ between the variance of the bioclimatic variables indicated a slightly lower 

positive correlation (Figure 4). The unthinned variance ranged between 0.442-0.663, while 

the thinned variance ranged between 0.498-0.715. 

 

Figure 4: Three bar plots showing Kendall’s τ coefficient between the variance, median and mean of 

the bioclimatic variables obtained from IUCN range maps and GBIF occurrence data. Pink visualizes 

correlations using the thinned GBIF occurrence data while the blue visualizes the unthinned 

correlations.  

Niche overlap between the niche estimations from the different data sources 

The results indicate that there is on average a 60% overlap between the two data sources 

and that some niches even showed close to zero overlap (Figure 5).  

The results indicate a significant difference between the overlap obtained using the thinned 

and the unthinned GBIF data with a larger overlap with the former (p< 2.2e-16, W = 220970; 

Figure 5).  
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Figure 5: Boxplot of Schoener's D obtained by comparing the climatic niche of each species, obtained 

through IUCN range data and GBIF data. Blue visualizes overlap using unthinned GBIF data and Pink 

using thinned GBIF data. There is a significant difference between the Schoener’s D obtained through 

the two methods. 

Discussion 

Estimated species’ ranges are used in macroecological studies, especially when training 

species distribution models (SDMs) (Warren et al., 2018) and when analysing 

macroecological patterns of different species (Fernanda Bonetti & Wiens, 2014; Savage & 

Vellend, 2015). These types of analyses are of great importance for ecological research and 

especially for conservation research and planning (Gaston & Fuller, 2009; Whittaker et al., 

2005). The existing species distribution databases are undeniably valuable because of its 

high taxonomic, temporal, and spatial coverage and because of its accessibility. Therefore, 

knowledge about how biases affect the different data sources is essential to treat the existing 

data in a critical and impartial way. This study used two different approaches to test whether 

niche information derived from IUCN and GBIF provide similar estimations. The results from 

the estimations of the species’ realized niche showed that the niches did not overlap more 

than 60% on average. This is a strong indication that these data bases do not give similar 

niche estimations and they should therefore be used with caution in this context. The results 

contradict the conclusions made by Alhajeri & Fourcade (2019) and show that when focusing 

on niche estimates within a two-dimensional space, the species-level environmental data 

diverge substantially. An example can be seen in Figure 3, where the estimated realized 

niche of the North American Deermouse (P. maniculatus) derived from the IUCN range map 

is larger than the realized niche derived from GBIF occurrences. This is a general trend in 

the data and the reason for the low overlap. IUCN range maps are known to overestimate 

the bioclimatic conditions experienced by the species (Hurlbert & Jetz, 2007) whereas the 

low spatial coverage of the GBIF data implies that this data tend to underestimate the 

climatic conditions experienced by the species. 

The Kendall’s τ test performed between the mean and median of the bioclimatic variables, 

obtained through the different data sources, indicate that there is a high positive corelation. 
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Kendall’s τ was on average 0.79 for the median and 0.82 for the mean, across all the 

bioclimatic variables. These results are equivalent to the ones obtained by Alhajeri & 

Fourcade (2019) and does therefore suggest a similar conclusion, that the two databases 

provide comparable environmental information. For average values this is true but for some 

species this conclusion might not be appropriate. For example, the mean of the annual mean 

temperature (BIO1) within the estimated distribution range of the groundhog (Marmota 

monax) is estimated to be 2 ˚C with IUCN range maps and 9 ˚C using the GBIF occurrences. 

The reason why median and mean values of climatic variables are interesting is because 

they are often used as a method to get an estimate of the realised niche of a species (Li et 

al., 2009), to define the species’ niche position (Castro-Insua, Gómez-Rodríguez, Wiens, & 

Baselga, 2018) and to calculate the distance between the mean habitat conditions used by 

the species and the mean habitat conditions in a specific study area (Dolédec, Chessel, & 

Gimaret-Carpentier, 2000; Heino & Grönroos, 2014). It is also useful to simply condense the 

niche description to average values for the climatic conditions when studying niche patterns 

of species within a group or a clade of species (Lv, Xia, Ge, Wu, & Yang, 2016; Olalla-

Tárraga et al., 2011) or when looking at the evolution of species’ niches over long time 

scales (Jara‐Arancio et al., 2014; Wiens, Kozak, & Silva, 2013).  

To estimate a species niche breadth, variance of the climatic variables within the niche of the 

species can be used (Fernanda Bonetti & Wiens, 2014; Quintero & Wiens, 2013). Niche 

breadth is an important estimate when looking at species’ ability to adapt to changes in biotic 

and abiotic factors such as changing climates, introduction of invasive species and land use 

changes. This study reveals that variance of the climatic data derived from IUCN range maps 

and GBIF occurrence data does not show as high correlation (Kendall’s τ 0.6 on average). 

Because of the IUCN polygons being drawn in a simplified manner, they tend to include 

places with unsuitable habitats for the species, like mountain tops or in the middle of cities. 

This is in line with the perception that IUCN overestimates the climatic conditions 

experienced by species (Hurlbert & Jetz, 2007) which could be a reason for higher variance 

of some of the bioclimatic variables derived from IUCN. It is important to know how the two 

databases differ and how the biases affect these estimations. The biases are therefore very 

important to take in consideration when deciding on what resolution the data should be 

analysed in, both the climatic and the distribution data. This will directly influence variance of 

the estimated bioclimatic variables (Pearson & Dawson, 2003). 

According to the results in this study, thinning the GBIF data made the estimated niches 

more like the niches derived from IUCN. These results are not surprising since the IUCN 

polygons already does not take the internal composition of species into account. As one of 

the well-known biases of the IUCN database, this can lead to estimations that are less 

precise because they include areas with directly unsuitable habitats for the species. Thinning 

the GBIF data can therefore be considered to decrease the sampling bias in the GBIF data 

frame but keep the precision in the spatial pattern. If the GBIF data is not thinned, some 

climatic conditions will receive overwhelming influence over the mean, median and variance 

but also for the niche estimations. Thinning the data is therefore a way to avoid some climatic 

conditions to be overrepresented because of sampling biases in the field. Thinned GBIF data 

could be a good data source to use in parallel with the IUCN polygons to estimate species’ 

distributions.  
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Even though estimated niche positions using the two data sources might be similar (high 

correlations between the two databases regarding the median and the mean for all 

bioclimatic variables), the results from this study reveals that other niche estimations will 

differ considerably. Although, this study was only performed on rodent species, similar 

discrepancies could also exit for other taxa (Troia & McManamay, 2016). As an example, for 

birds, which tend to have a lot of volunteer recorders in the field (La Sorte & Somveille, 

2020), the spatial coverage of the survey effort can be very uneven in GBIF (Huang, Lin, & 

Ji, 2020) which might cause even larger differences of niche estimations. The differences 

can also be strongly influenced by the spatial resolution of the data. The resolution of the 

data used in this study was 5 km2 which is relatively small, especially when you consider how 

the IUCN range maps are drawn. Previous studies have advocated for using a coarser 

resolution because of the mismatch between the high resolution of climatic data and the 

lower resolution of distribution data (Hurlbert & Jetz, 2007; McPherson, Jetz, & Rogers, 

2006). The resolution of the data should be decided depending on which species are studied, 

since home ranges of individuals can vary greatly between species. Studying available range 

maps for 834 different bird species, Hurlbert & Jetz (2007) showed that resolutions less than 

200 km2 overestimated the occupancy area of individual species and mischaracterized the 

spatial pattern of the species richness. In future studies it would therefore be interesting to 

study the relationship of the environmental estimates of rodents at a coarser resolution to 

see how the estimations differ. It would also be interesting to investigate how these 

relationships appear for other taxa than rodents.  

The results from this study reveals that for some applications (univariate assessments) the 

two databases will not differ much, but for other applications (niche breadth and multivariate 

assessments) it will differ considerably. Environmental niche estimations from IUCN and 

GBIF are frequently used to produce SDMs to forecast future changes in species 

distributions (Thuiller, 2004) or species extinction risks (Rowland, Davison, & Graumlich, 

2011). Since SDMs are based on the niche concept and since niche estimates evidently can 

vary between the two databases, distribution change forecasts might vary strongly 

depending on which database is used. This would result in SDMs showing divergent 

conclusions when trained with data from the different sources (Björklund, Lindelöw, & 

Schroeder, 2016; Fourcade, 2016; Fourcade, Engler, Besnard, Rödder, & Secondi, 2013). A 

general conclusion from this study is that one database cannot be chosen over the other 

since they both suffer many biases, and it is not clear which database is more reliable. 

Therefore, it would be safer to always consider both databases and interpret the results in 

regard of their biases. If both databases provide similar results, it will strengthen the 

conclusions, while divergent results might be a way to detect a reality somewhere in 

between.  

With the increasing loss of biodiversity during the last century (Butchart et al., 2010; Dirzo et 

al., 2014), it is important to improve the knowledge about the environmental niches used by 

species, both today and in the future. Appropriate design of SDMs is therefore important for 

Red list assessments (Breiner, Guisan, Nobis, & Bergamini, 2017) and for prioritizing 

conservation action (Whittaker et al., 2005). 
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