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Abstract 27 

Species distribution models (SDMs) are widely used in ecology and biogeography. 28 

Indeed, species distributions will shift under global warming and landuse change. 29 

Studying these movements is crucial to conservation efforts. Despite their wide use, 30 

improvements are still possible in SDMs by adding or refining relevant predictors. Here, 31 

we added canopy height as a predictor in topo-climatic models for plant species to see 32 

if it could improve their predictive power in terms of distinction between plants from 33 

grassland, plants from forest and plants found in both habitat. By analysis of four 34 

modelling techniques and four thresholding methods, we show that canopy height 35 

(plots’ maximum) is an important predictor for the distribution of individual species. For 36 

the majority of species, canopy height was almost as important as seasonal information 37 

(degree-days), improving the predictive performance significantly. However, it does not 38 

allow better predictions for community composition, i.e. no better separation between 39 

different habitat specific sets of species. 40 

Keywords: Species distribution model (SDMs), new predictor, continuous landscape, 41 

mountains, plants, community assembly, variable importance  42 
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Introduction 44 

Understanding plant species distributions and above all predicting them are major 45 

subjects in ecology nowadays. Indeed, one can easily imagine the potential of such 46 

techniques in a context of global warming and conservation issues (Guisan & Thuiller 47 

2005; Guisan & Theurillat 2000; Maiorano et al. 2011; Descombes et al. 2016). One 48 

important tool to this end, are species distribution models (SDMs). SDMs are more and 49 

more used and studied in ecology and benefits from regular improvements since it was 50 

created in the 70s (Nix et al. 1977, in Guisan & Thuiller 2005; Guisan & Thuiller 2005). 51 

However, there are still some important limitations and lacks that are currently under 52 

discussion such as the choice and improvement of predictors used in models, or their 53 

biological significance and meaning (Guisan & Thuiller 2005; Pottier et al. 2013; 54 

Pradervand et al. 2014; Mod et al. 2016).  55 

When constructing SMDs, different steps are necessary. We have first the 56 

conceptualization, followed by the data preparation, the model fitting, its evaluation, 57 

then making spatial prediction and finally the assessment of model applicability 58 

(Guisan & Thuiller 2005). SDMs are based on the niche concept (i.e. that the realized 59 

niche is constant across space and time). Also, there are three principal kinds of 60 

influences that can be taken into account during conceptualization: limiting factors, 61 

disturbances and resources (Guisan & Thuiller 2005). The idea is to improve models 62 

by adding or correcting factors in these three categories. For instance, Dubuis et al. 63 

(2013) tried to improve “prediction of plant species and community composition by 64 

adding edaphic to topo-climatic variables”. In other words, they added new predictors 65 

that could be considered as limiting factors or resources depending on the point of 66 

view, and assessed their improvement on models. In a similar way, Pottier et al. (2013) 67 

evaluated the predictive power of SDMs along elevation gradient. Without really 68 

changing the predictors, they refined the model to evaluate it along a gradient. 69 

Here, the idea is kind of mixing these two concepts by adding a new predictor to 70 

assess models’ predictive power along a gradient. Indeed, one important gradient not 71 

taken into account so far is the idea of continuous landscape between grassland and 72 

forest. For the moment, forest is often considered as a discrete variable (Mathys 2007). 73 

In concrete terms, models applied in forest and grassland ecosystem contain a 74 

(subjective) “binary” mask to strictly differentiate grassland and forest. However, this 75 

procedure raises problems, as some plants present in both habitat are often 76 

overpredicted or underpredicted in such model (as we merge dataset from forest and 77 

grassland). Indeed, we lose much information about this continuous variable when we 78 
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separate it in two categories, especially in intermediate cases, i.e. ecotones (Mathys 79 

2007). Therefore, a more continuous variable is needed in SDMs to improve the 80 

representation of the forest to grassland gradient. We know that tree canopy cover, 81 

tree canopy height and stand width are three variables that vary along this gradient 82 

(Mathys 2007). Therefore, at least one of them should be a potential candidate for our 83 

purpose. Of the three, canopy height is most easily available for large spatial extents 84 

by remote sensing (LiDAR) and therefore seems to be the most logical choice to 85 

differentiate grassland from forest communities. Indeed, “the taller tree canopy height 86 

classes are better represented by forest than non-forest samples [and] the frequency 87 

of non-forest plots declined almost linearly with increasing tree canopy height” in a 88 

study based in the Jura mountains (Switzerland) (Mathys 2015).  89 

Here, we evaluated the importance of the variable “canopy height” at different levels 90 

(maximum, median and minimum for each plot) to explain the distribution of 333 91 

species that we can find in forest, grassland or both. The methodology we used is very 92 

similar to the one from Dubuis et al. (2013) study as the global idea is the same 93 

(assessing the predictive power of a new predictor in a model). Thus, we (1) made 94 

PCAs without any modelling results to see if canopy height was suitable to allow a 95 

better separation of forest and grassland species, (2) we used canopy height in single 96 

species SDMs to see if it improves the predictive power of individual species and (3) 97 

we created S-SDMs (stacked-species distribution models) to see if we can improve 98 

community predictions. 99 

 100 

Materiel & methods  101 

Study area 102 

Our study area is a part of about 700 km2 of the Western Swiss Alps (Canton de 103 

Vaud, Switzerland, 46°10′–46°30′ N; 6°50′–7°10′ E; fig. 1). It has an elevation from 104 

375m asl. in Montreux to 3210m asl. on the top of the Diablerets massif and a 105 

temperate climate. Vegetation is known to be highly influenced by human activities and 106 

we often find pastures or meadows in deforested areas (Randin et al. 2009; Dubuis et 107 

al. 2013). We also find typical species from calcareous Alps along the altitudinal 108 

gradient (Randin et al. 2006).  109 

Species data 110 

Data on the presence-absence of species were provided from different older studies 111 

(for example, Scherrer et al. (in review) for forest species; D’Amen et al. 2015 for 112 
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grassland species). We have a total of 3989 sampling points (fig. 1). 3076 plots come 113 

from forested areas (in the broad sense; Hartmann et al. 2009), and they have a plot 114 

area of 314 m2 (r=10 m). 913 plots come from open grassland areas (Randin et al. 115 

2009) and they have a plot area of 64 m2 (8x8 m). Also, the two subsets have different 116 

sampling strategies (grid based forest, random stratified for grasslands) (for details on 117 

sampling see Hartmann et al. 2009; Randin et al. 2009). Here, we pool these two 118 

datasets.  119 

In total 1072 different species were found in the study plots. However, only the 333 120 

species with at least 60 presence records were used in the model. Of the 333 species, 121 

131 were only found in forest plots, 40 were only found in grassland plots, and 162 122 

species were found in both datasets.  123 

 124 

Climate and topographic predictors 125 

We had climatic and topographic information for all plots, i.e. 3989 plots, provided 126 

from a former database (Zimmermann & Kienast, 1999). We used three climatic 127 

predictors: degree-days above 3°C (seasonal information, ddeg300), side water 128 

balance (available water for plants, swb) and annual global solar radiation (srady). We 129 

also used two topographic predictors based on a high resolution digital elevation model 130 

Figure 1 : Map of the study area with sampling plots. It is situated in the Western Alps in the Canton 
the Vaud. B represents its localization in Switzerland (Image source: By Tschubby - Own work, CC BY-
SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14879468). In A, green points represent our 
3076 forest samples, blue points represent our 913 grassland samples. Created with QGIS 2.18.1. 

A 

B 
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(25x25m, dem25). These were the slope and the topographic position. We therefore 131 

had five topo-climatic predictors (TC) providing relevant information about plant 132 

habitat. These five topo-climatic predictors have proved their efficiency in previous 133 

SDMs in the same study area (Engler et al. 2009; Randin et al.,2009a; Pellisier et al. 134 

2010b, all in Dubuis et al. 2013).  135 

To construct our models, we used these five topo-climatic variables and a sixth one 136 

representing either minimum, median, maximum canopy height or a random variable 137 

(which is used as a control, because we compare models with the same numbers of 138 

variables). 139 

Canopy height was calculated based on high resolution LIDAR (light detection and 140 

ranging) data provided by the Swiss institute for topography (Swisstopo). The LIDAR 141 

remote sensing method was used to collect these data. It is based on the use of a laser 142 

to measure heights of vegetation or heights in general. Concretely, we measure the 143 

time the wave takes to return to the transmitter. Also, the short wavelengths used in 144 

this method allow great precision (Hanner 2010). By measuring canopy height, we also 145 

assess a proxy for another ecological information: light available on ground for other 146 

organisms (Lefsky et al. 2002).  147 

Then, this high resolution (<1m) data was aggregated to 25x25m maps to create 148 

minimum (CH_min), median (CH_med) and maximum (CH_max) canopy maps (fig. 149 

2/B/C/D) (Broennimann personal communication, September 2016). 150 

Preliminary analysis by PCA 151 

The first thing we did with this big dataset was visualizing the data. For this purpose, 152 

we loaded them in R 3.3.2 (R core team 2016) and made simple correlation plots 153 

between all canopy height variables (CH_min, CH_med, CH_max) and our topo-154 

climatic predictors (TC) to see if there was any potential relation. We also performed 155 

correlation on forest species only, in order to obtain better results (i.e., preventing a 156 

zero inflated distribution of canopy height values). For some variables, we then used a 157 

loess function to better fit the data.  158 

Then, we made a new step by computing some PCAs (on R) with topo-climatic 159 

variables and canopy height variables or randomraster (our random variable). The idea 160 

was to see if adding canopy height as a variable better separate forest species from 161 

grassland species. If this is the case, canopy height is a good candidate for modelling.  162 
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Species distribution modelling 163 

We calibrated four sets of models for each of our 333 species: one using only the 164 

topo-climatic predictors with a randomraster (TC + randomraster), and three other 165 

using the topo-climatic predictors with one canopy height predictors (TC + CH_min, 166 

TC + CH_med, TC + CH_max). 167 

Figure 2 : Maps of randomraster (A) and canopy height layers (minimum (B), median (C), maximum 
(D)) at 25 m cell size. All maps are georeferenced. Gradation from white to green represent the gradation 
from lower value to higher value. For the randomraster, the values are uniform distributed random 
numbers from 0 to 1. For the canopy layers, values are in meters and varies from 0 to 44.  

A B 

C D 
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We used four different statistical techniques, as they provide good results in 168 

predictions of species distribution (Elith et al. 2006), and as their uncertainty is limited 169 

by ensemble modelling (Araujo & New 2007). Two of them were based on regression 170 

methods: generalized linear models (GLM) and generalized additive models (GAM) 171 

(see Guisan et al. 2002); and the two others were tree based models: generalized 172 

boosted models (GBM, see Elith et al. 2008) and random forests (RF, see Prasad et 173 

al. 2006).  174 

Models were run in R software with “biomod2” library (Thuiller 2016), following this 175 

global procedure: loading and formatting the data form biomod2, building “individual 176 

model” for each species, building “ensemble models”, and making model projections 177 

(Georges & Thuiller 2013).  178 

Model evaluation 179 

In order to evaluate the predictive power of our models, we used four evaluation 180 

techniques. They are all based on true/false negative/positive (TN, FN, TP, FP) form 181 

confusion matrix (Tab. 1). True skill statistic (TSS) corresponds to the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +182 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 (Dubuis et al. 2013; Allouche et al. 2006).  It varies from -1 to 1 with 183 

random corresponding to 0, and we considered that a model has good evaluations 184 

values from 0.4. AUC, which means area under curve (on a plot with 1 – specificity in 185 

x-axis and sensitivity on y-axis). Random is at 0.5 and 1 means the model is perfect 186 

(i.e. it perfectly fits the data) (Dubuis et al. 2013; Fielding & Bell 1997). Cohens kappa 187 

is based directly on TP, FP, etc. (not only specificity and sensitivity) (KAPPA, Cohens 188 

1960) and therefore avoid the tendency of overprediction for some cases with 189 

sensitivity and specificity. Like TSS, it varies from -1 to 1, with random at 0. Finally 190 

accuracy corresponds to: 191 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 192 

So, it is the proportion of correct predictions (Accuracy, Allouche et al. 2006). These 193 

are percentages.  194 

The relative importance of each predictor (variable importance) was determined by 195 

a repeated random permutation test (see Thuiller et al. 2009 for details). 196 

 197 

 198 

 199 
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Single Species model analysis  200 

The single species models (obtained by SDMs) permitted to obtain lots of data, 201 

including evaluation statistics (for all evaluation techniques: TSS, KAPPA, AUC and 202 

Accuracy), variable importance and projections.  203 

We first analyzed model techniques (GLM, GBM, GAM, RF) by comparing their 204 

values for our four evaluation statistics with our four sets of predictors on R software. 205 

To do this, we proceed by pairwise comparisons (more precisely pairwise Wilcoxon 206 

test, because our data were not independent) between some data selected in dataset. 207 

We also visualized all results with boxplots. 208 

Then, we analyzed data in order to determine which set of predictors provide better 209 

results (in terms of evaluation statistics values). Again we selected data and did 210 

Wilcoxon pairwise tests and boxplots. 211 

Finally, we analyzed importance of the canopy height as a predictor with variable 212 

importance data. We looked at mean and standard deviation for all predictor sets. 213 

Community composition predictions 214 

With projections from SDMs, we could transform probabilities in binary response in 215 

order to have presences and absences data. This was made using four different 216 

thresholding methods (as the method chosen might make a difference to our 217 

conclusions, we tested different ones). First, the MaxTSS, which corresponds to 218 

choosing the threshold that maximizes TSS values. This recent technique presents the 219 

advantage of not being influenced by the variations in prevalence between absences 220 

and presences (Allouche et al. 2006). Then, MaxKappa, which is the same, but with 221 

Cohens Kappa values, and it allows the assessment of improvement over chance 222 

prediction (Cohen 1968; Huntley et al. 1995). Observed prevalence threshold is a 223 

Table 1: Confusion matrix with different possibilities in model projections and sensitivity/specificity 
formula. If we observe a species (1), we can have the right projection (1) and it is a true positive, or a 
predicted absence (0) and it’s a false negative. When a species is absent in observations (0), we can 
have a predicted presence (1) and it’s a false positive, or a predicted absence (0), and it’s a true 
negative. 
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model-building data-only-based approach (Liu et al. 2005). It corresponds to choosing 224 

the threshold that makes predicted prevalence equal to observed prevalence in the 225 

calibration data. Finally, we used the average probability, which choose the mean of 226 

probabilities as threshold.  227 

Then, we stacked our presence/absence maps for all species (S-SDMs) and 228 

compared species richness (also compared with species richness based on the sum 229 

of probability) and community composition (with the Sørensen index, which “estimates 230 

the similarity between the predicted and the observed communities” (Dubuis et al. 231 

2013)) with Wilcoxon pairwise t-tests and boxplots. 232 

Results 233 

Preliminary analysis by PCA 234 

Simple linear regressions on our correlation plots didn’t inform us much about 235 

anything. Then, by fitting loess functions on correlation between maximum canopy 236 

height and several variables (degree-days, elevation and temperature), we perceived 237 

some interesting relations, closely dependent from each other. For instance, we see 238 

that maximum canopy height begins with increasing with higher elevation, then it 239 

decreases with even higher altitude (fig. 3).  240 

With PCAs (fig.4), we see that topo-climatic variables with randomraster (fig. 4/A) 241 

does not allow to separate forest and grassland species at all. The major axis of the 242 

PCA is the temperature (ddeg30), and it makes sense as we have a strong elevation 243 

gradient in our dataset and forest species don’t grow high in alpine areas. 244 

Figure 3 : Loess function on correlation plot between elevation (dem25) and maximum canopy 
height. We see a higher maximum canopy height with the increase of elevation. Then, in very high 
elevation, the canopy height decreases. 
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  245 

Figure 4: PCA with topo-climatic 
variables and randomraster (A), 
minimum (B), median (C) and 
maximum (D) canopy height on 
the distribution of species between 
habitats. Green points are species 
only found in forest, blue points are 
species only found in grassland, 
and red points are species found 
in both habitat. On the right, we 
see the axes of each PCA. We see 
that groups are better separated 
with median and maximum canopy 
height (C, D). 

A random 

B minimum 

D maximum 

C median 
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With minimum canopy height (fig. 4/B) we obtain very similar results. On the other 246 

hand, PCAs with medium and maximum canopy height (fig. 4/C and 4/D) are providing 247 

good groups separation. Temperature is still the major axis of the PCAs, but canopy 248 

height are now second axis. 249 

Single Species models analysis  250 

By comparing the evaluations statistics of all model techniques (GLM, GAM, GBM, 251 

RF) for each set of predictors (topo-climatic (TC) with randomraster, CH_min, CH_med 252 

and CH_max), we obtained that almost all model techniques provide different 253 

evaluation statistics (see all different value in the example on fig.5). Yet, GLM and GAM 254 

models are considered as significantly not different with accuracy evaluation 255 

techniques, for all set of predictors (p-value are comprised between 0.78 and 0.84). 256 

The most important thing here is the observation of results with RF models. All 257 

comparisons allow to conclude to the same thing: RF are always higher than other 258 

models (see an example in fig. 5). 259 

Figure 5 : Boxplot of TSS results with maximum canopy height. We see that TSS results for GLM and 
GAM are close (but still significantly different according to the results of Wilcoxon pairwise t-test, with 
p-value = 0.035). For all others pairwise comparisons, we have p-values <2e-16. We also note the big 
difference of result with RF. 
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To determine which is the best set of predictors (TC + 260 

CH_min/CH_med/CH_max/random), we compared their evaluation test results. First, 261 

we used results with the ensemble model of all model techniques (GLM, GBM, GAM, 262 

RF). We therefore have one value (average of all model techniques, one for each set 263 

of predictors) for each evaluation test (KAPPA, TSS, AUC, Accuracy) (see the example 264 

on fig.6). 265 

 With this, we obtained a global impression that indicates if canopy height is a good 266 

predictor or not. We obtained that there is no difference between the different sets of 267 

predictors (p-value in Wilcoxon pairwise t-test are always bigger than 0.17, and almost 268 

everytime equal to 1). 269 

Then, we made the same tests with all models techniques separately. For GLM, 270 

GBM and GAM models, the median and maximum canopy height were significantly 271 

different to minimum canopy height and random for all KAPPA, TSS and AUC tests. 272 

Maximum and medium canopy height are not significantly different from each other, as 273 

minimum canopy height and random. With boxplots (fig.8), we know that maximum 274 

and median canopy height provides significantly higher results than median canopy 275 

height and random. In figure 7, we have an example of the comparison results between 276 

sets of predictors with GLM model and KAPPA evaluation test.  277 

 278 

 min       med      max      rand 

Figure 6: Boxplot of TSS results for each set of predictors, with the ensemble model of all model 
techniques (on the left), and its Wilcoxon pairwise t-test (made on R) that compare all values (on the 
right). We see that TSS results are not significantly different (all p-value = 1), for all sets.  
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 279 

Figure 7: Results for Wilcoxon pairwise t-test for GLM model and KAPPA evaluation test on R. We see 
that maximum canopy height is not significantly different from median canopy height (p-value = 0.067) 
and minimum canopy height is not significantly different from random (p-value = 0.575). All other pairs 
are significantly different (with p-value ≤ 2.9e-06). Maximum and median canopy height provides 
significantly different results than minimum canopy height and random. 

Figure 8: All boxplots for comparisons between sets of predictors with different model techniques and 
evaluation tests. We see that RF and Accuracy always give very high results. We also see global proximity 
between minimum canopy height and random, and between medium and maximum canopy height 
(especially with GLM, GBM, GAM and KAPPA, TSS and AUC). In these case, results for maximum and 
median canopy height are significantly higher than minimum canopy height and random, 
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For GLM, GMB, GAM models with Accuracy evaluation test, we always obtain no 280 

difference between predictor sets (all p-value = 1). 281 

For RF models, we have slightly different and less clear results. We have, for TSS 282 

and AUC: all canopy heights significantly different from randomraster. For KAPPA, all 283 

canopy heights are different from random, but they are not all equivalent amongst 284 

themselves. For Accuracy, the only significant difference is between maximum canopy 285 

height and randomraster. So, we found no regular pattern with RF models. 286 

Globally (fig. 8), when we have significate differences (i.e. in the majority of our 287 

results), it always includes maximum canopy height (at least) versus randomraster. 288 

Boxplots allow us to see that maximum canopy height is higher than randomraster. 289 

Besides, maximum canopy height and medium canopy height are almost every time 290 

not significantly different from each other. 291 

The analysis of variable importance indicates that degree-days is always (for all sets 292 

of predictors and all model techniques) the most important variable (with values 293 

ranging from 0.40 to 0.63). But for sets of predictors with maximum and median canopy 294 

height, the second most important variable is canopy height (with values from 0.27 to 295 

0.41).  296 

Community composition analysis 297 

The comparison of species richness deviation with different thresholding methods 298 

doesn’t give any decisive result. Either we obtain that all set of predictors gives the 299 

same richness deviation, or we have two sets of predictors that aren’t significantly 300 

different, and all the others are. For instance, with maxTSS, we obtain that all values 301 

are significantly different, except for sets with maximum canopy height and minimum 302 

canopy height (p-value = 0.79). For the average probability, again all values are 303 

significantly different, except for sets minimum canopy height and random (p-value = 304 

0.41).  305 

For the composition comparisons, we obtain even more scattered results. MaxTSS 306 

and Observation prevalence both give that no similarity values are significantly 307 

different (p-values from 0.14 to 1). MaxKAPPA indicates that none are significantly 308 

different, except for minimum canopy height and maximum canopy height (p-value = 309 

0.024), and Average probability indicates that all values are significantly different, 310 

except for minimum canopy height, which differ from random (p-value = 0.58). 311 

 312 

 313 

 314 
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Discussion  315 

First, our preliminary analysis allow us to see that canopy height data seems logical 316 

and therefore correct. Indeed, canopy height increasing, then decreasing with 317 

elevation makes sense. But more importantly, PCAs allow us to conclude that canopy 318 

height seems to be a good candidate for modelling, as it better separates species 319 

groups. We also see that maximum and median canopy height both give good results. 320 

Indeed, degree-days stays the major axes in all PCA, but maximum and median 321 

canopy height are the second most important axes in each graphs, and allows good 322 

groups separation. 323 

Then, with this idea, we use canopy height variable in models, with the first question 324 

being: does it improve single species models? We first saw that RF models largely 325 

differ in results than other model techniques (providing always very high evaluation 326 

values). The hypothesis is that RF models largely overfit the data. Then, knowing that, 327 

we can better analyze the results we obtained with sets of predictors’ comparisons. 328 

We can first expect that results provided by RF models will not be much contrasted. 329 

And it is the case, as minimum, median and maximum canopy height are often 330 

considered as not significantly different. Still, we can already see better results for all 331 

canopy height predictors, with regard to the one with random values. Then, with other 332 

model techniques (GLM, GBM, GAM), we see that results obtained with Accuracy differ 333 

from the others (nothing differ significantly). Nevertheless, accuracy is known to be 334 

very controversial, due to the “accuracy paradox” (Abma 2009). Therefore, much 335 

important and reliable results are the ones obtained with GLM, GAM and GBM as 336 

model techniques, and with KAPPA, TSS and AUC as evaluation test. All these lead 337 

us to the same results: predictors sets including CH_max and CH_med better predict 338 

where a species will be (in space) than predictors sets with CH_min or random. Finally, 339 

analyzing variable importances allows us to conclude that degree-days is the most 340 

important variable in each case, and that canopy height is the second most important 341 

variable with CH_max and CH-med (for CH_min and random, second most important 342 

predictor are available water (swb) and solar radiation (srady)). From this whole part, 343 

we conclude that maximum (and median) canopy height is a good predictor in general. 344 

It globally improves the models and is an important variable. Note that these results 345 

are congruent with the ones from PCAs. 346 

Then, the last step was stacking the models and analyzing the community 347 

predictions. Indeed, as canopy height allows good predictions for single species, we 348 

can hope for good results for community. Unfortunately, we can’t conclude any 349 
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improvement about that by including canopy height in the models. As the results were 350 

really uneven, we can’t draw any conclusions, but global impression would even be 351 

that including canopy height does not change anything. 352 

We can conclude that canopy height gave promising results with Single Species 353 

model (and PCAs), and that it improves models for predict where a single species 354 

would be. But at this point, we cannot conclude that it can be used to predict 355 

community, i.e. separate grassland and forest vegetation.  356 

Also, other limitations exist with the canopy height variable. For example, canopy 357 

height does not inform us about age of forest, and this could potentially lead to wrong 358 

prediction of species. 359 

In a study about SDMs, they made the hypothesis that “the most accurate S-SDMs 360 

predictions are predominantly associated with strong environmental filtering in climatic 361 

harsh” (Pottier et al. 2013). They found that this was confirmed using canopy height 362 

and considering the assemblage specificity. With sensitivity, this was not true anymore. 363 

Besides, in another study, we learn that tree canopy cover is better than canopy height 364 

to estimate forest area (Mathys 2007). If we look at our results in this context, it could 365 

make sense. Maybe, if we add another variable in our model: canopy cover, in addition 366 

to canopy height, we maybe could obtain better result in specificity, and sensitivity (as 367 

canopy cover allows theoretically to separate forest from other area). Then, community 368 

predictions could maybe be improved. 369 
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