
 

 
 

 

 

School of Biology 
 

 

 

 

ASSESSING THE SCALE OF INFLUENCE OF LANDUSE 

DESCRIPTORS ON BIRD DISTRIBUTION IN SWITZERLAND 
 

 

 

 

1st step project, 

Master in Behavior, Evolution and Conservation, University of Lausanne, 2020 

 

 
by 

 

Aurélien ROCHAT 

 

 

 
Director  : Prof. Antoine Guisan 

Supervisor : Dr. Olivier Broennimann 

Department of Ecology and Evolution 

 

 

 

 

December 2020 



 2 

Abstract 

Biodiversity is increasingly affected by human activities and thus it is becoming urgent to preserve 

natural habitats. For this purpose, predictions from species distribution models are very useful in 

conservation. However, to obtain correct maps we need to select the appropriate environmental 

predictors reflecting information at optimal scale. In this context, we propose a two steps framework 

to model the distribution of 170 Swiss breeding birds using landuse descriptors. Firstly, using 

univariate models, we selected the best scale of influence for each variable. Secondly, using these 

scales, we fitted a multivariate model to map species potential distributions. The distance of influence 

of the environment was highly heterogeneous between variables and between species, since their 

respective scale showed large differences. This suggests that these scales are variable- and species-

specific. In general, wet habitat and human infrastructures were the most relevant variables in our 

multivariate model. Overall, our study highlighted the importance of choosing the appropriate scale 

for each predictor. In addition, we also showed that birds are especially affected by human factors 

and that natural habitats such as wet lands need protection. As perspectives, our findings could help 

management decisions in conservation planning. 
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Introduction 

Loss of biodiversity has increased recently and has become a major issue in ecology and conservation 

and more globally for our society (e.g., Maxwell et al., 2016; IPBES, 2019). This decrease in diversity 

has heavy consequences which are already visible on Earth (Haddad et al., 2015; Foley et al., 2015; 

Newbold et al., 2015). Since the main drivers of this so-called 6th extinction are human activities, it 

is our responsibility to try to stop this erosion of diversity (IPBES, 2019). 

To keep intact all living organisms, we should enhance the management and the conservation of 

ecosystems by the creation of new protected areas. To reach this goal, we need both precise and up-

to-date species distribution maps (Guisan et al., 2013; Pollock et al., 2020). By giving to the 

practitioners clear, informative and easy-to-read maps, we could contribute to prevent biodiversity 

loss. Ideally, scientists should provide predicted distributions that can be implemented in conservation 

planning to protect species and their habitats - as in the ValPar national project (see www.valpar.ch 

for more information) (Honeck et al., 2020, Pollock et al., 2020). 

Among the animal kingdom, we know the importance of birds, being a large and highly diverse group 

that colonized almost all ecosystems, with mostly mobile species with specific needs and different 

home ranges and habitats (Schoener, 1968; Haskell et al., 2002; McPherson et al., 2019). Therefore, 

they are good indicators of the biodiversity situation (Maggini et al., 2014; Keller et al., 2020). In 

addition, lots of data are freely available thanks to numerous and widely avian monitoring programs 

(e.g. "Monitoring Häufige Brutvögel" by the Swiss Ornithological Institute, see www.vogelwarte.ch). 

Some methods already exist to improve management and conservation planning. To protect the 

biodiversity, one option is to map the habitats, and in order to map them, we need to model them. To 

do so, we can use Species Distribution Models (SDMs). SDMs are powerful tools which benefit from 

recent advances in modelling techniques (Guisan et al., 2013; Guisan & Thuiller, 2005; Guisan & 

Zimmermann, 2000; Pollock et al., 2020). They are now widely used in different fields with concrete 

applications (Guisan et al., 2013). 

However, generalization and simplification must be done when applied to numerous and 

heterogeneous species, which leads to a loss of information or bias (Hortal et al., 2015; Fritsch et al., 

2020). A difficult step is to select the appropriate environmental variables, reflecting environmental 

information at optimal scale (Chase et al., 2018). This is especially the case with highly mobile 

species as birds since the distance of influence of the surroundings can vary a lot between variables 

and between species (Scherrer et al., 2019; Tehrani et al., 2020).  As a consequence, when dealing 

with such species, it is not sufficient to account only for the environmental information from the 

observation site, since we also need to know the influence of the neighborhood. Indeed, within its 

home range, a bird can reach landscape elements in the surroundings around its observation site. 

Therefore, it is problematic to consider the same scale for all predictors whose influences might be 

different. This practice leads often to overestimations of species distribution (Fournier et al., 2017). 

To avoid this problem, one method - sometimes called a “multi-scale approach” (e.g. Graf et al., 2005) 

– consists of taking into account the correct scale for each predictor in function of the ecology and 

specific behavior of a species. This solution gives more flexibility to the model which improves the 

predictions (Fournier et al., 2017). Indeed, when modeling with a large set of environmental variables, 

each of them can have different aspects and play a specific role in the habitat networks (Vicente et 

al., 2014). Thus, instead of using the same distance of influence for all predictors, each of them keeps 
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its optimal scale. To integrate these variables in the model, we determine their optimal scale of 

influence by using a focal function of different sizes. For each pixel, circular moving windows of 

concentric various radius quantify the proportion of each land use class (another value such as the 

median or the majority could have also been calculated) in surroundings cells. Thus, by summarizing 

the proportion of each variable in the neighborhood, the optimal radius could then be determined with 

statistical models. In doing so, we capture the influence of the environment and are able to find the 

optimal focal size for each variable and each species depending on their ecology and behavior 

(Bellamy et al., 2013; Scherrer et al., 2019; Tehrani et al., 2020; Bellamy et al., 2020). 

Modelling species habitats to understand the importance of ecosystems networks is part of a wider 

goal of saving our biodiversity. In that perspective, this 1st step research takes part into a Swiss 

national project called ValPar, of which one of the goals is to map ecosystems - also called Green 

Infrastructures (GI) (Honeck et al., 2020). In the following study, we model the distribution of Swiss 

breeding birds by comparing the influence of environmental variables of different scales on the 

predictions. More precisely, in this 1st step project, using the framework from Scherrer et al. (2019), 

our aim is first to identify the optimal neighborhood distance (or best focal size) for each species and 

each landscape variable. We then provide prediction maps from the models incorporating these 

variables at their optimal scale. 

Our results suggest that the optimal focal size is species-specific and that some variables such as wet 

lands and human infrastructures are more relevant. This approach was never done before at such a 

national scale and with so many species. Future works could benefit from our results by enhancing 

some SDMs with appropriate scale for a specific specie in relation to its range size or by re-using our 

modelling framework. 

 

Methods 

 

Species data 
We used data from a breeding bird survey ("Monitoring Häufige Brutvögel" MHB) organized 

annually by the Swiss Ornithological Institute since 1999. For our study, we used more specifically 

the data from 2013 to 2016 which cover the 170 breeding birds of Switzerland. In total, we had 

368’390 observations (average counts) made in 2318 different sampling sites of 1 km² covering all 

the country. Each single observation is an average of the annual counts made during this time period 

(2013-2016). These data are not publicly available. 

 

Environmental variables 
As part of the national ValPar project, the study area covered all Switzerland with a total surface of 

41’285 km². Our environmental variables are represented by raster layers of 41’285 pixels of 1000 m 

x 1000 m covering all the country. 

Our environmental data included two types of variables: focal and non-focal. Each variable is at a 

1000 m resolution and a detailed description is shown in Table 1. The eleven focal variables were all 

land use and land cover classes. We used a circular moving window of different radius to capture the 
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proportion of each class in the neighborhood around each cell. The eight radius measured 0, 1000, 

2000, 3000, 5000, 10’000, 15’000 and 25’000 m. More precisely, we used raster layers from different 

federal sources (or rasterizations at 25m of vector sources; see details in Table 1) that we aggregated 

at a 1000 m resolution as our base layer (i.e. not accounting for information in surrounding pixels; 

which corresponds to the radius size of zero in the analyses hereafter). Then, using a circular moving 

window of increasing size, we calculated the proportion of pixels of each land use class that are inside 

this window and put this value in the central pixel. We took into account only pixels that had at least 

half of their surface in the circle (for details about the method used, see the R code in Appendix). The 

8 radius were chosen to be representative of the variation of home ranges in birds, covering 

approximately the whole variation in sizes from minimum to maximum values (Schoener, 1968; 

Haskell et al., 2002; McPherson et al., 2019). The maximum radius of 25 km corresponds to the 

maximum home range with a squared area of 2500 km² (= 2 x 25²). 

We further used 6 non-focal variables representing climate, topography and human influence: average 

temperature [°C] and average precipitation [mm], slope [°] and topographic position [unitless], human 

traffic road noise [dB] and population density [habitants/ha]. 

Most of the variables were chosen to be similar to the ones used by Scherrer et al. (2019) in their 

study on bats, since they have an influence on highly mobile species like bats or birds. We verified 

their pairwise correlations (Appendix; Figure S1). Some variables were adapted to be more specific 

to birds (the correspondence with those from Scherrer et al. are given in Table 1). In the human 

influence category, we selected the average traffic road noise instead of the distance to roads, since 

the noise perturbations are known to disturb the breeding behavior of birds (Meillère et al., 2015). 

The other human influence variable is population density, which also account for the presence of pets 

in proximity, especially cats who are bird predators (Loss et al., 2013). 
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Table 1 : Name and description of each environmental variable used in the models. 

* If not precised, all the variables were at a 100 m resolution (from the source) and were aggregated 

to a 1000 m resolution. 
The corresponding variables of the ones used in Scherrer et al. (2019) are : Popdens is a proxi for buildingsED Euclidian 

distance between the closest building and the center of the cell. Roadnoise is a proxi fors roadsED Euclidian distance 

between the closest road and the center of the cell. Water (standwater and runwater) is a proxi for waterED Euclidian 

distance between the closest water source (stream or lake) and the center of the cell. Foredge is a proxi for forestED 

Euclidian distance between the closest forest and the center of the cell. Foredge is a proxi for canopy Variance of canopy 

height at a 100 m resolution, calculating from a 1 m resolution raster masked by forest. Rock (or bare) is a proxi for ndvi 

Normalized difference vegetation index at 100 m resolution. Aggregate from 10 m resolution. Rock is a proxi for 

ndvi_focal Mean of normalized difference vegetation index at different focal scale. 

 

Type Name Description – each layer is at a 1000 m resolution * 

Land cover/ land use 

(focal variable) 

alppast Proportion of alpine pasture at different focal scale 

(Source : GeoStat OFS) 

 confor Proportion of coniferous forest (Source : NFI) 

 culti Proportion of agricultural land (GeoStat OFS) 

 decfor Proportion of deciduous forest (NFI) 

 foredge Proportion of cells including a forest edge or treeline 

(TLM3D) 

 huminfrastr Proportion of human habitations and infrastrucures 

(GeoStat OFS) 

 open Proportion of open area (meadows, pasture) (GeoStat 

OFS) 

 rock Proportion of naked area (mainly rocks, bare ground) 

(TLM3D) 

 runwater Proportion of running water (river) (TLM3D) 

 standwater Proportion of standing water (lake) (TLM3D) 

 wethabitat Proportion of wet habitat (TLM3D) 

Climatic tmin Mean of daily minimal temperature between May and 

August—averaged from 1981 to 2010 (CHCLIM25) 

 prec Sum of daily precipitation between May and August—

averaged from 1981 to 2010 (CHCLIM25) 

Human influence roadnoise Daytime road traffic noise average between 6h - 22h 

(BAFU) 

 popdens Population density in 2013 (OFS StatPop13) 

Topographic slope Slope inferred from a digital elevation model at 25 m 

resolution. Aggregate to 1000 m resolution (WSL) 

 topos Topographic position at 25 m resolution aggregate to 

1000 m resolution (WSL) 
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Univariate models 
The optimal window size of each focal variable was found by running univariate regression models 

(GLM with a Poisson distribution) for each focal distance and for each species (Bellamy et al., 2013; 

Scherrer et al., 2019). We run (170 species x 11 focal variables x 8 window sizes) 14’960 models 

using the stats package in R (3.6.3 version; R Core Team, 2020). As we have no independent dataset, 

we performed for each of the 14’960 models 100 split-sample cross-validation runs with 80% 

calibration and 20% evaluation. To find the optimal scale, we selected the one that has the highest 

Spearman correlation between the observations and the predictions of the model (Guisan & 

Zimmermann, 2000). We also selected the optimal scale based on the adjusted explained deviance 

(D² or explD2) of the GLM and compared these results with the ones found with the correlation 

approach (Appendix; Table S1). To test if the optimal focal sizes differ significantly between 

variables, we used the multcompView package (version 0.1-8) with the default parameters (i.e. Tuckey 

HSD test with a p-value threshold of 0.05). Overall, we followed the framework from Scherrer et al. 

(2019). However, there is a divergence from their work, since we used average counts and not 

presence-absence observations. For this reason, we used Spearman correlation and adjusted explD2 

to select the best models instead of AUC (Guisan & Zimmermann, 2000). This is actually an 

improvement compared to their study, because the information we use to characterize species is not 

binary presence-absence, but includes the effect of abundance. As a consequence, analyzing counts 

data prevented us of using the biomod2 package, so that we had to code our own implementations of 

the models (Appendix; R code). 

 

Multivariate model 
To predict bird distributions over Switzerland, we calibrated models using the 6 non-focal variables 

and the 11 focal variables with their optimal focal size as found in the univariate models. To do so, 

we implemented a multivariate GLM model with a Poisson distribution using a lasso regression from 

the glmnet package (version 3.0.2). We included in the model the linear and quadratic terms for all 

explanatory variables. The advantage of the lasso regression method is that all the variables can be 

incorporated directly into the model without preselecting them. The lasso regression will select some 

variables and discard the others by putting their coefficient to zero. The method includes an iterative 

procedure in which increasing value of a penalization term called “lambda” are calculated and a 

model is fitted. In each iteration, each variable gets a coefficient which is optimized to fit the model 

while the other coefficients are fixed. This process continues until convergence (i.e. the stability of 

all coefficients) (Friedman et al., 2019). 

In addition to that, we did a K-fold cross-validation to select the right model among the 100 models 

that were fitted with the glmnet. To select the best model along the increasing lambda values, we 

could choose between lambda min (minimum mean cross-validated error), or lambda 1se (most 

regularized model which means that the error is within one standard error of the minimum). To obtain 

at the end the right model, the choice was made with lambda 1se, which excludes more variables than 

with lambda min (Friedman et al., 2010). 

Finally, using the predictions of this model, birds’ environmental suitability values were generated 

for all the points of Switzerland using the raster package, version 3.0.12 (Appendix; R code). 
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Results 

As we cannot present the results for all the species (since it is a short article for a 1st step project), 

we had to make a selection. Therefore, in addition to general results, we present in details only some 

examples that are relevant for our analyses and discussion. These examples are shown in Box 1 and 

Box 2. Results for all species can be found in Appendix (Table S1 and S2). 

 

Univariate models – scale selection 
For each of the 170 breeding birds and the 11 focal variables, we found the appropriate focal scale 

(among the 8 radius sizes) by selecting the one that has the highest Spearman correlation between the 

real observations and the predictions from the GLM models (Appendix; Table S1). In overall, we 

observed no specific distance of influence that would be optimal for all the variables (Figure 1). 

Indeed, we observed high heterogeneity in optimal scales - both between and within variables - 

although some variables presented a smaller range of focal sizes compared to others (e.g. alppast and 

confor). These heterogeneous results confirm that the scales of influence of environmental variables 

are species-specific (with variation within variables) and variable-specific (with variation between 

variables). Indeed, we tested if these optimal focal sizes differ significantly between variables and 

visualized the multiple paired comparisons between them. (Figure S2). Our results (both with letter-

based representation and graphical grouping T) suggest some significant differences (with p-values 

< 0.05). Therefore, this justifies the use of a unique combination of variables for each species in the 

multivariate model by selecting the optimal scale among the eight environmental layers. For instance, 

confor, alppast, rock and culti (which are grouped together in letter “a”) had significant smaller focal 

sizes than variables in groups f and g (Figure S2).  On the opposite, open had a significant higher 

focal size than the seven smallest variables (from confor to foredge). 

 

Differences in detected optimal focal size between variables are not explained by a same pattern of 

differences in model accuracy (i.e. correlations between predictions and observations have an interval 

of values almost identical for all variables; Figure S3). However, we noted an exception for run water, 

stand water and wet habitat (all in the water category) since their model accuracy are clearly lower. 

Figure 1 Boxplot of the optimal focal sizes of each focal variable for the 170 

species, as found with the univariate models. For variable names and details 

see Table 1. 
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In general, the method to determine the optimal radius of a focal variable (correlations between 

observation and model prediction vs. explained deviance) had not a strong influence (see Table S1). 

Interestingly, with these detected focal sizes we may obtain some information on the home range of 

each species – related to their ecology – and on the distance of influence of each landuse descriptor 

– related to the type of habitat. For instance, the median of the coniferous forest (confor) showed the 

lowest optimal scale indicating a small distance of influence whereas open area (open) showed the 

largest (Figure 1). Among all the species, the Short-toed Treecreeper has the smallest scales and the 

Common Woodpigeon the largest (Table S1).  Thus, it is a way to document the ecology of birds in 

relation to their habitat and their distance of influence. 

The overall median of the detected optimal focal size across species and variables was 3000 m. 

Compared to non-focal variables usually used in other SDMs, this suggests that the neighborhood 

indeed has an influence. Focal variables should thus need to be taken into account to improves the 

predictive power of the models of mobile species. Nevertheless, the distance to calculate focal 

variables is not general, and each variable has its own scale of influence, which is even species-

specific. The large optimal focal size we detected could be mainly explained by the high mobility of 

birds compared to other taxa often used in SDMs such as plants that have theoretically a home range 

size of zero. 

To investigate in more details the optimal focal sizes and to see whether they are linked to some birds’ 

traits, we did supplementary analyses for 3 groups that differ in their ecology – common, water, 

altitude and alpine area – each composed of 8 species. The “common” group included the most 

common species in Switzerland with more than 20’000 counts in total (from our data set) : Eurasian 

Blackcap, Eurasian Blackbird, Great Tit, Coal Tit, House Sparrow, Common Chaffinch, European 

Robin and Northern Wren. The “water group” included the most frequent water birds and ducks found 

on lakes (based also on the number of counts) :  Mallard, Mute Swan, Common Coot, Common 

Moorhen, Great Cormorant, Little Grebe, Great Crested Grebe and Goosander. The “altitude and 

alpine group” included species that live in mountains area and at high altitude (Mullarney et al., 

1999) :  Alpine Accentor, Red Crossbill, Yellow-billed Chough, Red-billed Chough, Howfinch, Rock 

Ptarmigan, White-winged Snowfinch and Black Grouse. 

On Figures 2 to 4, we observe that the focal sizes differed clearly between groups. These patterns 

showed also dissimilarities compared to the general results (Figure 1). Common birds have very small  

Figure 2 Boxplot of the optimal focal size for each 

variable, for the common group. 
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optimal scales for alppast, confor, decfor and rock, both in the median and the variance (Figure 2). 

On the contrary, the distances of influence (and the variance) of open, run water, stand water and wet 

habitat are much larger. The biggest differences with the water birds group are seen with decfor, run 

water, stand water and wet habitat which have almost opposite focal sizes. In this group, it is stand 

water that has the smallest distance of influence and decfor the largest (Figure 3). In the third group 

(alpine birds), their overall focal sizes are quite similar to the common birds, with even more extreme 

values (both for smallest and largest scales) but less variation within variables (Figure 4). The largest 

distances of influence are also seen with open, run water, stand water and wet habitat. 

 

In the results for all univariate models (i.e. not only the ones with optimal radius), for a given species, 

model accuracy as a function of radius is similar when based on correlation between observation and 

predictions or with the explained deviance (see Figure 5 for an example species). We observed clear 

patterns, with similar response shape, minimum and maximum values, indicating that these response 

curves have ecological meanings. Thus, although these patterns show high variability between 

variables and between species, they give important information about how the influence of the 

neighborhood varies in function of the distance. 

 

 

 

 

Figure 4  Boxplot of the optimal focal size for each 

variable, for the altitude group. 

Figure 3 Boxplot of the optimal focal size for each 

variable, for the water group. 
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Box 1 The Common Blackbird 

Below we illustrate the procedure of the selection of the optimal focal size of environmental 

predictions with the Common Blackbird, with the human infrastructures variable as example (Figure 

5). To select the optimal focal size, we took the radius that had the highest correlation (i.e. the better 

model accuracy) which is here with 3000 m. The same procedure is done separately for all the other 

variables. With the explained deviance instead of the correlation, we found the optimal scale at 5000 

m. Although we found a different focal size with this method, both curve shapes looked similar with 

a sharp increase at the beginning (for small distances), followed by a maximum peak, and with a 

decreased at the end. These unimodal curves - often found in biology - seems to highlight an 

ecological optimum reached at the corresponding focal size. 

On Figure 6 are (a) the optimal scales for all variables and (b) their corresponding correlation 

representing the model accuracy for the Common Blackbird. Being part of the common birds group, 

we observed the same high distances of influence for open, run water, stand water and wet habitat, 

with foredge in addition. Regarding the correlations, human infrastructures has the highest one, 

followed by culti, decfor and rock whereas run water and wet habitat have the smallest ones. 

 

 

Figure 5  Illustration of focal variable selection for the Common Blackbird 

a) Spearman correlation between the observations and the predictions (representing the model accuracy) and 

b) adjusted explained deviance (expl D2), for each focal size of the human infrastructures variable. Results 

are from the univariate models with the Common Blackbird (no 96 in the list). The colored lines indicate the 

maximum value of either the deviance or the correlation which corresponds to the optimal focal size used in 

further multivariate model. 
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Multivariate model – species distribution 
 

Predicted species distributions 

To measure the model accuracy, we computed the correlations between the observations and the 

predictions from the model. The results were good in general, with a median of 0.56, a minimum of 

0.11 for Icterine Warbler and a maximum of 0.87 for Common Blackbird (Figure S4 and Table S2). 

We observed that the more common a species is, the higher the model accuracy (Figure S5). The 

correlation between the total number of observations per species (sum of average counts) and model 

accuracy (the correlation between observation and prediction of the multivariate model) was 0.56. 

Using the predictions of the abundance glmnet models, we generated species distribution maps. They 

show the predicted counts for all pixels of Switzerland (e.g. Figure 7) and not the probability of 

occurrence as usually done in SDMs. Such predictions could not have been generated for some rare 

species : Cetti's Warbler 14, Hooded Crow x Carrion Crow 38, Tufted duck 55, European Bee-eater 

75, Spotted Crake 91, Red-crested Pochard 113, White-backed Woodpecker 120, Tawny Pipit 136 

and Ruddy Shelduck 157 (each number indicates the corresponding ID “i” of the species used in the 

R code and in Tables S1 and S2 found in Appendix). In these cases, since there were not enough 

observations, the lasso regression could not work. We discuss alternative modeling solutions (e.g. 

with the Zero-Inflated Poisson Model) in the Discussion. 

 

 

Figure 6 Optimal focal sizes and correlations for the Common Blackbird 

a) The optimal radius of each focal variable found with the univariate models and b) the associated Spearman 

correlation of these models. The blue polygon represents the optimal radius [m, 0 to 25’000] and the red 

polygon represents the Spearman correlation between the observations and the predictions from these models 

[0 to 1]. For variable names see Table 1. 
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Box 2 Examples of predicted distributions maps 

As an example, we presented the distribution maps for three species, one from each of the specific 

group (Common Blackbird for “common”, Yellow-billed Chough for “altitude” and Mute Swan for 

“water”) on Figures 7 to 9. 

 

The Common Blackbird is the third most common species in Switzerland according to our data set, 

with 30’743 counts in total. It has the highest correlation (0.87) between the observations and the 

predictions from the multivariate model (Table S2). This bird is widely present in all the country 

expect at high altitude (Figure 7). The maximum value of the abundance color scale indicates in green 

regions where there are potentially 4 individuals. 

 

Figure 7  Predicted species distribution of the Common Blackbird from the multivariate model. Predictions 

are represented on an abundance color scale [number of predicted counts]. Black points represented the real 

observations and their respective sizes indicated the average counts at each observation site. 

 

 

The Yellow-billed Chough is less frequent than the Common Blackbird as seen on the abundance 

scale of the map, with maximum values in green reaching only 1 averaged count (Figure 8). Indeed, 

in our data set this species has only 978 observations in total. Its predicted distribution is mainly in 

alpine regions at high altitude. The correlation between the real observations and the predictions from 

the model is 0.58 (Table S2). 
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The Mute Swan is a common water bird that is found mainly closed to stand water (Figure 9). Indeed, 

its predicted distribution corresponds well to the localization of the main lakes, with an optimal scale 

for the stand water variable of 0 m (Figure 3 and Table S1). 

 

 

Variable importance 

Our multivariate models were calibrated with a matrix containing all the 17 variables plus their 

quadratic terms. As this matrix was not scaled, the absolute value of the coefficients extracted from 

the model cannot be compared between them. This did not affect the predictions and the species 

distribution maps shown before, but complicated the comparisons between variables. 

To be able to compare the variable importance through the coefficients, we looked only at the 11 focal 

variables, since even without scaling their values are quite similar, being all proportion of land use 

Figure 8  Predicted species distribution of the Yellow-billed Chough from the multivariate model. 

Predictions are represented on an abundance color scale [number of predicted counts]. Black points 

represented the real observations and their respective sizes indicated the average counts at each observation 

site. 

                                                                                                                                                                              

 

 

Figure 9 Predicted species distribution of the Mute Swan from the multivariate model. Predictions are 

represented on an abundance color scale [number of predicted counts]. Black points represented the real 

observations and their respective sizes indicated the average counts at each observation site.                                                                                                                                                                                                                              
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(i.e. between 0 and 1). We also conducted this analysis separately with their quadratic terms. However, 

even with these considerations, variables are not scaled and thus their coefficients are directly 

influenced by the magnitude of their own values. Indeed, for two variables having the same 

importance in the model, if one has small values, its coefficient will be higher than for the other 

variable in order to compensate its contribution to the prediction value. We took this in account in our 

discussion and are aware that we should be careful in our conclusion. 

Moreover, the proportion of land use tends to decrease with the increase in focal size. Therefore, there 

are 8 different groups of proportion whose combination is specific for each species. Low values of a 

variable could indicate a large focal size, which will lead to a high coefficient. In the same way, 

coefficients of quadratic terms are necessary higher than their correspondence in linear terms as their 

values (between 0 and 1) become smaller with the square operation. 

Nevertheless, beside this aspect of scaled data, conducting separate analyses could still give us some 

useful information about the importance of each variable in the multivariate model and their influence 

on a particular species. As a consequence, in the following figure we represented only the focal 

variables (from 1 to 11) and their quadratic terms (from 18 to 29) from the 34 columns of the matrix. 

As described before, we looked at which variables influence the predictions and how much. Indeed, 

for each variable the lasso regression gives a coefficient which represents its importance or weight 

among all the variables. The predictions obtained by the combination of all the 17 variables are often 

driven by only one or two main variables that have big coefficients compared to the other. If one 

variable has a huge coefficient, it does not necessary mean that the correlation (between predictions 

and observations) is high. It could be just because this variable is more relevant than the other. Thus, 

this variable is not always a good predictor of the distribution of the species, but still it has the highest 

coefficient in the model. 

From the multivariate models, we extracted for each species the 34 variable coefficients. We 

compared their absolute values and looked at which variable is the most important per species i.e. 

which has the highest coefficient among all variables (Figure 10). 

Overall, the most relevant variables in the model were wet habitat and human infrastructures. Indeed, 

the absolute values of their coefficient and their frequency as highest coefficient (i.e. most important 

variable) showed – both with linear and quadratic terms - that wet habitat is the most important 

predictor, followed by human infrastructures. On the other side, cultivated areas were never found as 

the most important variable with linear terms whereas deciduous forest and open areas were in this 

case with quadratic terms. 
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Discussion  

The scales of influence of the landuse descriptors were very heterogeneous in general, both between 

variables as well as between species. We observed no general clear trend, which confirms that the 

scale of influence is species-specific. Within variables, no clear pattern was detected either, since 

some variables are more important for some species and less for others. Among all variables, 

coniferous forest has both the smallest focal size and variance, open area the highest focal size and 

deciduous forest the largest variance. 

An advantage of using this “multi-scale approach” compared to classic ones is to improve the 

predicted distribution (Fournier et al., 2017, Bellamy et al., 2020), as it allows capturing more 

precisely the influence of the neighborhood on the observations. This local influence on the habitat is 

species-specific, highlighting the importance of such method for identifying the adequate area needed 

to protect a particular species (Bellamy et al., 2013). Thus, selecting the appropriate scale for each 

environmental variable could improve the results of SDMs and therefore should be included in the 

future in similar studies. This is especially the case when species have different scales of influence 

for each environmental predictor as for mobile species like birds or bats (Scherrer et al., 2019, Tehrani 

et al., 2020). 

Figure 10 Variable importance 

Histogram showing for each variable the frequency when it is the most important variable in the multivariate 

model. Each bar represents for each variable (left side) and its quadratic term (right side) the number of time 

when its coefficient has the highest absolute value compared to the other ones. Data are from all the bird 

species. 

 

Linear terms Quadratic terms 
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Our findings highlighted the importance of protecting wet habitats since it is a main predictor of bird 

distribution. Compared to other studies made in Switzerland, our results confirm the importance of 

wet lands for birds (Maggini et al., 2014). Human infrastructures have also a big impact on birds, 

having both a large scale of influence and a large coefficient. In both cases, we should not forget that 

the coefficients from the lasso regression (and so the variable importance) correspond only to the 

optimal scale found with univariate models. Thus, when comparing the importance of variables, two 

variables might have the same importance but they might be effective at different distances. 

We did not expect such high differences in importance between variables (compared to other studies 

such as Scherrer et al., 2019). Indeed, the coefficients of wet habitat are far greater than all the other. 

This discrepancy may be explained by the fact that many birds linked to wet habitats have become 

rare. For such species with a big imbalance in the number of observation (many absences), the 

accuracy of the models might be low. Thus, despite a high coefficient, we could not really rely on 

these predictions. More probably, as discussed before, it is due to the matrix used in the model which 

was not scaled, so that each variable has different range of values. Nevertheless, we have to be careful 

not to over interpret the importance of a variable through its coefficient. In this context, we also have 

to account for the focal size of the variable as it could nuance our interpretation. It remains however 

that our results clearly show that a predictor can play an important role but only at a small scale, 

whereas others might have a larger scale of influence but are less important for the predictions. 

 

Limitations and future perspectives 
In this study, many focal variables were found to be optimal at the largest radius of 25 km. This was 

not expected since we had not anticipated that some birds’ home ranges would be larger than 25 km. 

Indeed, for several species (as for the Common Blackbird shown in example), there seems to be a 

limit as some variables often reached the maximum focal size. Potentially, as we may have 

underestimated the maximum home range of some birds, we missed here some larger distances that 

could be optimal for some species. Thus, we should have selected larger values of focal sizes to test 

if this observed limit is still reached. Another aspect to improve the precision of the selected scale 

would be to consider more different focal sizes (i.e. more intervals between minimum and maximum 

expected home range) to obtain a more continuous view of the distance of influence. 

More generally, the averaged counts which composed our species data are made at only some 

sampling sites of the studied area. Thus, based on this unique source of observation, our predicted 

distributions did not necessary represent the real distributions. Indeed, some species may not have 

been detected during the monitoring. Moreover, counts resulting from field observations depend on 

the probability to see the different species and could vary a lot. Therefore, to avoid this problem, 

further studies could use occupancy models which incorporate the detectability of species (Kéry et 

al., 2010). 

Another issue in the modeling part is due to rare and under-observed species. Too many zeroes 

(absences) in the average counts is often problematic for the model which is not able to fit correctly 

the response. (Cunningham & Lindenmayer, 2005; Chiogna & Gaetan, 2007) In our results, 9 species 

(as listed before) were in this case, having only one or two observations in total. It is quite paradoxical 

since it is precisely these rare species that are the most in need of distribution maps to protect them. 
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Indeed, as seen before, common species have better predictions because many observations improve 

the predictive power of the models. 

To study rare species and avoid this issue, one possibility - as done in Scherrer et al. (2019) - is to use 

Ensemble of Small Models (ESM) (Breiner et al., 2015). For species with very few occurrences, it is 

an appropriate and robust solution since many small models are put together to obtain final 

predictions. Nevertheless, this was not possible in our study as we did not have presence-absence 

observations, and that ESM are not yet implemented for count data. 

As a second possibility, we could ideally have implemented a Zero-Inflated Poisson (ZIP) model. 

Taking into account the high number of zero in the observations, this method is well adapted to rare 

species (Schaub et al., 2011; Cunningham & Lindenmayer, 2005). However, this was far too complex 

to do in such a first-step project. A third possibility was to remove these rare species from the data 

and thus to keep only species with enough presences observations. However, this would have biased 

the dataset towards common species with potentially different ecological characteristics, ultimately 

lowering the relevance and generality of our findings. 

As a perspective, further studies could test if our findings about the distance of influence are 

potentially linked with some birds’ traits (Storchova & Horak, 2018). Indeed, bird’s dietary 

preferences or morphology may have an impact on the scales of environmental variables. We expect 

differences between birds groups, which would ideally confirm some hints that we already found in 

our study between common, water and alpine birds for example. 

To conclude, our study improved our knowledge about the scale of influence of environmental 

variables for birds in Switzerland. Indeed, we have seen that we should adapt the choice of the focal 

size for each landuse descriptor according to the species. More precisely, we found the optimal scale 

of each landuse descriptor for all Swiss breeding birds. This could help future work, for example in 

predicting the effect of land use or climate change on species distribution. Indeed, these perturbations 

are modifying increasingly the distribution of birds (as shown in the “European Breeding Bird Atlas 

2”, Keller et al., 2020). Finally, these results could be included as maps into conservation planning 

(e.g. Ramel, 2018). Hopefully, similar studies with other taxa (e.g. Asian hornet as in Barbet-Massin 

et al., 2018) or regions (e.g. high latitude as in Niittynen & Luoto, 2018) might also benefit from our 

modeling framework which is easily adaptable. 
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Appendix 

Supplementary figures 

Figure S2 Boxplot of the optimal focal sizes of each focal variable for the 170 species, as found with the 

univariate models. Results of multiple paired comparisons between variables are shown on the right with 

both letter-based representation and grouping T. Variables in a same group are not significantly different. 

       
Figure S1 Pairwise correlations plot of the environmental variables used in 

the models 
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Figure S3 Boxplot of the model accuracy (measured by the Spearman correlation between 

the observations and the predictions from the univariate model) for each landuse variable, for 

the 170 species. 

 

 

Figure S4 Boxplot of the model accuracy (measured by the 

Spearman correlation between the observations and the 

predictions) of the multivariate model, for the 170 species. 

Figure S5 Total number of counts per species, in function of the 

accuracy of the multivariate models (measured by the correlation 

between observations and predictions). Each point represents one 

species. 
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Tables 
These two tables are found in a separate Excel file “Sup_tables.xlsx” on Moodle 

Table S1 Optimal focal scales of each variable and for each species, determined with a) the Spearman 

correlation between observations and predictions from the univariate models and b) the adjusted explained 

deviance (expl D2) of the same models. (Excel file, sheet 1) 

Table S2 Model accuracy of the multivariate model measured by the correlation between the observations 

and the predictions, listed for the 170 species. (Excel file, sheet 2) 

 

R code 
 

############ PART 1 : Creation and selection of environmental variables 
 
circularWindow<- function(radius,resolution){ 
  npix<-radius/resolution*2+1 
  r<-raster(nrows=npix,ncols=npix,xmn=0,xmx=npix*resolution,ymn=0,ymx=npix*resolution)  
  values(r)<-c(rep(NA,(npix*npix/2)-0.5),1,rep(NA,(npix*npix/2)-0.5)) 
  suppressWarnings({crs(r)<-ProjLV03<-CRS('+init=epsg:21781')})  # CH1903 / LV03 
  rd<-distance(r) 
  mw<-matrix(values(rd),npix,npix) 
  mw<-mw<=radius 
  #image(mw) 
  return(mw) 
} 
 
#devtools::install_github("CRAN/rgdal") 
library(raster) 
library(corrplot) 
 
##################################################### 
# proportions of landuse/landcover in increasing focal windows 
#OFS GeoStats data 
 
lc<-raster("//nas/unilgis/20_Europe/Switzerland/All/Landcover/OFS/Land-
Cover/NOLC_2004/AREA_NOLC04_27_130918_LC09_27.TIF") 
lc<-extend(lc, extent(485000,834000,75000,296000)) 
lu<-raster("//nas/unilgis/20_Europe/Switzerland/All/Land-
cover/OFS/LandUse/NOLU_2004/AREA_NOLU04_46_130918_LU09_46.TIF") 
lu<-extend(lu, extent(485000,834000,75000,296000)) 
 
radius<-c(1000,2000,3000,5000,10000,15000,25000) 
mask<-aggregate(lu,10) 
 
# alpine pasture, OFS NOLU04 242 alpage pâturé 
x0<-lu==242 
alppast<-x0<-flip(aggregate(flip(x0,1),10),1) 
alppast 
x0<-lu==242 
alppast<-x0<-aggregate(x0,10) 
alppast 
names(alppast)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  alppast<-stack(alppast,xrad) 
} 
alppast<-mask(alppast,x0) 
save(alppast,file="alppast.rData") 
writeRaster(alppast,file="alppast.tif",overwrite=TRUE) 
 
# cultivated areas, OFS NOLU04 201 Arboriculture / 202 Viticulture / 203 Horticulture / 221 Terres arables au 
sens large 
 
x0<-lu==201|lu==202|lu==203|lu==221 
culti<-x0<-aggregate(x0,10) 
names(culti)<-"f0" 
for (r in radius){ 
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  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  culti<-stack(culti,xrad) 
} 
culti<-mask(culti,x0) 
save(culti,file="culti.rData") 
writeRaster(culti,file="culti.tif",overwrite=TRUE) 
 
# coniferus forest, NFI data 
 
forest<-raster("//nas/ecospat/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/forest/Forest-
MixRateNFI/NFI") 
forestcon<-reclassify((100-forest)/100,t(matrix(c(NA,0)))) 
x0<-resample(forestcon,mask) 
confor<-x0<-mask(x0,mask) 
names(confor)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  confor<-stack(confor,xrad) 
} 
confor<-mask(confor,x0) 
save(confor,file="confor.rData") 
writeRaster(confor,file="confor.tif",overwrite=TRUE) 
 
# deciduous forest, NFI data 
 
forest<-raster("//nas/ecospat/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/forest/Forest-
MixRateNFI/NFI") 
forestdec<-reclassify(forest/100,t(matrix(c(NA,0)))) 
x0<-resample(forestdec,mask) 
x0<-mask(x0,mask) 
decfor<-x0 
names(decfor)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  decfor<-stack(decfor,xrad) 
} 
decfor<-mask(decfor,x0) 
save(decfor,file="decfor.rData") 
writeRaster(decfor,file="decfor.tif",overwrite=TRUE) 
 
# running waters, TLM3D 
 
driver<-raster("X:/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/hydrology/distrivers") 
runwater<-driver<26 
runwater<-x0<-resample(runwater,mask) 
names(runwater)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  runwater<-stack(runwater,xrad) 
} 
runwater<-mask(runwater,x0) 
save(runwater,file="runwater.rData") 
writeRaster(runwater,file="runwater.tif",overwrite=TRUE) 
 
# standing waters, TLM3D 
 
dlakes<-raster("X:/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/hydrology/distlakes") 
standwater<-dlakes<26 
standwater<-x0<-resample(standwater,mask) 
names(standwater)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  standwater<-stack(standwater,xrad) 
} 
standwater<-mask(standwater,x0) 
save(standwater,file="standwater.rData") 
writeRaster(standwater,file="standwater.tif",overwrite=TRUE) 
 
# humid habitats, TLM3D 
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dhumid<-raster("X:/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/hydrology/disthumid") 
wethabitat<-dhumid<26 
wethabitat<-x0<-resample(wethabitat,mask) 
names(wethabitat)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  wethabitat<-stack(wethabitat,xrad) 
} 
wethabitat<-mask(wethabitat,x0) 
save(wethabitat,file="wethabitat.rData") 
writeRaster(wethabitat,file="wethabitat.tif",overwrite=TRUE) 
 
# bare ground, TLM3D rochers, pierriers 
 
drocks<-raster("X:/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/landcover/TLM3D/distrocks") 
rock<-drocks<26 
rock<-x0<-resample(rock,mask) 
names(rock)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  rock<-stack(rock,xrad) 
} 
rock<-mask(rock,x0) 
save(rock,file="rock.rData") 
writeRaster(rock,file="rock.tif",overwrite=TRUE) 
 
# forest edge, TLM3D haies,arbres isolé, lisière de forêts  
 
distedges<-raster("X:/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/forest/DistHedges.tif") 
foredge<-reclassify(distedges,matrix(c(0, 24, 0,  24, 49, 1,  49, 13000, 0), ncol=3, byrow=TRUE)) 
foredge<-x0<-resample(foredge,mask) 
names(foredge)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  foredge<-stack(foredge,xrad) 
} 
foredge<-mask(foredge,x0) 
save(foredge,file="foredge.rData") 
writeRaster(foredge,file="foredge.tif",overwrite=TRUE) 
 
# habitat & infrastructure, OFS GeoStats NOLC04 11 Surfaces compactées 12 Bâtiments 13 Serres 14 Structures 
des cultures en planches 15 Gazon 16 Arbres sur terrains aménagés 17 Petites structures mixtes 
 
x0<-lc>=15&lc<=17 
huminfrastr<-x0<-resample(x0,mask) 
names(huminfrastr)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  huminfrastr<-stack(huminfrastr,xrad) 
} 
huminfrastr<-mask(huminfrastr,x0) 
save(huminfrastr,file="huminfrastr.rData") 
writeRaster(huminfrastr,file="huminfrastr.tif",overwrite=TRUE) 
 
# open, OFS GeoStats NOLC04 21 Végétation herbacée 
 
x0<-lc==21 
open<-x0<-resample(x0,mask) 
names(open)<-"f0" 
for (r in radius){ 
  xrad<-focal(x0,circularWindow(r,1000),'mean',na.rm=TRUE,pad=TRUE) 
  names(xrad)<-paste0("f",r) 
  open<-stack(open,xrad) 
} 
open<-mask(open,x0) 
save(open,file="open.rData") 
writeRaster(open,file="open.tif",overwrite=TRUE) 
 
######################################### 
#climatic 
#Mean of daily minimal temperature between May and August—averaged from 1981 to 2010 
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l<-list.files("//nas/CHCLIM25/Tmin/monthly/1981_2010_average",full.names = TRUE) 
tmin<-stack() 
for (i in 5:8){ 
  load(l[i]) 
  names(X)<-paste0("tmin",i) 
  tmin<-stack(tmin,X) 
} 
tmin<-calc(tmin,mean)/10 
tmin<-resample(tmin,mask) 
 
# preci Sum of daily precipitation between May and August—averaged from 1981 to 2010 
 
l<-list.files("//nas/CHCLIM25/Prec/monthly/1981_2010_average",full.names = TRUE) 
prec<-stack() 
for (i in 5:8){ 
  load(l[i]) 
  names(X)<-paste0("tmin",i) 
  prec<-stack(prec,X) 
} 
prec<-calc(prec,sum)/10 
prec<-resample(prec,mask) 
 
clim<-stack(tmin,prec) 
save(clim,file="clim.rData") 
writeRaster(clim,file="clim.tif",overwrite=TRUE) 
 
####################################################### 
# topographic 
 
# slope inferred from dem at a 25m 
 
slope<-raster("//nas/unilgis/20_Europe/Switzerland/All/Climate/wsl_bioclim/wsl_topo/slp25") 
slope<-resample(slope,mask) 
slope<-mask(slope,mask) 
 
#topographic position from wsl data at 25m 
topos<-raster("//nas/unilgis/20_Europe/Switzerland/All/Climate/wsl_bioclim/wsl_topo/topos") 
topos<-resample(topo,mask) 
topos<-mask(topo,mask) 
 
topo<-stack(slope,topos) 
save(topo,file="topo.rData") 
writeRaster(topo,file="topo.tif",overwrite=TRUE) 
 
####################################################### 
# Human influence 
 
# Daytime traffic noise 
 
roadnoise<-raster("//nas/ecospat/common/50_data/GeoData_other/EnvData/20_Europe/Switzerland/All/transporta-
tion/BAFU_Daytime_road_traffic_noise/STRASSENLAERM_Tag/STRASSENLAERM_Tag.tif") 
roadnoise<-resample(roadnoise,mask) 
 
# population density at 100m 
 
popdens<-raster("//nas/unilgis/20_Europe/Switzerland/All/Human/OFS/ofs_recense-
ment_2013/StatPop13_B13BTOT.tif") 
popdens<-resample(popdens,mask) 
 
human<-stack(roadnoise,popdens) 
human<-mask(human,mask) 
names(human)<-c("roadnoise","popdens") 
 
save(human,file="human.rData") 
writeRaster(human,file="human.tif",overwrite=TRUE) 
#popdens is a proxi for buildingsED Euclidian distance between the closest building and the centre of the 
cell 
#roadnoise is a proxi fors roadsED Euclidian distance between the closest road and the centre of the cell 
#water is a proxi for waterED Euclidian distance between the closest water source (stream or lake) and the 
centre of the cell 
#foredge is a proxi for forestED Euclidian distance between the closest forest and the centre of the cell 
#foredge is a proxi for canopy Variance of canopy height at a 100 m resolution, calculating from a 1 m reso-
lution raster masked by forest 
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#bare is a proxi for ndvi Normalized difference vegetation index at 100 m resolution. Aggregate from 10 m 
resolution 
#bare is a proxi for ndvi_focal Mean of normalized difference vegetation index at different focal scale 
 
S<-stack(alppast[[1]],culti[[1]],confor[[1]],decfor[[1]],runwater[[1]],standwater[[1]],wethabitat[[1]], 
         rock[[1]],foredge[[1]],huminfrastr[[1]],open[[1]],clim,topo,human) 
names(S)<-c("alppast","culti","confor","decfor","runwater","standwater","wethabitat", 
            "rock","foredge","huminfrastr","open","tmin","prec","slope","topos","roadnoise","popdens") 
 
cor<-layerStats(S,'pearson',na.rm = T) 
corrplot(cor$`pearson correlation coefficient`, type = "upper", order = "hclust", tl.col = "black", tl.srt = 
45) 
 
####################### PART 2 : Univariate and multivariate models 
library(rgdal) 
library(raster) 
library(sp)  
library(corrplot) 
library(gtools) 
library(modEvA) 
library(glmnet) 
library(fmsb) 
library(multcomp) 
 
`%notin%` <- Negate(`%in%`) 
 
ProjCH1903plus<-CRS('+init=epsg:2056')  # CH1903+ / LV95 
ProjCH1903<-CRS('+init=epsg:21781')  # CH1903 / LV03 
 
############## Raster avec les variables focales 
 
list.files("//nas/ecospat/projects-unil/BIRDS/Aurelien/data/env",pattern = ".rData") 
 
files<-c("alppast.rData","confor.rData","culti.rData","decfor.rData","foredge.rData", 
         "huminfrastr.rData","open.rData","rock.rData","runwater.rData","standwater.rData", 
         "wethabitat.rData","clim.rData","human.rData","topo.rData") 
files<-paste0("//nas/ecospat/projects-unil/BIRDS/Aurelien/data/env/",files) 
 
for (i in 1: length(files)) load(files[i]) 
 
######### 
 
envlist=c("alppast", "confor", "culti", "decfor", "foredge", "huminfrastr",  
          "open", "rock", "runwater", "standwater", "wethabitat", "tmin", 
          "prec", "roadnoise", "popdens",  
          "slope", "topos") 
 
envtot=stack(alppast,confor, culti, decfor, foredge, huminfrastr,  
             open, rock, runwater, standwater, wethabitat, clim, human, topo) 
 
focalsize=c(0, 1000, 2000, 3000, 5000,10000,15000,25000)  
 
################### liste espèces oiseaux 
 
sp<-read.delim("//nas/ecospat/projects-unil/BIRDS/Aurelien/data/sp/Data_sp_delim.txt",h=TRUE) 
sp.list<-unique(sp$species_name) 
 
x<-as.numeric(sp[,5])     # sp[,5] = x_centroid 
y<-as.numeric(sp[,6]) 
xyCH1903plus<-cbind(x,y) 
lonlat <-project(xyCH1903plus, ProjCH1903plus@projargs, inv=T)  
xyCH1903<-project(lonlat, ProjCH1903@projargs, inv=F)  
envCH=extract(envtot, xyCH1903)  
 
xySuisse<-coordinates(envtot) 
 
#remove NAs 
 
ligne2=apply(is.na(envCH[,]),1,sum)==0 
 
spcor=cbind(sp[,1:2], sp[,7:8], xyCH1903) 
spcorCH=spcor[ligne2,] 
spcorCHpres = spcorCH[spcorCH$Avg_count>0,] 
 
############# Boucle pour les espèces avec i 
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maxfocal=data.frame(fsize=0, maxdev=0, env=0, spname=0) 
maxfocalcor=data.frame(fsize=0, maxcor=0, env=0, spname=0) 
 
glmmulticor=data.frame(cor=0, spname=0) 
 
varcoef=data.frame(matrix(nrow=170,ncol=34)) # Les coef du cv.glmnet 
names(varcoef)<-c(envlist,paste0(envlist,2)) 
row.names(varcoef)=as.character(sp.list) 
 
############ Pour choisir pour quelle espèce faire des plots : 
 
# P.ex. c(1,4,8) pour choisir la 1e, 4e et 8e espèces de la liste (sur 170) 
#       if (i %in% spselect) { plot } 
 
# indice i des groupes avec +2 car pour datastar  
# (avec max et min donc décale de 2 les lignes) 
# Donc pour les vrai i, on enlève 2 
 
spgroup=c(rapaces, eau, common, altitude)-2 
spgroup=sort(spgroup) 
 
spselect=100   
 
############### Boucle for i 
 
#for (i in 1:length(sp.list)){ 
 
for (i in 158:170){ 
   
  # i=14,38,55,75,91,113,120,136,157 Erreur, boucle for interrompu à cv.glmnet 
  # + i=27 
   
  ############ GLM univarié 
   
  sp.name<-sp.list[i] 
  rows<-which(spcorCH$species_name==sp.name) 
  data<-spcorCH[rows,] 
  xy=data[,5:6] 
  rep<-data$Avg_count 
   
  devtot = data.frame(f0=0, f1000=0,f2000=0, f3000=0, f5000=0, f10000=0, f15000=0, f25000=0 ) 
  cortot = data.frame(f0=0, f1000=0,f2000=0, f3000=0, f5000=0, f10000=0, f15000=0, f25000=0 ) 
   
  envmulti<-data.frame(matrix(nrow=nrow(xy),ncol=17)) 
  names(envmulti)<-c("alppast","confor","culti","decfor","foredge","huminfrastr","open","rock","runwater", 
                     "standwater","wethabitat","tmin","prec","roadnoise","popdens","slope","topos") 
  envmulti[,12:17]<-extract(envtot[[89:94]],xy) 
   
  envpredict<-data.frame(matrix(nrow=nrow(xySuisse),ncol=17)) 
  names(envpredict)<-c("alppast","confor","culti","decfor","foredge","huminfrastr","open","rock","runwater", 
                       "standwater","wethabitat","tmin","prec","roadnoise","popdens","slope","topos") 
  envpredict[,12:17]<-extract(envtot[[89:94]],xySuisse) 
   
  ############# Boucle pour les variables 
  for (j in 1:11) {   
     
    env<-extract(envtot[[(8*(j-1)+1) : (8*(j-1)+8)]], xy) 
    envSuisse<-extract(envtot[[(8*(j-1)+1) : (8*(j-1)+8)]], xySuisse)  
     
    ############# Boucle pour les variables 
    for (f in 1:8) { 
       
      explD2<-c() 
      glmcor<-c() 
      for (iter in 1:100){ 
         
        cal<- sample(1:length(rep),round(length(rep)*0.8,0)) 
        eval<-which(1:length(rep)%notin%cal) 
        caldata<-as.data.frame(cbind(env[cal,f],I(env[cal,f]^2))); names(caldata)<-c("x","x2") 
        evaldata<-as.data.frame(cbind(env[eval,f],I(env[eval,f]^2))); names(evaldata)<-c("x","x2") 
         
        glm1<-glm(rep[cal]~x+x2,family = "poisson",data=caldata) 
        pred.eval<-predict.glm(glm1,newdata=evaldata,type="response") 
        explD2[iter]<-Dsquared(glm1,adjust = T) 
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        glmcor[iter]=cor(rep[eval], pred.eval ,method="spearman") 
         
        devtot[j,f]= mean(explD2) 
        cortot[j,f]= mean(na.omit(glmcor))  
          
         
      } # fin boucle iter 
    }# fin boucle f 
     
    focalcol<-which.max(devtot[j,])[1] 
    maxdev<-max(devtot[j,])[1] 
    focalcolcor<-which.max(cortot[j,])[1] 
    maxcor<-max(cortot[j,])[1] 
     
    maxfocal[((i-1)*11)+j,1]=focalsize[focalcol] 
    maxfocal[((i-1)*11)+j,2]=maxdev 
    maxfocal[((i-1)*11)+j,3]=envlist[j]  
    maxfocal[((i-1)*11)+j,4]=as.character(sp.list[i]) 
     
    maxfocalcor[((i-1)*11)+j,1]=focalsize[focalcolcor] 
    maxfocalcor[((i-1)*11)+j,2]=maxcor 
    maxfocalcor[((i-1)*11)+j,3]=envlist[j]  
    maxfocalcor[((i-1)*11)+j,4]=as.character(sp.list[i])   
     
    # Pour le glm multi, on stocke pour chaque variable la couche focal max 
    envmulti[,j]=env[, focalcolcor] 
    envpredict[,j]=envSuisse[, focalcolcor] 
      
    ################## PLOT 
     
    if (i %in% spselect){   
      print(i) 
       
      ###### plot explD2 RED 
       
      titrej=paste0(envlist[j], as.character(i)) 
      pdf(file = titrej)  
       
      plot(focalsize, as.numeric(devtot[j,]), 
           type="b", main=c(envlist[j],"-", as.character(sp.list[i])) , 
           xlab="focal size [m]", ylab="explD2") 
       
      points(as.numeric(maxfocal[((i-1)*11)+j,1]),maxfocal[((i-1)*11)+j,2] ,col="red", pch=19)  
     abline(h=max(as.numeric(devtot[j,])), col="red") 
       
      ###### plot corrélation BLUE ! 
       
      plot(focalsize, as.numeric(cortot[j,]), 
           type="b", main=c(envlist[j],"-", as.character(sp.list[i])) , 
           xlab="focal size [m]", ylab="cor spearman") 
       
      points(as.numeric(maxfocalcor[((i-1)*11)+j,1]),maxfocalcor[((i-1)*11)+j,2] ,col="blue", pch=19)  
      abline(h=max(as.numeric(cortot[j,])), col="blue") 
       
      ##### plot raster de envtot avec couche focal max avec cor 
       
      plot(envtot[[8*(j-1) + which(focalsize==as.numeric(maxfocalcor[((i-1)*11)+j,1]))]], 
           main=c(envlist[j], "- f", maxfocalcor[((i-1)*11)+j,1], as.character(sp.list[i]))) 
       
      points(spcorCHpres$x[spcorCHpres$species_name==as.character(sp.list[i])], 
             spcorCHpres$y[spcorCHpres$species_name==as.character(sp.list[i])],            col=heat.col-
ors(length(unique(spcorCHpres$Avg_count[spcorCHpres$species_name==as.character(sp.list[i])]))))      
       
      plot(env[,which(focalsize==as.numeric(maxfocalcor[((i-1)*11)+j,1]))], 
           data$Avg_count, 
           main=c(envlist[j], maxfocalcor[((i-1)*11)+j,1], as.character(sp.list[i])), 
           xlab=c("Proportion of ",envlist[j] ), ylab="Average counts") 
      # Pour voir s'il y a un optimum biologique selon les valeurs de env 
      # avec la couche de focal max 
      # p.ex. un % de pâturage avec plus de count 
        
      dev.off()  # Pour finir le pdf 
       
    } # fin if plot 
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    cat(j) 
     
  } # fin boucle j 
     
  ########## PLOT 
if (i %in% spselect){    
    print(i)   
    hist(spcorCHpres$Avg_count[spcorCHpres$species_name==as.character(sp.list[i])], 
         breaks=length(spcorCHpres$Avg_count[spcorCHpres$species_name==as.character(sp.list[i])]), 
         main=c("Repartition of counts - ", as.character(sp.list[i])), 
         xlab= "Average counts")   
  } 
   
  ################# GLM multivarié 
   
  # On fait un glm multi par espèce donc dans la boucle i 
  # Il contient les 17 variables (11 sélectionnées par la boucle f et j) et  
  # les 6 autres non focales. 
  # Avec le lasso, on garde les variables avec coef>0  
   
  ########## lasso regression cv.glmnet 
   
  #dataset quatratic 
  envmulti2<-as.matrix(cbind(envmulti,envmulti^2)) 
  colnames(envmulti2)<-c(names(envmulti),paste0(names(envmulti),2)) 
   
  envpredict2<-as.matrix(cbind(envpredict,envpredict^2)) 
  colnames(envpredict2)<-c(names(envpredict),paste0(names(envpredict),2)) 
   
  #envmulti2<-scale(envmulti2) #scaling  
   
  myglm=cv.glmnet(envmulti2,rep,alpha=1, family = "poisson",type.measure="mse") 
   
  d2<-myglm$glmnet.fit$dev.ratio[which(myglm$lambda == myglm$lambda.1se)] 
   
  coef<-coef(myglm,s="lambda.1se")[-1,] 
  plot(myglm) #mse  
  plot(myglm$glmnet.fit,xvar = "lambda") #coef 
  abline(v=log(myglm$lambda.1se),lty=2) 
   
  if (i %in% spgroup) { 
    titrecoef=paste0("coefbis", as.character(i)) 
     
    png(filename =titrecoef , width = 550, height = 300, 
        pointsize=13) 
    barplot(coef,las=2,main=paste0("D2 = ",round(d2,2)), 
            col=col,cex.axis=1,cex=0.5, cex.names=0.8) 
    dev.off() 
  }  
 
  predglmnet<-predict(myglm,newx=envmulti2,type = "response",s="lambda.1se",) 
   
  glmmulticor[i,1]=cor(rep, predglmnet, method="spearman") 
  glmmulticor[i,2]=as.character(sp.list[i]) 
   
  varcoef[i,]=coef # Pour chaque espèce, on garde les 34 coef des variables 
  # comme sur le barplot 
   
  ########### Prédictions pour toute la Suisse 
   
  # rep contient les counts aux points xy, et on veut étendre ça à  
  # tous les points du raster envtot, grâce à predict avec glm lasso. 
   
  # sum(!is.na(envpredict[,1])) 
   
  if (i %in% spselect){ 
     
    bird<-predict(myglm, envpredict2) 
    bird[bird<0]<-0 
     
    mapbird=rasterFromXYZ(cbind(xySuisse, bird)) 
    plot(mapbird)  
    summary(bird) 
    # plot(mapbird, zlim=c(0,3))  
    points(xy[rep>0,],cex=rep[rep>0]/max(rep))  
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    # cex entre 0 et 1, car divisé par max(rep) 
     
    title(sp.name) 
  }  
  cat(i)  
}  # fin boucle i 
 
############ nbreobs et correlation 
 
nbreobs=data.frame(matrix(nrow=170,ncol=1)) 
row.names(nbreobs)=as.character(sp.list) 
 
for (i in 1:170){ 
   
  sp.name<-sp.list[i] 
  rows<-which(spcorCHpres$species_name==sp.name) 
  obs<-spcorCHpres[rows,"Avg_count"] 
   
  nbreobs[i,1]=sum(obs) 
} 
 
corNA=which(!is.na(glmmulticor[,1])) 
 
cor(glmmulticor[corNA,1], nbreobs[corNA,1]) 
plot(glmmulticor[corNA,1], nbreobs[corNA,1], 
     xlab="Correlation", ylab="Number of observations") 
 
which.max(glmmulticor[,1]) 
# i=96 Merle noir 
glmmulticor[96,1] 
# 0.8745 
 
# Groupe bird common 
# seuil  
nbreobs[nbreobs>10000] 
common2=sp.list[nbreobs>10000] 
 
######################## PLOT 
 
hist(maxfocalcor$fsize[maxfocalcor$env=="alppast"], breaks=20, 
     xlab="Focal size [m]", main=paste0("Frequency of optimal focal size for ", envlist[1])) 
 
### BOXPLOT avec maxfocalcor 
 
boxplot(datastar[3:172,], breaks=20,      notch=T,boxwex=0.5, 
        ylab="Focal size [m]", 
        main="Optimal focal size ", las=2) 
 
######## Stat. significatif les différences de boxplot 
 
multcompBoxplot(fsize ~ env, data = maxfocalcor, horizontal=F, 
                decreasing = F) 
 
################# 
boxplot(datacorstar[3:172,], breaks=20, 
        ylab="Spearman correlation", 
        las=2) 
 
########### GROUPE d'oiseaux 
 
# Rapaces de jour i+2 (3,6,13,21,44,47,48,49,106,107) 
 
rapaces=2+c(3,6,13,21,44,47,48,49,106,107) 
boxplot(datastar[rapaces,], 
        ylab="Focal size [m]", 
        main="Optimal focal size - Rapaces ", las=2) 
boxplot(datacorstar[rapaces,], 
        ylab="Spearman correlation", 
        las=2) 
# Oiseaux d'eau  
eau=2+c(23,41,54,56,65,67,68,76) 
 
boxplot(datastar[eau,], 
        ylab="Focal size [m]", 
        main="Optimal focal size - Water birds ", las=2) 
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boxplot(datacorstar[eau,], 
        ylab="Spearman correlation", 
        las=2) 
# Common birds 
# Groupe bird common 
# seuil  
nbreobs[nbreobs>10000] 
common2=sp.list[nbreobs>20000] 
 
common=2+c(50,96,101,104,109,133,148,167) 
 
boxplot(datastar[common,], 
        ylab="Focal size [m]", 
        main="Optimal focal size - Common birds ", las=2) 
boxplot(datacorstar[common,], 
        ylab="Spearman correlation", 
        las=2) 
# Altitude bird 
altitude=2+c(1,7,29,40,74,86,114,161) 
 
boxplot(datastar[altitude,], 
        ylab="Focal size [m]", 
        main="Optimal focal size - Altitudinal birds ", las=2) 
boxplot(datacorstar[altitude,], 
        ylab="Spearman correlation", 
        las=2) 
 
########## BOXPLOT varcoef 
 
boxplot(varcoef[,c(1:11)], las=2, outline=T,notch=T,boxwex=0.5, 
        ylab="Variable coefficient") 
 
# Avec les 4 groupes : 
 
boxplot(varcoef[(rapaces-2),1:34], las=2, outline=F, 
        main = "Rapaces", ylab="Variable coefficient") 
boxplot(varcoef[(eau-2),1:34], las=2, outline=F, 
        main="eau", ylab="Variable coefficient") 
boxplot(varcoef[(common-2),1:34], las=2, outline=F, 
        main="common", ylab="Variable coefficient") 
boxplot(varcoef[(altitude-2),1:34], las=2, outline=F, 
        main="altitude", ylab="Variable coefficient") 
boxplot(varcoef[1,1:34], las=2) # C'est la même chose que coef1 
boxplot(varcoef[,1:17], las=2, outline=T) 
sum(abs(varcoef$alppast), na.rm = T) 
sum(abs(varcoef$tmin2), na.rm = T) 
sum(abs(varcoef$wethabitat2), na.rm = T)  
 
######### varcoefsum avec barplot 
 
varcoefsum=data.frame(matrix(nrow=1,ncol=34)) 
names(varcoefsum)<-c(envlist,paste0(envlist,2)) 
 
for (i in 1:34){ 
  varcoefsum[1,i]=sum(abs(varcoef[,i]), na.rm = T) 
} 
barplot(as.numeric(varcoefsum), names.arg=names(varcoefsum) , 
        ylab="Variable coefficient", las=2) 
barplot(as.numeric(varcoefsum[1,c(1:27,29:34)]), names.arg=names(varcoefsum[1,c(1:27,29:34)]) , 
        ylab="Variable coefficient", las=2) 
barplot(as.numeric(datastar[98,]), names.arg=names(varcoefsum[1:11]), 
        las=2) 
barplot(as.numeric(datacorstar[98,]), names.arg=names(varcoefsum[1:11]), 
        las=2) 
summary(abs(varcoef$wethabitat2), na.rm = T) 
summary(varcoef$wethabitat2, na.rm = T)  
 
########## Varcoefmax avec hist 
 
varcoefmax=data.frame(matrix(nrow=170,ncol=1)) 
row.names(varcoefmax)=as.character(sp.list) 
 
# if avec deux tests logiques séparés par un "OU" 
# pour enlever les NA des espèces i=14, ... 
# et aussi quand il n'y a que des 0 pour tous les coef (ça arrive souvent) 
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for (j in 1:170){   
  if (is.na(varcoef[j,1]) == T |  sum(varcoef[j,]) == 0) { 
    varcoefmax[j,1]=NA 
  } 
  else { 
    varcoefmax[j,1]=which.max(na.omit(abs(varcoef[j,]))) 
  } 
} 
hist(as.numeric(na.omit(varcoefmax[,1])), breaks=50, 
     axes=F, xlab=NULL , main=NULL, labels=F) 
axis(1, labels =names(varcoefsum[1,1:28]), las=2, at=seq(1,28,1) ) 
sort(unique(as.numeric(na.omit(varcoefmax[,1])))) 
axis(2, at=seq(0,20,2) ) 
apply(envmulti2, 2, max) 
boxplot(envmulti2) 
 
######## BOXPLOT deviance avec maxfocal 
 
boxplot(maxfocal[,1] ~ maxfocal$env, xlab = NULL,notch=T,boxwex=0.5, 
        ylab="Focal size [m]", 
        main="Optimal focal size with deviance ", las=2) 
boxplot(maxfocal[1:110,1] ~ maxfocal$spname[1:110],xlab = NULL, 
        ylab="Focal size [m]", 
        main="Optimal focal size with deviance ", las=2) 
boxplot(maxfocal[,2] ~ maxfocal$env,xlab = NULL, 
        ylab="Deviance explD2", 
        main="Deviance ", las=2) 
 
# GLM glmmulticor 
summary(glmmulticor) 
boxplot(glmmulticor[,1], ylab="Spearman correlation", las=2) 
 
###############  PLOT Spider/Radar des 11 variables focales 
 
# Pour utiliser stars, il faut modifier le format des données (cf. ex USJudge) 
# les données proviennent de maxfocalcor. On change pour que les lignes  
# deviennent les colonnes 
 
# Création d'un nouveau dataframe pour pouvoir utiliser stars et radarchart 
 
# DATASTAR focal size 
# 172 lignes car 1ere et 2e lignes pour max et min (25000 et 0) 
datastar=data.frame(matrix(nrow=172,ncol=11)) 
names(datastar)<-envlist[1:11] 
row.names(datastar)=c("max", "min", as.character(sp.list)) 
 
# !!! Pour accéder aux espèces, mettre i+2, à cause des 2 premières lignes 
# qui décalent tout  
 
# DATACORSTAR max correlation 
# 172 lignes car 1ere et 2e lignes pour max et min (1 et 0) 
datacorstar=data.frame(matrix(nrow=172,ncol=11)) 
names(datacorstar)<-envlist[1:11] 
row.names(datacorstar)=c("max", "min", as.character(sp.list)) 
 
# DATASTAR focal size   
datastar[1,]=rep.int(25000,11) 
datastar[2,]=rep.int(0,11) 
 
for (i in 1:170){   
  datastar[i+2,]=as.numeric(maxfocalcor$fsize[((i-1)*11)+1:(i*11)]) 
   
  # datastar[1,]=as.numeric(maxfocalcor$fsize[1:11]) 
  # datastar[2,]=as.numeric(maxfocalcor$fsize[12:22]) 
  # datastar[3,]=as.numeric(maxfocalcor$fsize[23:33]) 
  # datastar[4,]=as.numeric(maxfocalcor$fsize[34:44]) 
}   
 
# DATACORSTAR max correlation 
 
datacorstar[1,]=rep.int(1,11) 
datacorstar[2,]=rep.int(0,11) 
 
for (i in 1:170){   
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  datacorstar[i+2,]=as.numeric(maxfocalcor$maxcor[((i-1)*11)+1:(i*11)]) 
} 
 
# Avec fmsb package : radarchart 
# DATASTAR focal size   
 
radarchart(datastar[1:4,], maxmin = F, axistype = 1, seg = 7, 
           caxislabels = as.character(focalsize), axislabcol = "black", 
           pdensity = 70) 
 
# Set graphic colors 
library(RColorBrewer) 
coul <- brewer.pal(3, "BuPu") 
colors_border <- coul[2] 
library(scales) 
colors_in <- alpha(coul[2],0.1) 
colors_in2 <- alpha("red",0.1) 
 
# na.omit(datastar[1:170,]) à cause de ligne 91 et 157 
radarchart(na.omit(datastar[1:172,]), maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=colors_in, pcol = colors_border, pty = 32) 
 
# DATACORSTAR max correlation 
 
radarchart(na.omit(datacorstar[1:172,]), maxmin = T, axistype = 4, seg = 5, 
           axislabcol = "black", 
           pfcol=colors_in2, pcol = colors_border, pty = 32) 
 
# Merle i=96 
radarchart(na.omit(datacorstar[c(1,2,98),]), maxmin = T, axistype = 4, seg = 5, 
           axislabcol = "black", 
           pfcol=colors_in2, pcol = "blue", pty = 32) 
 
radarchart(na.omit(datastar[c(1,2,98),]), maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=colors_in, pcol = "blue", pty = 32) 
 
# i=71 et 133  
# Le + petit et le + grand range size 
radarchart(datastar[c(1,2,71,133),], maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=c(coul[2], colors_in2), pcol = colors_border, pty = 32) 
 
######### Par groupe 
radarchart(datastar[c(1,2,rapaces),], maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=color.in , pcol = colors_border, pty = 32) 
radarchart(datastar[c(1,2,eau ),], maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=color.in , pcol = colors_border, pty = 32) 
radarchart(datastar[c(1,2,common),], maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=color.in , pcol = colors_border, pty = 32) 
radarchart(datastar[c(1,2,altitude),], maxmin = T, axistype = 1, seg = 5, 
           caxislabels = c("0", "5000", "10000", "15000", "20000", "25000"), 
           axislabcol = "black", 
           pfcol=color.in , pcol = colors_border, pty = 32) 
 
##### Corrélation entre les focal size trouvées avec explD2 ou avec cor 
 
ensemble=data.frame(fsize_explD2=maxfocal[,1], fsize_cor=maxfocalcor[,1], 
                    env=maxfocal[,3], spname=maxfocal[,4]) 
 
cor(maxfocal[,1],maxfocalcor[,1], method = "spearman")  
cor(na.omit(maxfocal[,1]), na.omit(maxfocalcor[,1]), method = "spearman")  
cor(na.omit(maxfocal[,2]), na.omit(maxfocalcor[,2]))  
 
########## Pour exporter le data.frame des résultats dans un autre format 
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write.csv(maxfocal, file = "maxfocal.csv") 
 
listei=data.frame(ID=0) 
for (i in 1:170){    
  listei[(11*(i-1)+1) : (11*(i-1)+11), 1]=rep(i, 11)  
} 
write.csv(listei, file = "listei.csv") 
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