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Abstract:

The relation between macroclimate suitability and species performance was studied at global scale for

the first time by Csergö et al, based on data from 93 populations of 34 plant species worldwide. Species

Distribution Models (SDMs) were used to calculate climate suitability. Populations were predicted to

decline  in  less  favourable  climates  and  to  persist  in  favourable  climates.  However  no  correlation

between the population growth rate and climate suitability was found. We assumed here that climate

suitability calculation, based on SDMs was not the best metric for this study and we proposed a novel

method, relating climate suitability to the distance of populations to niche boundaries. The relation of

the new measure to the population performance, represented by four demographic rates including the

population growth rate, was tested, but no correlation was found. We conclude that the available data is

too  scarce  to  evidence  if  the  lack  of  relationship  between  climate  suitability  and  demographic

parameters is due to constraints imposed by biotic interactions between species i, or if the global effect

of  climate  suitability,  constraining  demographic  strategies  is  not  well  represented  by  the  climatic

variables we used.
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Introduction:

Understanding the relation between the environmental conditions and population performance

is  important  in  order  to  predict  their  response  to  climate  change  and  integrate  this  knowledge  in

conservation management (Thomson et al, 2001). Individuals can support a range of climate conditions

which influence their performance, in isolation from interactions with other individuals from the same

or different species (Vasseur  et al, 2014). In real ecological situations, macroclimates can affect the

population  dynamics  at  different  degrees,  depending  on  their  environmental  situation.  The

performance, which is expected to be high in the most suitable climate and low in the less suitable

climate, may be biased by ecological processes such as biotic interactions and apparent demographic

balance (Csergö et al, 2017). However the predominant role of abiotic or biotic or both interactions on

the occurrence, abundance and performance population has always been a debate between scientists

(Soberon 2007So).

The work of Csergö et al has tested for the first time the unilaterality of biotic vs. abiotic factors

in  a  global  perspective  by  studying  the  impact  of  the  climate  suitability  predicted  from  Species

Distribution Models (SDMs) on the population performance (Csergö et al, 2017; Guisan et al, 2005).

The performance was represented by means and temporal  variations  demographic rates,  calculated

from  recent  and  rare  data  of  34  tree  and  herbaceous  perennial  plant  species  provided  by  the

COMPADRE  Plant  Matrix  Database  (Csergö  et  al,  2017). Some  correlations  were  found  but  no

significant relation with the population growth rate and the climate suitability, which was supposed to

be positive, was demonstrated.

The ability of SDMs’ to predict the demographic processes that control species’ persistence remains

uncertain, and we hypothesized that the population suitability predicted suitability by SDMs  was not

necessarily the best predictor of their demographic performance (Thuiller  et al. 2014). Therefore, we

proposed  a  new measure  of  the  climate  suitability  based  on the  distance  to  the  niche  boundaries

inspired by the fundamental niche as defined by Hutchinston in 1957.

The fundamental niche of a species is defined as the set of conditions within which a species

can live in the absence of competitors (Soberón, 2017). In a multidimensional space, the centre of the

fundamental  niche  brings  together  the  most  suitable  climate  conditions  for  the  species  (Lamotte,
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1979).The  suitable  conditions  progressively  decrease  with  the  distance  from  the  centre,  until  the

boundaries, where the less suitable climate are found (Bohner et al, 2020). So the more distant from the

niche  boundaries  towards  the  niche  center,  the  more  the  climate  suitability  increases  and also  the

demographic performance.

This property is valid without biotic interactions, so the correlation between the minimal distance to

niche boundaries and the performance will also allow to study the congruence between the realized and

the  fundamental  niche  in  a  global  perspective.  Again,  the  study  will  only  be  based  on  climate

suitability, which allows to keep the purpose of the study to test the unilaterality of the interactions.

So  we  supposed  a  positive  relation  between  the  minimal  distance  to  niche  boundaries  and  the

performance. This is similar to ask the question: Does climate suitability at range margins constrain

population growth rate in plants?

We worked on 102 population from 37 species, including the 34 species of  Csergö  et al.  To

represent the performance we worked on four demographic rates representing the most the preferance

for us (Bohner et al, 2020): the temporal variation in λ (CVλ), and the mean in population growth rate

(λ), time to quasi extinction and fecundity. 

We expected a positive relationship between the minimal distance to the niche boundaries and the

population growth rate, and a negative relationship the temporal variation in the observed population

growth rates. We also predicted a fecundity and a time to quasi extinction higher in more suitable

climate (Fig. 1).
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Methods:

We reanalysed the 102 populations across 37 plant species studied by Csergö et al. and we chose four

of the demographic parameters they analyzed in their  study: the temporal variation in growth rate

(CVλ), and the mean in population growth rate (λ), time to quasi extinction and fecundity. We created a

model to calculate the minimal distance to niche boundaries for each population. Then Mixed Linear

Models (LMMs) were used to test the correlations between our measures and each of the demographic

parameters.

Data: 

-population and occurrence data 

The study included 102 populations across 37 species. Three species with enough data (Actaea

elata, Cecropia obtusifolia and Digitalis purpurea) were added to the 34 species used by Csergö et al

in their article. Occurrence data were originally compiled from multiple dataset such as GBIF (Global

Figure  1: 2  Naive  expectations  of  relationships  between  predicted  the
minimal distance to niche boundaries and mean and temporal variability of
integrated  population  performance  metrics.  We  expected  a  positive
relationship  between  the  minimal  distance  to  niche  boundaries and
population  growth  rate,  fecundity  and  Time  to  quasi-extinction,  and
negative  relationships  with the  temporal  variation  (CV)  in  population
growth  rate.  CV =  coefficient  of  variation  across  annual  censuses,  i.e.
temporal variability in demographic performance.
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Biodiversity  Information  Facility),  BIEN (Botanical  Information  and  Ecology  Network),  local  and

regional herbaria and digitized species distribution maps from atlases. The species were previously

sorted in order to have presence data adequate for fitting quality SDMs, which were obtained using

four different techniques to obtain robust estimates: generalized linear models,  generalized boosted

regression models, random forest and maximum entropy modelling as carried out in the BIOMOD 2

library  (Csergö et al, 2017 Appendix S1.3). 

-Climatic data 

The eight same climatic factors from Csergö et al were selected: annual mean temperature,

temperature seasonality, mean temperature of warmest quarter, mean temperature of the coldest quarter,

precipitation  seasonality  and  precipitation  of  wettest  quarter  from  WORLDCLIM  dataset

(worldclim.org) and annual and seasonality of global evapotranspiration from the CGIAR Consortium

for Spatial Information (cgiarcsi.community). These factors were download at 5 arc-min resolution (i.e

corresponds to 1/12 ° or 9.1 km at the equator). 

-Demographic metrics

Matrix projection models, based on three years of field observations (two transition matrix) and

representing the proportion of individuals that transition across different stage were extracted from

COMPADRE 3.0.0 on 21 July 2014 (Salguero-Gómez et al. 2015). Individual matrices were available

for each year and for each population separately and allowed the calculation of the mean population

growth rate.  The stochastic  population growth rate  (λiid),  corresponding to the arithmetic mean of

log[N(t+1) – N(t)] were chosen among five other measures, to represent the growth rate. Its temporal

variation (CVdet) was calculated as the coefficient of variation from deterministic growth rate matrix

projections.

The fecundity was calculated as an average of the transition matrix among stages, weighted by the

stable stage distribution. 

Finally,  the  time  to  quasi  extinction  was  obtained  by  calculating  the  time  to  95% probability  of

reaching a set threshold. It was calculated from the initial number of individuals and the growth rate, by

doing simulation over 300 years.

All these demographic measures were calculated by Csergö et al (Appendix S1.2).
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Modelling the distance to niche boundaries:

The minimal distances to the niche boundaries were calculated with R 3.2.4 (rproject.org). The

multidimensional space of the eight climatic factors was reduced by applying a Principal Component

Analysis (PCA), where the two first axes represented  respectively 51.5 % and 24.9 % of the initial

variance in the original factors (Fig. 2).

For  each  species,  occurrence  data  were  projected  in  the  reduced  climatic  plane.  The  niches  were

modeled  in  that  plane  as  occurrence  density  using  kernel  density  estimations  (ks  package).  Niche

boundaries were delimited by choosing the 99% percentile of occurrence density in order to delimit a

polygon that surrounds 99% of the occurrences. Depending on the species’ distribution occurrence in

the climatic plane, several polygons could constitute the niche. 

Once the niche was determined, the climatic values of the populations  were extracted (i.e. using their

geographic coordinates) and projected them in the PCA plane. 

The function ecospat.NicheInnerness was then used to  calculate  the minimal  distance to  the niche

boundaries for each population (provided by Olivier Broennimann; soon to be found in the ecospat

package v3.1,). This function takes a set of target points and a niche represented by a spatial polygon as

input and creates a sample of 100 000 points which covers uniformly all the niche space and calculates

all the distances between these points and the limit line (with the function gDistance, rgeos package

v0.5-2).  The  maximum  distance  is  retained.  Then,  all  the  possible  distances  between  the  target

populations and the margins are calculated with the function gDistance. The minimum one is retained.

If the population do not belong to the niche, its distance is set as negative. Finally, the ratio of the

minimal distance of the target point to the maximum distance possible in the niche space is calculated

and returned by the function. 
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Statistical analysis: 

Several Linear Mixed Models (LMMs) were fitted to examine the impact of the minimal distance to

niche boundaries on temporal variation, and mean in population growth rates, population extinction

risk and fecundity.  The final  model  we retained used a  random intercept  by species  to  reflect  the

diverse population within a species. The minimal distance to niche boundaries and the growth type

(herbaceous perennial or tree) were modelled as fixed effects. The matrix dimension (number of stages

in life cycle) and study duration (number of projection matrices over the course of the study) was not

the variables of interest and were put in offset. Alternative models were discarded after comparison

within an analysis of variance (ANOVA) of the Bayesian Index Criterion (BIC).  

Then,  the marginal  and conditional  ‘variance explained’ R2 values were calculated to describe the

proportion of variance explained respectively by only the fixed factors and both factors (Nakagawa,

2013). Moreover, the confidence intervals representing the correlation of the response variable with the

fixed effects were obtained.

Figure 2: Correlation circle with the quality of variables representation (cos2): bio1 - Annual
mean temperature, bio4 - Mean temperature of warmest quarter, bio10 - Mean temperature of
coldest  quarter,  bio11 -  Precipitation seasonality,  bio15 -  Precipitation of  wettest  quarter,
bio16 -  Annual  and seasonality  of  global  potential  evapotranspiration,  Moisture_annual  -
annual of global evapotranspiration, Mvar10km – seasonality of global evapotranspiration.
bio1, bio4, bio10,bio11 are the most representative variables.
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The  same models  but  using  climate  suitability  measured  by Csergö et  al.  instead  of  the  minimal

distance  to  niche  boundaries  were  also  tested  to  compare  the  effects  of  the  two  metrics  on  the

demographic parameters.

The package used to fit the models was the lme4 package. The one which allowed plotting them was

the sjPlot package.

Results:

The populations studied occurred principally at niche margins (minimal distance: [0.00-0.50]).

Only one population was found outside the niche (minimal distance = -1.85).

A negative non-significant correlation, nearly flat between the mean population growth rate and the

minimal distance was observed (λiid=0.0303±0.0937 SD; Fig. 3a). A lot of populations with a λ=1

were observed all along the niche and several with a λ>1 were especially near the niche extremities.

None of them at a null distance had a λ≈0. No evidence that λ was related to the distance in either trees

or herbaceous perennials was showed.

The temporal variation population growth rate increased with the distance. The model fitted relatively

well  with  data  (Rc2=0.4436;  Table  1)  but  the  confidence  intervals  encompassed  zero  (CVλdet=

0.0325±0.0635 SD;  Fig.  3b).  However,  there  was  a  significant  variation  between Trees  (GTTree= -

0.0685±0.0835 SD; Table 1).

The time to quasi-extinction was high (300) for most of the populations regardless of their minimal

distance. A non-significant positive relationship of the distance with the time to quasi-extinction was

observed (-8.8865±66.6582 SD, Fig. 3d). Moreover this model did not fit well with data (Rc2=0.1756;

Table 1).

The correlation with the fecundity and the minimal distance to niche boundaries was the only fitted

with the data but was not significant (0.0102±0.0112 SD; Rc2=0.6378; Fig 3b; Table 1).

The comparison between models containing the minimal distance to niche boundaries and the

ones with the climate suitability calculated from SDMs showed more fitted models for the current

study, except for the growth rate with a Rc2 pratically similar (Rc2= 0.222 / 0.225). However no big

differences were noted. 
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The first column shows the fixed effects in the full models and the abbreviated and full name of predicted variables. The
next  columns  show  the  variance  and  standard  deviation  for  significant  slopes  and  the  intercept.  The  marginal  and
conditional R2 values ere also calculated. SP – Species, MD - matrix dimension, SL - study length, GT - growth type,
SMDN – standardized minimal distance to niche boundaries,  CV -  coefficient of variation. Effect  sizes  for models of
transient dynamics and underlying demographic processes are comparatively presented in Fig. 3. 

Figure 3: The relation-ship between the minimal distance to niche boundaries and the population performance: a)
lambda -  stochastic  population growth rates,  b) CV_lambda -  temporal  variation of  deterministic  population
growth rates , c) Fe - fecundity, and d) TExt - time to quasi-extinction. SMDN- Scaled Minimum Distance to
Niche boundaries.  Dotted lines represent 95% confidence intervals around the mean

Table 1: Effects of climate suitability on demographic processes
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Discussion:

Populations at the niche centre, in high range of climate suitability are supposed to have an important

population  growth  rate  and  time  to  quasi-extinction,  which  traduces  a  linear  positive  relationship

between these demographic parameters and the minimal distance to niche boundaries. However, at the

spatial and temporal resolution of this study, no significant correlation is observed, with even a reverse

trend  (negative  relationship).  Only  the  fecundity  factor  reflects  hypotheses  and increases  with  the

distance but it slope is not significant. These results suggest different properties between the realised

and the fundamental niche. Models would not fit with this theoretical representation and the positive

correlation between performance and climate suitability does not seem to exist. 

Conceptual issues:

According to the results, no relationship between predicted climate suitability and the performance is

demonstrated in species ecological niche in  a global  dimension.  It  would mean that  either  climate

suitability have no impact on population performances and would be determined by biotic interactions,

or  that  the  multiple  demographic  strategies  decouple  most  of  the  time  and  in  an  important  way

population dynamics from macroclimate suitability (Pearson & Dawson 2003). 

However, the first proposition is not possible. The effect of climate factors situated at the limit of the

ecological niches is well illustrated by the climate change and leads to a diminution of population

performance (Hoegh-Guldberg, 1999). 

The second is more plausible but most of the time local studies on microclimate traduces an important

role  of  climate in  demographic constrains.  Moreover,  some studies  showed that  the  climate had a

greater influence than species composition on historical population dynamics  (Adler  et al, 2008). A

methodological issue is then not to be excluded.

Methodological limits:

Two techniques  to  determine  the  climate  suitability  range  of  species  were  tried.  Once  based  on

observed distribution data but it capacity to reflect the population dynamic was questioned (Marcelo et

al, 2016) and the other based on the distance to niche boundaries. This latter can also be called into

245

250

255

260

265

270



question,  based  on the  fundamental  niche  theory,  which  represents  an  ideal  to  determined.  Biotic

interactions are not represented, preventing the realized niche to approach the fundamental niche. 

Actually,  the  climate  suitability  of  a  species  is  really  hard  to  determine.  Population  can  occur  in

different  micro  climates  and  be  well-adapted  to  them.  From one  population  to  another  the  niche

boundaries could be different and these different populations could then have a different performance

value under similar climate conditions. 

Finding a way to determine the climate suitability, could be the most important challenge for this study.

Moreover,  the study may not represent well  a global representative range of all  the environmental

conditions due to the poor spatial replication. Only one to five populations per species were available

and did not covered all the representative distances to niche boundaries. However more valid data take

time to be obtained.

Finding models being able to represent species performance remains a real challenge, which would

facilitate conservation management.
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Annexe1_distance_calculation.txt
#bil direct relie à hdr
setwd("Z:/projects-ext/GEODEM/Zoe")

#import libraries
library(corrplot)
library(sp)
library(dplyr)
library(raster)
library(rgeos)
library(ks)
library(raptr)
library(ggplot2)
library(geosphere)
library(PBSmapping)
library(rgdal)
library(sf)
library(stringr)
library(ade4)
library(plyr)
library(FactoMineR)
library(factoextra)
library(xlsx)
source("functions_innerness_OB_22.05.2019.r")

#Import data from WORLDCLIM and CGIAR
ameanT <- raster("ClimateVariables/Bioclim/wc5/bio1.bil")
seasonT <- raster("ClimateVariables/Bioclim/wc5/bio4.bil")
meanTwq <- raster("ClimateVariables/Bioclim/wc5/bio10.bil")
meanTcq <- raster("ClimateVariables/Bioclim/wc5/bio11.bil")
seasonP <- raster("ClimateVariables/Bioclim/wc5/bio15.bil")
wqP <- raster("ClimateVariables/Bioclim/wc5/bio16.bil")
Aevap <- raster("ClimateVariables/Moisture/Moisture_annual.asc")
Sevap <- raster("ClimateVariables/Moisture/Mvar10km.asc")

#verification
plot(ameanT, main="Annual mean temperature")

#stack the factors together in a multidimensional plane
clim<-stack(ameanT,seasonT,meanTwq,meanTcq,seasonP,wqP,Aevap,Sevap)
clim

#remove the no avalaible coordinates
climdf.all<-na.omit(getValues(clim))

#Creation of a sample of 20 000/2 millions pixels
#On crée un echantillon de 20 000 sur les 2 millions, à enlever après !! 
Comment sait si espèces à ces endroits??
climdf<-climdf.all[sample(1:nrow(climdf.all),20000),]

##ACP##
#We reduce the dimension in two axes
pca=PCA(climdf, scale.unit = TRUE, ncp = 2, graph = TRUE)
plot(pca)

#Contribution coeficient of each factors for each dimension
pca$var$cor

#Representation of the factors' contributions
fviz_pca_var(pca, col.var = "cos2",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE)

##ACP end##

#list creation
dist= c() #no standardized distance
distStand=c() #standardized distance
#initilisation of population's number
ini=1

#Importation of population's demographic data
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dem<-read.csv(file="dem/Final_Dataset_final.csv")

##DISTANCE CALCLUATION##

#Species name importation
species<-read.csv(file="species_name.csv")

#Loop for the 37 species
for (i in 1:37){
  
  #we are gradually importing the names of the species on the list
  namesp<-species[i,1]
  namesp
  #Species distribution data importation
  sp<-read.csv(paste0("occ/",namesp,".csv"))
  #visualization
  plot(ameanT, main=paste0("Annual mean temperature ",namesp))
  points(sp)

  #prend la valeur des couches au point donné, extrait la vleur des 
facteurs au point
  spdf<-extract(clim,sp)
  
  #We take the species coordinates in the space of the PCA
  sp.scores<-predict(pca, newdata=spdf)$coord
  
  #function to define the niche by its density
  niche <- kde(x=na.omit(sp.scores),compute.cont=TRUE)
  #visualization
  plot(niche, main=paste0(namesp))
  
  #define the limits of the niche
  #level=niche1$cont[length(niche1$cont)] : we take the last element of 
cont(=its length)that takes into account 99% of the points of the species 
in the niche
  #the niche can contain several polygons
  env <- 
contourLines(niche$eval.point[[1]],niche$eval.points[[2]],niche$estimate,le
vel=niche$cont[length(niche$cont)])
 
   #list creation
  liste=list()
  length=1:length(env)
  length
  #we stock the number of polygons of the niche in the liste
  #we remove the first element of the of each polygon:"level"
  for (k in 1:length(env))
    liste[[k]]=Polygons(list(Polygon(env[[k]][-1])),ID=length[k])
  
  #we create a class with the polygons
  poly=SpatialPolygons(liste)
  plot(poly, axes=TRUE,main=paste0(namesp))
  
  #coordinates are extracted for the species' populations (LON, LAT) 
  pop<-dem[dem$SpeciesAccepted==paste0(namesp),59:58]
  pop
  #we take the number of populations in the species
  nbpop<-nrow(pop)
  nbpop
  
  #climatic factors are extracted at the points of presence of the species
  climpop<-extract(clim,pop)
  climpop
  #coordinates are imported into the PCA space
  scorespop<-predict(pca, newdata=as.data.frame(climpop))$coord
  #We don’t want a matrix but coordinates to use it in the fontion
  scorespopSP<-SpatialPoints(scorespop)
  plot(scorespopSP,add=T, main=paste0(namesp) )
  
  ##distance calculation##

Page 2



Annexe1_distance_calculation.txt
  NI<-ecospat.NicheInnerness(foc.pop=scorespopSP,niche=poly,bck=NA, 
test=NA, bck2=NA)
  NI        
  distanceMin<-NI$NI.abs#we get the "raw" minimal distance 
  distanceMinStand<-NI$NI#we get the standardized minimal distance 
  distanceMin
  
  for (n in 1:nbpop){
    dist[ini]<-distanceMin[n]
    dist[ini]
    distStand[ini]<-distanceMinStand[n]
    ini=ini+1}
}

dist
distStand

##CORRELATION LAMBDA AND DIST##
#file creation
SMDN<-distStand
MDN<-dist
SP<-dem$SpeciesAccepted
CS<-dem$HabSuit
Fe<-dem$Fecundity
TExt<-dem$timeto95ext_200
lambda<-dem$lambdaiid
CV_lambda<-dem$CV_lambdas
GT<-dem$GrowthType
MD<-dem$MatrixDimension
SL<-dem$StudyLength

myDat <- data.frame(SP, lambda, CV_lambda, SMDN, MDN, CS, Fe, TExt, GT, MD,
SL)
corrDat <- myDat
names(myDat) <- c("species","growth rate","CV growth rate","Minimal 
distance boundaries","standardized Minimal distance boundaries", "Habitat 
suitability", "Fecundity", "Time to quasi-extinction", "Growth rate", 
"Matrix dimension", "Study length")
myDat

#exporter les données dans un fichier csv vide
write.csv(corrDat,file="Z:/projects-ext/GEODEM/Zoe/dem/clean data.csv") 
write.csv(corrDat,file="Z:/projects-ext/GEODEM/Zoe/dem/Correlation 
file.csv") 
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library(Rcpp)
library (rstanarm)
library(Matrix)
library(lme4)
library(shiny)
library(shinystan) 
library(nlme)
library(sjPlot)
library(car)

corrDat <- read.csv(file="C:/Users/Zoe/Desktop/First step 
project/correlation/correlation file.csv")

hist(corrDat$MDN)
hist(corrDat$SMDN)
hist(corrDat$lambda)
hist(corrDat$CV_lambda)
hist(corrDat$TExt)
hist(corrDat$Fe)
hist(corrDat$GT)
hist(corrDat$MD)
hist(corrDat$SL)

#offset preparation
b<- offset(MD)
c<- offset(SL)

lm<-lm(CS~SMDN)
plot(x = SMDN, y = CS, main="Relationship between the climate suitability 
and\n the minimal distances to the niche boundaries for populations", 
xlab="Minimal distances to the niche boundaries", ylab="Climate 
suitability")
abline(lm)

#1)Stochastic population growth rate

lm1<-lm(lambda~SMDN)
plot(x = SMDN, y = lambda, main="Relationship between the population growth
rate and\n the minimal distances to the niche boundaries for populations", 
xlab="Minimal distances to the niche boundaries", ylab="Growth rate")
abline(lm1, conf.int=T)

lambda1<-lmer(lambda~SMDN+(1|SP)+GT+b+c,data=corrDat)
lambda3<-lmer(lambda~SMDN+(1|SP)+(1|GT)+b+c,data=corrDat)
lambda4<-lmer(lambda~SMDN+(1|SP)+(SMDN|GT)+GT+b+c,data=corrDat)
lambda5<-lmer(lambda~SMDN+(1+SMDN|SP)+GT+b+c,data=corrDat)
lambda6<-lmer(lambda~SMDN+(1+SMDN|SP)+(1|GT)+b+c,data=corrDat)
lambda7<-lmer(lambda~SMDN+(1+SMDN|SP)+(SMDN|GT)+b+c,data=corrDat)

anova(lambda1,lambda3,lambda4,lambda5,lambda6,lambda7)
summary(lambda1)
confint(lambda1)
r.squaredGLMM(lambda1)
Anova(lambda1)

plot_model(lambda1,type="pred",pred.type="re",terms="SMDN")
plot_model(lambda1,type="slope",pred.type="re")
plot_model(lambda1,type="std",pred.type="re")

#Temporal variation of deterministic population growth rates

lm2<-lm(CV_lambda~SMDN)
plot(x = SMDN, y = CV_lambda, main="Relationship between the temporal 
variation growth rate and\n the minimal distances to the niche boundaries 
for populations", xlab="Minimal distances to the niche boundaries", 
ylab="Temporal variation growth rate")
abline(lm2)
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CV_lambda1<-lmer(CV_lambda~SMDN+(1|SP)+GT+b+c,data=corrDat)
CV_lambda3<-lmer(CV_lambda~SMDN+(1|SP)+(1|GT)+b+c,data=corrDat)
CV_lambda4<-lmer(CV_lambda~SMDN+(1|SP)+(SMDN|GT)+GT+b+c,data=corrDat)
CV_lambda5<-lmer(CV_lambda~SMDN+(1+SMDN|SP)+GT+b+c,data=corrDat)
CV_lambda6<-lmer(CV_lambda~SMDN+(1+SMDN|SP)+(1|GT)+b+c,data=corrDat)
CV_lambda7<-lmer(CV_lambda~SMDN+(1+SMDN|SP)+(SMDN|GT)+b+c,data=corrDat)

anova(CV_lambda1,CV_lambda3,CV_lambda4,CV_lambda5,CV_lambda6,CV_lambda7)
summary(CV_lambda1)
confint(CV_lambda1)
r.squaredGLMM(CV_lambda1)
Anova(CV_lambda1)

plot_model(CV_lambda1,type="pred",pred.type="re",terms="SMDN")
plot_model(CV_lambda1,type="slope",pred.type="re")
plot_model(CV_lambda1,type="std",pred.type="re")

#Time to 95% probability of quasi-extinction

lm3<-lm(TExt~SMDN)
plot(x = SMDN, y = TExt, main="Relationship between the time to quasi 
extinction and\n the minimal distances to the niche boundaries for 
populations", xlab="Minimal distances to the niche boundaries", ylab="Time 
to quasi-extinction")
abline(lm3)

Time1<-lmer(TExt~SMDN+(1|SP)+GT+b+c,data=corrDat)
Time3<-lmer(TExt~SMDN+(1|SP)+(1|GT)+b+c,data=corrDat)
Time4<-lmer(TExt~SMDN+(1|SP)+(SMDN|GT)+GT+b+c,data=corrDat)
Time5<-lmer(TExt~SMDN+(1+SMDN|SP)+GT+b+c,data=corrDat)
Time6<-lmer(TExt~SMDN+(1+SMDN|SP)+(1|GT)+b+c,data=corrDat)
Time7<-lmer(TExt~SMDN+(1+SMDN|SP)+(SMDN|GT)+b+c,data=corrDat)

anova(Time1,Time3,Time4,Time5,Time6,Time7)
summary(Time1)
r.squaredGLMM(Time1)
confint(Time1)
Anova(Time1)

plot_model(Time1,type="pred",pred.type="re",terms="SMDN")
plot_model(Time1,type="slope",pred.type="re")
plot_model(Time1,type="std",pred.type="re")

#Fecundity

lm4<-lm(Fe~SMDN)
plot(x = SMDN, y = Fe,  main="Relationship between the fecundity and\n the 
minimal distances to the niche boundaries for populations", xlab="Minimal 
distances to the niche boundaries", ylab="Fecundity")
abline(lm4)

Fe1<-lmer(Fe~SMDN+(1|SP)+GT+b+c,data=corrDat)
Fe3<-lmer(Fe~SMDN+(1|SP)+(1|GT)+b+c,data=corrDat)
Fe4<-lmer(Fe~SMDN+(1|SP)+(SMDN|GT)+GT+b+c,data=corrDat)
Fe5<-lmer(Fe~SMDN+(1+SMDN|SP)+GT+b+c,data=corrDat)
Fe6<-lmer(Fe~SMDN+(1+SMDN|SP)+(1|GT)+b+c,data=corrDat)
Fe7<-lmer(Fe~SMDN+(1+SMDN|SP)+(SMDN|GT)+b+c,data=corrDat)

anova(Fe1,Fe3,Fe4,Fe5,Fe6,Fe7)
summary(Fe1)
confint(Fe1)
r.squaredGLMM(Fe1)
Anova(Fe1)

plot_model(Fe1,type="pred",pred.type="re",terms="SMDN")
plot_model(Fe1,type="slope",pred.type="re")
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plot_model(Fe1,type="std",pred.type="re")

##ANNA Article##

hist(corrDat$CS)

#2)Stochastic population growth rate

lambda2<-lmer(lambda~CS+(1|SP)+GT+b+c,data=corrDat)

summary(lambda2)
confint(lambda2)
r.squaredGLMM(lambda2)

plot_model(lambda2,type="pred",pred.type="re",terms=c("CS"))
plot_model(lambda2,type="std",pred.type="re")

#Temporal variation of deterministic population growth rates

CV_lambda2<-lmer(CV_lambda~CS+(1|SP)+GT+b+c,data=corrDat)

summary(CV_lambda2)
confint(CV_lambda2)
r.squaredGLMM(CV_lambda2)
anova(CV_lambda2)

plot_model(CV_lambda2,type="pred",pred.type="re",terms="CS")
plot_model(CV_lambda2,type="std",pred.type="re")

#Time to 95% probability of quasi-extinction

Time2<-lmer(TExt~CS+(1|SP)+GT+b+c,data=corrDat)

summary(Time2)
r.squaredGLMM(Time2)
confint(Time2)
anova(Time2)

plot_model(Time2,type="pred",pred.type="re",terms="CS")
plot_model(Time2,type="std",pred.type="re")

#Fecundity
lm5<-lm(Fe~CS)
plot(x = CS, y = Fe, main="Relationship between the fecundity and\n climate
suitability for populations", xlab="Climate suitabiliy", ylab="Fecundity")
abline(lm5)

Fe2<-lmer(Fe~CS+(1|SP)+GT+b+c,data=corrDat)

summary(Fe2)
confint(Fe2)
anova(Fe2)
r.squaredGLMM(Fe2)

plot_model(Fe2,type="pred",pred.type="re",terms="CS")
plot_model(Fe2,type="std",pred.type="re")
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