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Abstract 

 

Climate change is a real problem that impacts the geographical distribution of ecological niches 

of different species and their distribution. Some species, such as micro-organisms, are essential 

for the proper functioning of soils ecosystems. It is therefore important to acquire knowledge 

about their ecological niche, and their potential response to these changes. In this paper, using 

soil data from 136 sites in the western  Swiss Alps, a study of the ecological niche of three 

functional groups of Fungi: Pathotrophs, Saprotrophs and Symbiotrophs and five taxonomic 

groups: Chytridiomycota, Ascomycota, Basidiomycota, Zygomycota and Glomeromycota, as 

well as the variation of their abundance along certain edaphic and climatic variables, was 

performed. Here, I show that the niche breadth of all groups are similar, and that the majority 

of zOTUs are qualified as specialists, and therefore subject to extinction risk during abrupt 

changes. Moreover, for all groups, the abundance of zOTUs increases when two edaphic 

variables, Total Organic Carbon and Soil Water Content, increase. Regarding the variation of 

zOTU abundance along climatic variables, this project shows that both low and high 

temperatures are beneficial for zOTUs of all three functional groups and all five taxonomic 

groups. 

 

 

Le changement climatique est un réel problème qui impacte la distribution géographique des 

niches écologiques des différentes espèces ainsi que leur distribution. Certaines espèces, 

comme les micro-organismes sont essentiels pour le bon fonctionnement des sols. Il est donc 

important d’acquérir des connaissances concernant leur niche écologique, et leur potentielle 

réaction face à ces changements. Dans cet article, en utilisant des données de sols de 136 sites 

dans les Alpes Suisses, une étude de niche écologique de trois groupes fonctionnels de Fungi : 

les Pathotrophes, les Saprotrophes et les Symbiotrophes, et de cinq groupes taxonomiques : 

Chytridiomycota, Ascomycota, Basidiomycota, Zygomycota et Glomeromycota, ainsi que la 

variation de leur abondance le long de certaines variables édaphiques et climatiques, ont été 

réalisées. Ici, je montre que les niches des trois groupes fonctionnels et des cinq groupes 

taxonomiques sont similaires, et que la majorité des zOTUs sont qualifiés de spécialistes, donc 

sujets à un risque d’extinction lors de changements trop brutaux. De plus, pour la totalité des 

groupes, l’abondance des zOTUs augmente lorsque deux variables édaphiques, Total Organic 

Carbon and Soil Water Content, augmentent.  
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Concernant la variation de l’abondance des zOTUs le long de variables climatiques, ce projet 

montre qu’à la fois des basses, ainsi que des hautes températures sont bénéfiques pour les 

zOTUs des différents groupes. 

 

Introduction  

 

Mountains have complex structures with steep slopes, various aspects, high relief,  and  

important elevation shift that leads to a large diversity species (Körner, 2004). However, 

temperatures above 4,000 m have warmed 75% faster than temperatures in areas below 2,000m 

(Pepin et al., 2015).  Therefore, the range shift of mountain species is changing very fast 

(Colwell et al., 2008;  Elsen & Tingley, 2015). For example, plant species already underwent a 

significant upward shift during the 20th century (Lenoir et al., 2008). Climate change strongly 

disturbs species distribution by changing their environment, particularly species with narrow 

tolerance of environmental conditions (Thuiller et al., 2005). Those species are particularly 

affected because they are more specialised in the exploitation of their environment, and 

therefore have more difficulty adapting to changes (Slatyer et al., 2013) . Thus, in order to 

develop conservation plan for mountain ecosystems, it’s important to know the ecology and 

species distribution that populate them.  

 

 A tool to estimate the specie range limits and to predict how species may react to environmental 

changes is the niche breadth (Fisher-Reid, Kozak, & Wiens, 2012; Morin & Lechowicz, 2013). 

The niche breadth is the range of conditions that permit a species to maintain their population 

alive or to have a positive growth rate (Carscadden et al., 2020). The principle of ecological 

niche was first defined by Hutchison in 1957 (Hutchinson, 1957). It describes a space where a 

species can grow, governed by two parameters : biological parameters, corresponding to the 

interspecific interactions in that “space”, and physical and chemical parameters, corresponding 

to the environmental gradients or environmental barriers. Another important tool to forecast 

how species might respond to climate changes, is species distribution models (SDMs). Species 

distribution models quantify the correlation between environmental variable and 

the distribution of species ( Miller, 2010 ) It is widely used on macroorganisms, in most cases 

with presence-absence data but can also be used on microorganisms with relative abundance 

data (Mod et al., 2021). 
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While the species distribution of macroorganisms are well studied  (Rubidge et al., 2011;  

Williams et al., 2009), microorganisms are lagging behind, mainly due to difficulties 

characterizing microbial taxa. Indeed, the fact that the species studied are not visible to naked 

eyes, the poor accessibility to the soil matrix, and the high biodiversity of 100,000 to 1,000,000 

different species per gram (T.P. Curtis et W.T. Sloan, 2005), are a challenge to determine their 

taxonomy. With the improvement of molecular methods, the number of studies investigating 

patterns of microorganisms distribution are increasing (Case et al., 2007; Yashiro et al., 2016;  

Malard et al., 2021; Mazel et al., 2021.; Mod et al., 2021). For example, it has been shown that 

soil protist function vary strongly with elevation with an increase of the ratio 

consumers/parasites as the elevation increase (Mazel et al., 2021), and spatial patterns of soil 

bacteria under current and future environmental conditions has been modelled in mountains 

environments (Mod et al., 2021). 

 

Although global fungal distribution has been studied (Tedersoo et al., 2014), regional fungi 

distribution models are lacking, despite their essential role in soil ecosystems such as nutrient 

cycle or organic matter decomposition (Käärik, 1975; Powlson, Hirsch, & Brookes, 2001; 

Yuan, Ge, Chen, O’Donnell, & Wu, 2012) . Fungal taxonomy is important because different 

taxa can have different roles in the soil ecosystem. Fungi can be divided in three main functional 

groups, that cover different trophic modes (Nguyen et al., 2016). Symbiotrophs are important 

for plant richness and plant growth by a process of partnership called symbioses, allowing the 

fungi to acquire carbon from their partnership and the plants to acquire nitrogen and phosphor 

(Harman, 2011; Hiiesalu et al., 2014). Saprotrophs play a major role in organic matter 

decomposition, carbon and nitrogen cycle, nutrient cycling, and nutrient retention (Käärik, 

1975; Powlson, Hirsch, & Brookes, 2001; Yuan et al., 2012). Moreover, Pathotrophs can act as 

biocontrol agents, that prevent or reduce damage done by harmful organisms, but can also cause 

diseases for other organisms, like trees, plants or cultures (Sun et al., 2019). Therefore, 

determining the drivers of taxonomical and functional group distribution, and evaluating 

changes in their niche breadth may be relevant to understand fungi’s tolerance and forecast how 

they might respond to climatic changes.  

 

The aim of this study was to examine differences in fungal niche breadth, determine the 

importance of environmental variables on fungal zOTUs (Zero-radius Operational Taxonomic 

Unit) abundance, and model the zOTUs abundance of taxonomic and functional groups along 

different gradients. 
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Here, using data from 136  soil samples collected from the western Swiss Alps, I investigated 

different hypotheses. First, I expected a difference of niche breadth between the different 

taxonomic  groups and their respective functional groups as each groups occupies a different 

trophic environment and rely on different strategies to maintain their growth (Käärik, 1975; 

Powlson et al., 2001; Harman, 2011; Yuan et al., 2012; Hiiesalu et al., 2014;  Sun et al., 2019). 

Secondly, I expected that edaphic and climatic variables would change the abundance of the 

different functional and taxonomic groups as microorganisms distribution partly rely one 

edaphic and climatic variables.  

 

Materials & Methods  

 

Study area  

 

In this study, 136 sites, in 700km2  were sampled at different elevation ranging from 425m to 

3120m in a well-studied area in the western Swiss Alps.  In general, climate conditions are 

heterogenous, with annual mean temperatures between 8°C at 1600 m and -5°C at 3000 m. 

Precipitations sums varying from 1200 mm at 600 m and 2600 mm at 3000 m (Buchot, 1975).  
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Figure 1 : Location of the 136 study sites in the western Swiss Alps 

 

Environmental predictors  

 

A total of 12 environmental predictors were selected based on a previous study conducted by 

Malard et al., 2021 in review in the same study area : Soil temperature, Soil Water Content, pH, 

Total Organic Carbon, Max temperature of warmest month (bio5_tmax), Electroconductivity, 

Sum of growing day degree days above 3°C (gdd3), Freezing Degrees Day, phosphate, Annual 

precipitation (bio12), plant richness and Snow Cover Duration. A second selection has been 

conducted in order to remove collinearity in the analysis by calculating the correlation with the 

package corrgram between predictors. All environmental variables with a correlation higher 

than 0.7 have been removed. At the end, 9 environmental predictors were conserved : Soil 

temperature, Soil Water Content, pH, Total Organic Carbon, Max temperature of warmest 

month (bio5_tmax), Electroconductivity, Sum of growing day degree days above 3°C (gdd3), 

Freezing Degrees Day and phosphate. 
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Data collection, DNA extraction, amplicon sequencing and bioinformatic processing 

 

All those steps had been conducted before starting my project. They are described in Malard et 

al. (2021). Soil DNA was extracted using the PowerSoil kit (Qiagen) and then the ITS region 

was sequenced using the primers ITS1F and ITS2 using Illumina sequencing HiSeq 2500 

platform at the Genomic Technologies Facility of the University of Lausanne. A custom 

bioinformatic pipeline was created to process the sequences and to obtain a zOTUs table. 

Taxonomy was assigned against the full SILVA v132 database (Yilmaz et al., 2014) using the 

RDP (ribosomal database project) naive Bayesian classifier v2.12 (Wang et al., 2007) with the 

UNITE (fungal ITS trainset 07/04/2014).  

 

Niche breadth and niche position calculation 

 

All analyses were performed in the R environnment (Team, 2017). Functional groups were 

assigned based on the taxonomy using the microeco package (Liu et al., 2021), with the 

FUNGUILD  database (Nguyen et al., 2016). In total, nine-teen functional groups were assigned 

to all the zOTUs. However, only the three main fungal functional groups were conserved: 

Saprotrophs, Pathotrophs and Symbiotrophs. The niche breadth and niche position were 

calculated for each zOTUs, using the function “ecospat.nichePOSNB” in the ecospat package 

(Di Cola et al., 2017; Malard et al., 2021).  

The niche breadth was calculated as the standard deviation of each abiotic variable, weighted 

by the abundance of the zOTUs at each sampling site, and the niche position as the mean 

of the variable, weighted by the abundance of the zOTUs at each sampling site. This process 

was repeated for each of the nine variables. This function results in a value for the niche breadth, 

associated with a niche position values. To characterize the relation of the regression between 

the niche breadth and the niche position, R-squared value between both was calculated, as well 

as the p-value. Results were plotted using the ggplot2 package  (Wickham, 2016). 

 

Modelling  

 

In order to predict the zOTUs abundance for all 136 sites, species distribution models (SDMs) 

were fitted by relating zOTU abundance to the environmental predictors using Generalized 

Additive Models (GAMs; Guisan et al., 2002) using the mgcv package in R (Wood, 2011). First, 
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all zOTUs with less than 10 occurrences in all sites were removed to reduce the impact of rare 

species on the model, reducing the total number of zOTUs from 82375 to 43483.  

Then, Random Forest model were built to investigate the importance of environmental variables 

on the abundance of each zOTUs. This model was chosen because it is one of the most used in 

species distribution studies .The increase of the mean squared error (%IncMSE) has been used 

for this purpose. This metric indicates the increase in the mean squared error of prediction after 

permuting this variable. This give us the most important variable for the abundance of zOTUs. 

 

In order to have an understanding of the fungi’s abundance variation, the abundance of each 

zOTU was modelled as a function of the nine environmental predictors (Total Organic Carbon, 

Soil Water Content, gdd3, Electronical Conductivity, Total Phosphorus, bio5_tmax, pH, Soil 

temperature and Freezing degree days) using generalized additive models with negative 

binomial distribution (GAMnb) from the R-package mgcv (Wood, 2011). The choice of this 

model was based on a previous study showing the higher performance of this model compared 

to others (Mod et al., 2021). The logarithm of the total sequence count for each zOTU has been 

added as an offset to reduce the effect of the varying abundance of each zOTU (Mod et al., 

2021). 

 

The model fit, which is the success with which the model has managed to adjust to the data, 

was assessed by the correlation between our observed values and the fitted values.  

To evaluate the model prediction performance, cross-validation has been used. The model was 

evaluated 100 times, each time taking randomly 80% of the data to train the training, and 20% 

for evaluation. This way, each site was used the same number of times as the other sites. As for 

the fit, the correlation between observed values and predicted values was calculated and used 

to evaluate the model. 

Finally, response curves (Elith et al., 2005) that represent the predicted abundance in function 

of a specific gradient were obtained for each zOTU and for each environmental variables. Then, 

all response curves were aggregated into taxonomic and functional groups. To obtain those 

response curves the predicted abundance has been calculated with only the variable of interest 

that changed from its minimum to its maximum value while, all others variables were fixed at 

their median. 
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Results 

 

Functional group’s niche 

 

Table 1: Niche breadth analysis. Adjusted R-squared values and their significance according to 

three functional groups and unassigned zOTUs, for 9 specific gradients. The red gradient is relative 
to the correlation values: the higher the correlation value, the redder the cell. Significance levels: ***: 
p-value < 0.001; **: p-value < 0.01; *: p-value ≤ 0.05; NS: p-value > 0.05.  

 

The results of the niche calculation for the three functional groups (Table 1) indicate that two 

environmental gradients have an important correlation with the niche breadth of all three 

functional groups. Indeed, TOC have a adj.R2 of 0.47 for Pathotrophs, 0.35 for Saprotrophs and 

0.34 for Symbiotrophs. Unassigned zOTU have a adj.R2 of 0.5. SWC have also high adj.R2, 

0.44 for Pathotrophs, 0.4 for Saprotrophs, 0.38 for Symbiotrophs and 0.52 for unassigned 

zOTUs.  

Of all of three functional groups, Pathotrophs have the two highest adj.R2 values of TOC and 

SWC, suggesting that the niche breadth of Pathotrophs is more correlated with TOC and SWC 

gradient. The seven other gradients generally have an adj.R2 lower than 0.20. The trend of this 

correlation is represented in Figure 2.  
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Figure 2: Niche breadth values in function of Soil Water Content and Total Organic Carbon 

gradients, for 3 functional groups. Each square represents an zOTU, the red line is a regression line 

based on a second degree polynomial (y~poly(x,2)).  The point density is represented in green to black. 

The violin plots represent the niche breadth distribution, the mean is represented by the square. 

 

For Soil Water Content and Total Organic Carbon, although all functional groups have an 

important zOTUs density with low niche breadth value, it seems that Saprotrophs and 

Symbiotrophs have a higher number of zOTUs with a high niche breadth value. However, this 

observation must be interpreted carefully due to the differences of zOTUs number (Table 1) 

between Pathotrophs (2511), Saprotrophs (16 241) and Symbiotrophs (10 960). 
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Taxonomic group’s niche 

Table 2: Niche breadth analysis. Adjusted R-squared values and their significance according to 

five taxonomic groups and unassigned zOTUs, for 9 specific gradients. The red gradient is relative 

to the correlation values: the higher the correlation value, the redder the cell. Significance levels: ***: 

p-value < 0.001; **: p-value < 0.01; *: p-value ≤ 0.05; NS: p-value > 0.05. 

 

 

The niche calculation is similar to the three functional groups for the five taxonomic groups at 

the phylum level (Table 2). Indeed, TOC and SWC have the highest R2 value for all of the 

groups, with a maximum value of TOC (0.65) and SWC (0.53) for Chytridiomycota. The trend 

of this relation is shown on Figure 3. However, as before, this observation must be interpreted 

with care due to the low number of zOTUs belonging to Chytridiomycota (937) compare to the 

other taxonomic groups. 
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Figure 3: Niche breadth values in function of SWC and TOC gradients, for 5 taxonomical groups. 

TOC (wt%) : weight pourcent. Each point represents a zOTU, the red line is a regression line based on 

a second degree polynomial (y~poly(x,2)). The point density is represented in green to black. The violin 

plots represent the niche breadth distribution, the mean is represented by the square. 

 

Random Forest 

The importance of the variables was calculated for each functional group but each functional 

group has the same results as the ones shown in Figure 4. 

The Random Forest results (Figure 4) indicated that two climatic variables, gdd3 and 

bio5_tmaxw are the predictors that influence the distribution of zOTUs the most with an 

increase of the mean squared error( %IncMSE) of ~6.5. Three edaphic variables, pH, Freezing 

Degree Day and Total Organic Carbon are behind with a respective %IncMSE of 4.1, 3.7 and  

2.9.   
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Finally, total phosphorus, Soil Water Content, soil Temperature and Electronical Conductivity 

have an %IncMSE lower than 1.5. The importance of the variables was also calculated for each 

functional group but these are not shown here because each functional group has the same 

results as in Figure 4.  

 

 

Figure 4: Importance of the nine different variables based on Random Forest for all zOTUs. The 
importance is expressed in percentage of the mean square error increase, bio5_tmaxw max temperature 
of warmest month (°C), EC electrical conductivity (1:1 μS/cm), FDD freezing degree days – Sum of 
temperature <0°C (°C), gdd3 Sum of growing degree days above 3°C (°C), pH soil pH, phos total 
phosphorus content (mg/g), soilT soil temperature (°C), SWC bulk soil water content (%), TOC Total 
organic carbon content (wt %). 

 

GAMnb’s performance 

 

According to the measures of model’s performance (Figure 5), the average correlation between 

observed and fitted abundance is 0.5. Moreover, the average correlation between observed and 

predicted abundance is 0.3.  
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Figure 5: Model performance of GAMnb, measured with correlation between observed and 

predicted abundance (Evaluation), and correlation between observed and fitted abundance (Fit). 

 

 

Functional groups GAMnb 

 

The response curves of functional groups are shown on Figure 6 and Figure 7. Six 

environmental gradient are represented : gdd3, bio5_tmaxw and FDD for climatic variables, 

and pH, TOC and SWC for the edaphic variables, as the random forest identified them as key 

variables. For all functional groups, as the soil water content or the total organic carbon 

increases, the zOTUs abundance also increases (Figure 6).  
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Figure 6: Response curves representing the variation of three functional groups along three 

edaphic gradients, based on aggregation of GAMnb of all individual zOTUs. . Each line represent 

the maximum abundance of all zOTUs at a specific value of the gradient. The response curves can be 

obtain by following the top of each line. Black lines are an artefact. 

 

However, the abundance of all functional group doesn’t really change along the pH gradient. 

Indeed, the abundance stagnate around 8, with a slightly increase of Saprotrophs abondance 

when the pH is high, and an abundance maximal at both high and low pH for Symbiotrophs. 

Concerning the abundance along the climatic gradients (Figure 7), results indicate for all 

functional groups a similar trend. Between the minimal value and the medium value of the 

gradient, the abundance is decreasing to attain a minimum , then stagnate until increasing. 

 

 

 

 

 

 

 

 



16 

 

Figure 7: Response curves representing the variation of three functional groups along three 

climatic gradients, based on aggregation of GAMnb of all individual zOTUs. . Each line represent 

the maximum abundance of all zOTUs at a specific value of the gradient. The response curves can be 

obtain by following the top of each line. Black lines are an artefact. 

 

Taxonomic groups GAMnb 

 

The response curves of functional groups are shown on Figure 8 and Figure 9. As before, six 

environmental gradients are represented : gdd3, bio5_tmaxw and FDD for climatic variables, 

and pH, TOC and SWC for the edaphic variables. For all taxonomic  groups, as the soil water 

content or the total organic carbon increases, the zOTUs abundance also increases (Figure 8).  

However, the abundance of all taxonomic group doesn’t really change along the pH gradient. 

Indeed, the abundance stagnate around 8, with a slightly increase of Ascomycota abondance 

when the pH is high, and an abundance maximal at both high and low pH for Zygomycota and  

Basidiomycota. 
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Figure 8: Response curves representing the variation of five taxonomic groups along three 

edaphic gradients, based on aggregation of GAMnb of all individual zOTUs. Each line represent 

the maximum abundance of all zOTUs at a specific value of the gradient. The response curves can be 

obtain by following the top of each line. Black lines are an artefact. 
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Concerning the abundance along the climatic gradients (Figure 9), results indicate for all 

taxonomic groups a similar trend. Between the minimal value and the medium value of the 

gradient, the abundance is decreasing to attain a minimum , then stagnate until increasing. 

However, Chytridiomycota’s abundance seems to increase as bio5_tmaxw and FDD increase, 

but for gdd3, the abundance is decreasing. Moreover, Zygomycota’s abundance decrease as all 

three gradients increase. 

 

 

Figure 9: Response curves representing the variation of five taxonomic groups along three 

climatic gradients based on aggregation of GAMnb of all individual zOTUs. Each line represent 

the maximum abundance of all zOTUs at a specific value of the gradient. The response curves can be 

obtain by following the top of each line. Black lines are an artefact 
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Discussion 

 

In this study, the variation of the niche breadth and the niche position, along different climatic 

and edaphic variable as well as the variation of fungi’s abundance along environmental 

gradients was tested in order to assess how essential ecological function might change in the 

face of climatic changes, as well as to forecast how fungi abundance change along different 

environmental gradients. For this, I posed two hypotheses (i) Niche breadth change between 

groups, (ii) fungi abundance varies along environmental gradients. 

 

Niche breadth calculation allowed us to observe the value of the niche breadth as a function of 

the niche position. Overall, the three functional groups, Pathotrophs, Saprotrophs and 

Symbiotrophs as well as the 5 taxonomic groups have the same niche breadth for the same 

environmental predictors. For the majority of environmental variables, zOTUs have a low  

niche breadth value regardless of the niche position value (Table 1, Table 2). Species with a 

low niche breadth can be considered as low tolerance and therefore qualified as specialists 

(Binzer et al., 2011). These species are likely to be more sensitive to climate change and have 

a higher risk of extinction during abrupt changes. (Slatyer et al., 2013). 

 

However, two edaphic variables stand out : Total Organic Carbon (TOC) and Soil Water 

Content (SWC). Indeed, zOTUs with a high niche position have a high breadth value for these 

two variables. A high niche breadth value implies that these species can withstand a wider range 

of environmental conditions and may be more tolerant to climate changes. (Thuiller et al., 

2005). Those zOTUs are qualified as generalists. 

 

These initial results show that there are no strong differences between functional and taxonomic 

groups and indicate that most species are specialists for most environmental variables, and 

therefore subject to extinction risk in the face of climate change.  

 

In addition to investigating the niche breadth of different fungal groups, the abundance of these 

groups was tested along different environmental gradients. The random forest  analysis indicates 

that climatic variables are the main driver of the abundance (Figure 4), followed by edaphic 

variables. 
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The variation in abundance of the different functional groups as well as that of the different 

taxonomic groups is similar. There is little or no difference between them. Indeed, along the 

gradients of edaphic variables, the abundance of species increases when SWC increases or TOC 

increases. This can be explained by the fact that fungi are heterotrophic organisms and grow 

efficiently in carbon-rich environments that allow them to increase their growth rate and their 

protein production (Broach, 2012). Moreover, it has been shown that precipitation, which is 

correlated with SWC, have an positive impact on fungi’s abundance (Zhang et al., 2016). 

However, the abundance remains stable for pH, which is quit unexpected. The important role 

of pH in richness and diversity of the majority of the microbial groups has already been 

discussed quite often (Delgado-Baquerizo et al., 2018;  Malard et al., 2019; Malard et al., 2021; 

Mod et al., 2021), leading to an important knowledge of it impact on microbial communities. 

A previous study show that most of the species with a low or high niche position for pH tend 

to be specialists (Malard et al., 2021). This master project highlight that if the pH is increasing 

or decreasing, the overall abundance remains stable. A potential explanation to this is that 

species have a high potential of adaptation against pH changes. 

 

For climatic gradients, the abundance of different functional and taxonomic groups is high when 

the gradients take their maximum or minimum value, and low when they take an intermediate 

value . Both high temperature and low temperature seems to be beneficial for zOTUs 

abundance. However, some results contradict each other. Indeed, the three different predictors 

(gdd3, bio5_tmaxw and FDD) are directly correlated with temperature, but each predicts a 

different abundance. For example, Symbiotrophs are more abundant when bio5_tmaxw is high 

than when it is low, while for gdd3 and FDD, it is the opposite (Figure 7). Chytridiomycota's 

abundance decrease as gdd3 increase, but increase as bio5_tmaxw and FDD increase. 

 These inconsistencies are probably due to poor model performance. Furthermore, even if the 

correlation value is low (0.3), the value is positive, which means that the model predicts better 

than random prediction. The higher the correlation value is, the more predictive of reality the 

model is. However, Mod et al., 2021 compare different model performances and GAMnb is the 

best performing. Furthermore, their correlation values are similar to those found for this study. 

Although these seem low, they are not unexpected for this kind of data. An explanation for such 

low values may be that edaphic and climatic variables are not the only variables that shape the 

fungi’s abundance. Other variable like dispersal rate or dispersal vector can explain zOTUs 

abundance (Edman et al., 2004). Biotic interactions can also shape fungi’s distribution.  
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For example, Pathotrophs and Symbiotrophs rely on other organisms to survive, and so their 

distribution depend partly on their hosts distribution. Moreover, as explained in Ferrier & 

Guisan (2006), different modelling strategies are possible. In this project, the strategy “predict 

first, assemble later” has been used. Indeed, a model (GAMnb)  was run for all zOTUs, and 

then we classified them by taxonomic groups and functional groups. However, the abundance 

of each zOTUs in each groups wasn’t added up.  An interesting perspective would be to the 

sum of all abundance in each group, or to use another strategy “assemble first, predict later”. In 

this case, I would have classified all zOTUs corresponding to the same taxonomic group or 

functional group together, and then run a model for each group. 

 

Moreover, niche breadth investigation was carried out on a reduced area, with only a restricted 

range of environmental data and can lead to a niche truncation (Chevalier et al., 2021). Niche 

truncation refers to niches that are incompletely characterized. Those results are only applicable 

for the well-studied and well-referenced region of the western Swiss Alps. Indeed, here, we 

cover a specific range of the different gradient. It is possible that zOTUs appearing as specialist 

here may have larger niches. A worldwide study is necessary to have deeper knowledge of 

fungi’s niche breadth and distribution faced to climate change, but data are lacking, especially 

soil data. 

 

To conclude, this study shows that overall, all taxonomical groups or functional group have 

similar niche breadth along same environmental variable, and that fungi’s population are mainly 

specialists, subject to extinction risk in the face of climate change. It also show that fungi’s 

abundance is more likely to increase as edaphic gradient increase, and that both high and low 

temperature are favourable for zOTUs abundance. 
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