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Abstract

Aim: To assess the potential of new predictors (land use, light availability, edaphic
factors and high resolution topoclimatic predictors) in improving the prediction of plant
community functional traits (specific leaf area, vegetative height and seed mass) and

species richness in mountainous grasslands.
Location: The western Swiss Alps

Methods: Using 912 vegetation plots previously sampled, we built predictive models for
the studied traits using only the coarse resolution topoclimatic predictors that are
normally used in modelling studies. Four new sets of 10 plots were then sampled in
homogeneous conditions according to these topoclimatic predictors (corresponding to
mountain grasslands), and the values of the new predictors gathered. We projected the
topoclimatic models on the new plots, and assessed the capacity of the new predictors to

explain the residual variance through multi model inference.

Results: We showed that the proposed predictors could help explaining 15.9%
(vegetative height) to 36.6% (specific leaf area) of the residual variance in classical
topoclimatic models. No group of predictors notably increased the quality of all models.
Land use related data were highlighted as the most important factors for both species
richness and vegetative height, light availability for seed mass and edaphic factors for
specific leaf area. High resolution topographic predictors seemed to be complementary

to land use data to improve model quality.

Main conclusions: We showed that prediction of plant community functional traits and
species richness could be improved by new predictors as compared to classical
topoclimatic models. As some of them can be implemented in models (high resolution
topoclimatic predictors, some of the edaphic factors), we suggest that they might be

used in future models.

Keywords : community ecology ¢ functional traits ¢ high resolution ¢ land use ¢
modelling ¢ mountain grasslands ¢ seed mass ¢ species richness ¢ specific leaf

area ¢ vegetative height
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Résumé

Objectif : Etudier le potentiel d’'un set de nouveaux prédicteurs (gestion agricole,
disponibilité en lumiere, facteurs édaphiques et prédicteurs topoclimatiques a haute
résolution) pour améliorer la prédiction de traits fonctionnels de communautés de
plantes (surface foliaire spécifique, hauteur maximale des feuilles et poids des graines)

et de la richesse spécifique dans des prairies de moyenne montagne.
Lieu : Les Préalpes vaudoises

Méthodes : En utilisant 912 relevés floristiques déja existants, nous avons construits
des modeles prédictifs pour chacun de ces traits en n’utilisant que les prédicteurs
topoclimatiques a basse résolution généralement utilisés dans les travaux de
modélisation. Quatre sets de 10 relevés ont ensuite été échantillonnés dans des
conditions homogenes, correspondant a des praires de moyenne montagne, ou les
valeurs des nouveaux prédicteurs ont également été relevées. En utilisant les
projections des modeles topoclimatiques sur ces nouveaux sites, nous avons ensuite
étudié la capacité de ces nouveaux prédicteurs a expliquer la variance résiduelle par des

techniques d’inférence multi-modele

Résultats : Nous avons montré que les prédicteurs proposés peuvent expliquer entre
15.9% (hauteur maximale des feuilles) et 36.6% (surface foliaire spécifique) de la
variance résiduelle des modeles topoclimatiques classiques. Aucun groupe de prédicteur
n’augmentait la précision de chacun des modeéles. La gestion agricole était le facteur le
plus important pour la richesse spécifique et la hauteur maximale des feuilles, la
disponibilité en lumiere pour le poids des graines et les facteurs édaphiques pour la
surface foliaire spécifique. Les prédicteurs topographiques a haute résolution

semblaient étre complémentaires a la gestion agricole pour améliorer les modéles.

Conclusions : Nous avons montré que la prédiction des traits fonctionnels de
communauté de plantes peut étre améliorée par de nouveaux prédicteurs
comparativement aux modeles topoclimatiques classiques. Comme certains prédicteurs
peuvent étre implémentés (prédicteurs topoclimatiques a haute résolution, certains

facteurs édaphiques), nous encourageons leur usage dans de futurs travaux.
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Introduction

Community ecology is the study of the ensemble of species co-occurring at the same
place and time (McGill et al., 2006), and how biotic and abiotic factors will tend to affect
its structure, and changes in its structure over sites and time (Pyron, 2010). Especially, it
seeks to find some general rules or patterns to explain community composition
(MacArthur, 1984). In this attempt, it has long been argued that trying to describe
communities on the basis of species not only by their Latin name, but rather through
their biological characteristics (also called “traits”) could provide better and more
generalizable results (Keddy, 1992; McGill et al,, 2006). Keddy (1992) cites the example
of van der Valk (1981), who created a model for succession in freshwater wetlands,
based on life history traits. The generality of the chosen traits enables application of the
models in various types of places and flora, whereas a model specifically based on

species identity could not have reached such generalization.

Amongst those traits, functional traits have specific importance. Functional traits are
defined as those traits that have an effect on individual’s fitness, via their effects on
growth, reproduction or survival (Violle et al,, 2007). As they are strongly linked to
physiological requirements of species and individuals, they are expected to give more
robust conclusions when seeking for general rules shaping communities (McGill et al.,
2006). Furthermore, they might give precious insights to ecosystem functioning

(Lavorel & Garnier, 2002).

One way to study these functional traits is to compute traits values of an entire
community, and to study differences or patterns in these “whole-community” values
(Dubuis et al., 2013). This aggregation allows to study general patterns of dependence or
causality between trait values and environmental factors, which is of high importance
when seeking for general rules shaping communities (Southwood, 1988; Lavorel &

Garnier, 2002).

Another important component when trying to characterize communities is species
richness. Species richness is defined as the number of species occurring in a given area
or system (Diaz & Cabido, 2001). Its importance for ecosystem functioning (Grime,
1998) and proprieties such as resilience (Perterson, Garry et al, 1998) and stability

(Tilman et al., 2014) has been widely assessed amongst ecologists.
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In the seek for general rules explaining community composition and functioning, a very
interesting tool is their modelling as a function of environmental or biotic factors
(Keddy, 1992; Kiister et al., 2011). This approach gives powerful insights on what could
drive the distribution of functional traits, as has been exemplified by Kiister et al.
(2011). They assessed, by use of this technique, the potential impact of climate and land
use changes on distribution of leaf anatomy. Although this method is increasingly used
(Pellissier et al., 2010; Sonnier et al., 2010; Dubuis et al.,, 2011, 2013; Kister et al., 2011),
these works are generally based on the habitual topoclimatic predictors, with a
traditional 25 x 25 m to 100 x 100 m resolution, and only few works have been
dedicated so far to strictly assess in what extent new predictors could improve
predictions of trait composition in communities (Garnier et al, 2004; Dubuis et al,,

2013).

A notable exception is the study by Dubuis et al. (2013), who tested the influence of
edaphic factors on quality of trait models. They showed that inclusion of soil chemical
(pH, nitrogen content, phosphorus content) and, to a lesser extent, physical proprieties
(soil texture) could significantly improve quality of predictions. Nonetheless, this study

focused only on edaphic factors, and other improvements could be attempted

For instance, Dubuis et al. (2013) themselves regretted the absence of land use data in
their study. Indeed, land use has been shown to improve prediction of plant abundance
(Randin et al., 2009) and to affect grassland floristic composition (Peter et al., 2008) and
richness (Zechmeister et al., 2003) in mountainous landscape. It could therefore be

expected that land use intensity might have an effect on community trait.

Furthermore, increasing the resolution of the maps of environmental factors has to our
knowledge never been attempted in the case of community trait modelling, whereas it
has been shown to improve distribution models for some species (Pradervand et al,,
2013). On the other hand, maps of environmental factors are always interpolations from
point measurement over a study area (see for example Zimmermann & Kienast, 1999).
This implies a certain amount of imprecision during their calculation (Guisan &
Zimmermann, 2000). Therefore, when trying to increase quality of prediction, another
interesting, although time consuming, approach is to resort to point measurements of
environmental factors directly on the field, so as to complement or correct

environmental maps.



122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

150

151
152

Another point is that Dubuis et al. (2013) were working on an entire elevation gradient,
as advised by (McGill et al., 2006) to reach more systematic rules about how community
patterns vary over ecological ranges. Nevertheless, there are evidences indicating that
the importance of species distribution drivers is not constant over space and time or
along productivity gradient (Michalet et al.,, 2006). Therefore, when working on large
environmental gradients, various phenomenons could happen. First, one could loose the
effect of some factors, hidden by another that varies more in the study area, as elevation
in the case of Dubuis et al. (2013). If a variable varies less than elevation over the study
area, it will explain less variance in the data, although it might actually be a main
ecological driver. Furthermore, some factors could affect communities in a different way
in distinct conditions, as has been shown for land use between high and low elevations

(Randin et al., 2009).

In this study, we focused on one very narrow ecological range to assess the potential of a
set of new potential predictors in improving the quality of models for three community
functional traits and species richness. The selected ecological range corresponded to a
lowland mountainous landscape, where grazing is very common. Selected traits were
specific leaf area (often designed as SLA), vegetative height and seed mass, which
represent the three axes of the leaf-height-seed plant strategy introduced by Westoby
(1998). New predictors included land-use data, high-resolution maps of environmental
factors, and some in situ measurements of light availability and soil proprieties. We then
discuss the potential of these predictors as new predictors for further modelling works.
We were expecting land-use data to be of high importance, especially on species
richness models, because of the high impact of anthropic disturbance on the study area.
Point measurements of light availability were expected to be of little impact on model
quality, due to high quality of ecological maps over the study area. Soil chemical
proprieties were expected to be of high importance, especially for seed mass, following

the conclusions of Dubuis et al. (2013).

Methods

Study area

The study area is located in the Western Swiss Alps (Canton de Vaud, Switzerland, 46°

10" to 46° 30" N,6° 50" to7° 10" E, Fig. 1). It covers 700 km?, and its elevation
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ranges from 375 to 3210 m. Outside of forests, agriculture influences most of the area,
with pastures from lowlands to lower alpine zones and meadows mainly at lower

elevations (Randin et al., 2009).
Sampling strategy

Plots were sampled over the study area, following a random stratified sampling strategy.
In order to get a dataset with groups of plots sharing very homogeneous conditions, four
strata of narrow topoclimatic proprieties were created (Table 1). Four topoclimatic
predictors were considered as of main importance for functional trait modelling and for
physical partitioning of the strata: slope, topographic position, global solar radiation
over the growing season (June-August) and mean temperature over the growing season

(Dubuis et al,, 2011, 2013). Temperature, precipitation and solar radiation data were

measured by the Swiss network of meteorological stations (www.meteoswiss.ch) and all
predictors were generated at a 25 m resolution from a digital elevation model
(Zimmermann & Kienast, 1999). Slope was derived from the elevation model using
ArcGIS 10.2 spatial analyst tool (ESRI). Topographic position was computed through
moving windows that integrate topographic features at various scales. Positive values
indicate ridges and tops, whereas negative values correspond to valleys and sinks.
Global solar radiation is the sum of the daily average of potential radiation per month
over the whole year. It is calculated on the basis of direct, diffuse and reflected solar
radiation reaching the area, and takes into account the exposure of the plot and shading

surrounding topography (Zimmermann & Kienast, 1999).

In each of the four strata, the four predictors were kept within very restricted ranges so
as to minimize the variance due to topoclimatic factors (Table 1). The four strata were
defined as follows; pixels corresponding to mean growing season temperature from
12.2°C to 12.4°C and from 13.2°C to 13.4°C were selected. In each of theses intervals, we
then selected pixels with a global solar radiation ranging from either 1600 to 1800
k] -day-1- pixel-l, corresponding to a full North exposure, or from 2800 to 3000 kJ- day
L. pixel1, corresponding to a full South exposure. Global solar radiation for the South-
exposed, low mean temperature values stratum (stratum c, Table 1) were actually kept
between 2800 and 2900 kJ-day-l-pixel!l, as it was possible to gather enough pixels
while reducing the range to that extent. We then only kept pixels with a slope between

20 and 25° and a topographic position index between -100 and 0, corresponding to
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regular slopes. These restricted ranges represented between 1.3 and 7.2% of the total
ranges of the predictors over the whole study area (Table 2, Fig. S1). Ten points were
then randomly selected in the open lands of each of these four strata, with some
replacement plots in each stratum in case a plot would show impossible to reach or

sample during field season.
Vegetation data

4?2 plots were finally sampled during the field season 2014 (Fig. 1), with at least ten in
each stratum. An exhaustive inventory of the vascular plants was performed in a 4 m?
square. We also estimated visually the cover of each species through an adapted Braun-
Blanquet abundance-dominance coefficient (Braun-Blanquet, 1964), where r = 1 to 3
individuals, + = <1%, 1=1 to 5%, 2a=6-15%, 2b=16-25%, 3= 26-50%, 4=51-75%, 5=76-

100%. The mid-range value of these classes was used for further analysis.

In addition to these 42 plots, we also disposed of 912 plant inventories sampled
between 2002 and 2009 in the same study area. Field methods and size of the plots were
the same, but the sampling strategy differed. These inventories were selected with a
random-stratified sampling strategy which covered the whole area, based on the same
ecological predictors but without focus on one particular type of conditions as is the

case in our study (Fig. 1; see Dubuis et al. (2013) for more details).
Functional traits

Three functional traits, corresponding to three different characteristics of plant life
according to the leaf-height-seed plant strategy presented by Westoby (1998), were
retained for analyses. Specific leaf area is the area of one side of a fresh leaf over its dry
mass (in mm?-mg1; Cornelissen et al., 2003). It is linked to photosynthetic rates and
carbon fixation (Lavorel & Garnier, 2002). Vegetative height is the distance between the
top photosynthetic tissue and the ground (in m; Dubuis et al.,, 2013) and is linked to
disturbance, stress avoidance and competitivity (Lavorel & Garnier, 2002; Cornelissen et
al, 2003). Seed mass is the average dry mass (in mg) of the seeds (Cornelissen et al,,
2003). It represents strategies of plant investment in reproduction; smaller seeds can be
produced in higher number, but contain limited amount of resources and are expected

to yield lower reproductive success (Cornelissen et al., 2003).
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For specific leaf area and vegetative height we used data that had previously been
collected by Dubuis et al. (2013) for the 240 most abundant species in the same study
area. These authors sampled between four and 20 individuals per species in the study
area, in contrasting environmental conditions, and calculated an average trait value by
species. Only values for Dactylis glomerata had to be added from the LEDA trait database
(Kleyer et al., 2008). Seed mass information was mainly collected from the LEDA trait
database (Kleyer et al., 2008). Missing values were complemented from the Kew seed
base (Royal Botanic Gardens Kew, 2014) and literature research (Muller-Schneider,

1986; Pluess et al., 2005; Vittoz et al., 2009).

For each trait, we calculated a weighted mean average for the whole community with
cover as weight. Covers were previously rescaled so that the total vegetation cover of a
plot would be equal to 100, ignoring the stones, trees and bare soil covers, as well as
species for which trait value was missing. Plots for which trait information was available
for less than 55% of vegetation cover were discarded. No higher threshold could be
applied because of limiting trait data availability. Nonetheless, as we expect missing
species to be regularly distributed in the spectrum of trait values, the community means
should not be biased. Amongst these 912 plots, 816 had trait data information available
for more than 55% of vegetation cover, and 568 in the case of seed mass. Only these
plots were retained in further analyses. All trait data were log transformed before
performing the analysis, because of non normality of the data. Species richness (SR) was
calculated as the total number of species present per plot. No plot was discarded in this

case.
New predictors collection
Land-use data

Land-use data was collected by interviews of the farmers managing the grasslands
where the plots were localized. Each of them was joined by phone. Questions were asked
about the intensity and type of grazing, fertilization and frequency of mowing when
applicable. A land-use intensity index (LUI) was then computed as suggested in Bliithgen
etal. (2012):

- .M G (1)
FR MR GR



245
246
247
248

249

250
251
252
253
254
255

256

257
258

259
260
261
262
263

264

265
266
267
268
269
270
271
272
273

where Fj is the fertilization level for the plot i (m3 manure - year-!-ha1), M; the frequency
of mowing per year and G; the grazing intensity (UGB-days-hal-year), Fr, Mg and Gr
their respective means over the data set. An UGB is a Swiss standardized unit for cattle

foraging needs (Le Conseil fédéral suisse, 2014)

Light availability

For each plot, we measured a shadow index, as an indication of the shadow due to close
objects (mainly trees). It is a complement to the global solar radiation information,
which represents the amount of light potentially received by each plot, but considering
only the topographic relief for shadows. To do so we measured the angle formed by the
horizon and any object projecting a shadow on the plot in the South, South-East and

South-West directions. The shadow index was calculated as :

SI =28+ Sg +Sgy (2)

where Ss, Ssg, Ssw are the horizon-object angle values in the South, South-East and South-

West directions respectively.

We also measured the actual exposure of the plot with a compass. Again, this was a
complement to global solar radiation, as the latest is calculated on the basis of a digital
elevation model (DEM) with a 25 m resolution. Therefore, the measured exposure of the
4 m? plot was often quite different to the calculated exposure, for instance because it

was located on the side of a bump, changing its actual exposition to sun.
Soil measurements

Soil depth was measured one to three times at each site with an auger. Whenever a
depth deeper than 50 cm was reached, digging was stopped and the soil considered as
deep. In other cases, we dug until rock was reached, and the mean of the three holes was
calculated. Moreover, the depth of the organo-mineral horizon was measured (A
horizon, Baize & Jabiol 1995), as an approximation of the amount of organic matter
available in the soil. For each plot, a soil sample of the A horizon was collected on the
field and dried for laboratory analyses. We measured the pH of the A horizon with a pH
meter after diluting soil in water in a 1:2.5 w/v ratio. Organic C and N contents were

determined using a Carlo Erba CNS2500 CHN Elemental Analyzer coupled with a Fisons

10
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198 Optima mass spectrometer (Tamburini et al, 2003). A C/N ratio was then

computed, as a biologically meaningful summary of nutrient availability (Batjes, 1996).
High resolution environmental predictors

We disposed of high resolution rasters of environmental predictors for the study area,
developed by (Pradervand et al., 2013). They developed various predictors at six
different scales for the same study area. For the present study, we retained growing
degree-days, topographic position and slope as most meaningful predictors at a 5 m
resolution, as it yielded the best results in their study. Growing degree-days correspond
to the sum of the daily temperatures during the growing season (June, July and August)
when temperature above 0°C, and are inferred from the temperature data. Slope and
topographic position are similar to that used for stratification of the sampling, but here
with a 5 m resolution. For more details about these rasters, see (Pradervand et al,,

2013).
Modelling

The models were performed for all the three functional traits and for the species
richness following a similar canvas (Fig. 2). All analyses were performed on R 3.1.2 (R

Core Team, 2014)
Topoclimatic models

In a first step, we followed the method of Dubuis et al. (2013) so as to assess how much
of variance of community trait values could be explained by classical models (i.e., with
topoclimatic predictors only, at a 25 m resolution). We first fitted a best GLM model on
the 912 plots for which vegetation data was previously available, with only topoclimatic
predictors. Selected predictors to fit the models where the same as in Dubuis et al,
(2013) (i.e. moisture index, growing degree days, global solar radiation, slope and
topographic position, all at 25 m resolution), which had been shown to perform best on
trait prediction. Global solar radiation, slope and topographic position have already
been explained in the sampling strategy section. Moisture index represents the amount
of water potentially available in soil. It is calculated as the mean difference between
precipitation and potential evapotranspiration over the growing season. Growing
degree days is still the sum of days of the growing season multiplied by the temperature

above 0°C, this time at a 25 m scale. The models were created through stepwise

11
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selection. Assumed distribution was Gaussian for the traits, and Poisson for species

richness. These models accounted for what was already possible to predict.

We then projected these models on the pixels where the 42 newly sampled plots are
situated. On the basis of these projections, we calculated the ordinary residuals of these
topoclimatic models for the 42 plots, by computing the difference between the observed
and the predicted values for each plot (Zuur et al., 2013). One plot was behaving as an
outlier in all models. As it was the only one which had been abandoned for >15 years
and that successional process towards forest was already well on its way, we discarded
it for the analyses. Trait data was available for over 55% of the plant cover of all the 41
remaining plots. We compared the residuals of the four strata through pairwise
Wilcoxon tests with Bonferonni correction for multiple comparisons, so as to address

the potential effect of stratification in the design.
Relative Importance of the new predictors

We then performed a second modelling step, by fitting new GLM models on these
residuals, this time including only the new predictors. We assessed the importance of
each new predictor in explaining the variance of the residuals using an adapted version
of the Multimodel Inference technique presented by Burnham, Anderson, & Huyvaert
(2010). We created models with all possible combinations of either four of our
predictors, or four of the quadratic plus linear terms of our predictors. Assumed
distribution for the residuals of the first models was always Gaussian. The number of
predictors was limited to four because of the limited number of observations, according
to the rule-of-thumb of 1 predictor for 10 observations of Harrell (2001). Models were
then ranked by AICc score as is advised for small sample sizes (Shono, 2000), and an
Akaike weight w; was computed for each model. It is a way to calculate the support
obtained by each model, given the set of data and models, based on difference in AICc

scores (Burnham & Anderson, 2002):

1
exp(——A.
p( 5 )

w=—-—
i R 1 A
Er=l exp(g 1')

(3)

where i is the considered model, R the considered set of models, and A, the difference in

AlCc scores between model i and the best model in the set (i.e. the one with lowest AIC);

12
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Ai = AICI - AICmin (4)

Based on these Akaike weights, we estimated the Relative Importance (RI) of each
predictor. This RI corresponds to the sum of the Akaike weights for each model where
the predictor is present (Burnham & Anderson, 2002). This step permitted us to assess
how useful each of the new predictors was, relatively to the others, to help explaining
the variance that could not be explained by the classical topoclimatic models (first

models).
Percentage of variance explained by the new predictors

So as to quantify the absolute impact of the new predictors, we created a GLM model for
each trait and for species richness including the four best predictors according to
relative importance. We limited the number of predictors again to four due to the
limited number of observations. These models were again run on the residuals of the
topoclimatic models, as new predictors are only available for the new plots. We then
estimated the improvements due to the four predictors through calculating the

percentage of explained variance for each model.

Results

Fieldwork

Elevations of the 42 plots ranged from 1015 to 1324 m. Strata “a” (low elevation, South
exposure) and “b” (low elevation, Northern exposure) ranged from 1015 to 1119 m, and

strata “c” and “d” (high elevation, South and North exposure respectively) from 1181 to

1324 m.

Relationship between each trait and its most important new predictor are illustrated in

Fig. 3. For complete information about all predictors and traits see appendix S2.
Topoclimatic models

The best topoclimatic models and their performances are presented in Table 3. They
could explain 11.6% (seed mass), 38.4% (species richness) 44.2% (specific leaf area)
and 63.8% (vegetative height) of the global variance. The residuals inferred for the 42
new sites from these models are illustrated in appendix S3. Wilcoxon tests for

differences between strata were non significant.

13
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Relative importance of the new predictors

The relative importances (RI) of the most important predictors for each trait and for
species richness are shown in Fig 4. Weights for some of the related models are shown

in appendix S4.
Specific leaf area

Two predictors performed notably better than the others, C/N ratio (RI= 0.79) and A
horizon depth (RI = 0.75), followed by slope at 5 m resolution (RI= 0.45) and growing
degree days at 5 m resolution (RI = 0.27). The soil pH and shadow index were close to
these values (RI= 0.21 and 0.2 respectively). All other linear term predictors had a RI <
0.17 and there was a strong break between the relative importance of linear and

quadratic terms, the latter being nearly negligible (RI1<0.02, Fig. 4A).
Vegetative height

Two predictors performed slightly better than the others, grazing pressure (RI = 0.4)
and topographic position at 5 m resolution (RI = 0.36; Fig. 4B), then followed by slope at
5 m resolution (RI = 0.25), actual exposure of the plot (RI = 0.23) and C/N ratio (RI =
0.22). All other predictors had a RI < 0.2. Quadratic terms had lower values than linear

terms.
Seed mass

Quadratic terms of shadow index (RI = 0.57) and soil depth (0.45) performed notably
better than other predictors (Fig. 4C). Relative importance of other predictors was then
ranging between 0.24 (quadratic term of LUI index) and 0.02 (quadratic term of actual
exposure of the plot). Soil physical proprieties were well represented amongst the most
important predictors (second, fourth and fifth places for soil depth, quadratic, and then
linear terms, and A horizon depth), as well as land use intensity predictors (LUI, third

place, grazing pressure, sixth place).
Species richness

Land use intensity index (LUI) and topographic position at 5 m resolution had notably
high importance (RI = 0.6 and 0.44 respectively, Fig. 4D), then followed by slope at 5 m
resolution (RI= 0.31), C/N ratio (RI = 0.28), pH (RI = 0.23) and growing degree days at
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5m resolution (RI = 0.23). All other predictors were under RI = 0.2. Quadratic terms had

lower relative importance than linear terms (RI < 0.06).
Percentage of variance explained by the new predictors

The results of the models built with the four best predictors for each trait and for
species richness are summarized in Table 4. They respectively explain 36.6% (specific
leaf area), 15.9% (vegetative height), 27.2% (seed mass) and 23.4% (species richness)
of the residual variance from the first models. Together with the variance already
explained by the topoclimatic models (see Table 3), this leads to a total explained
variance of 64.6% (specific leaf area), 69.6% (vegetative height), 35.6% (seed mass) and
52.8% (species richness; Fig. 5).

Discussion

We demonstrated that in our conditions, the inclusion of four new predictors could
explain 15.9 to 36.6% of the residual variance of habitual topoclimatic models, leading
to an increase of the total explained variance from 5.7 to 24.1%. Highlighted predictors
were different between traits; there was no new predictor that could be systematically

used to improve models.
Biological relationship between traits and highlighted predictors

SLA was strongly influenced by two soil factors: C/N ratio and A horizon depth. These
two predictors were expected to represent nutrient availability, A horizon depth
showing the amount of organic matter available in the soil and C/N ratio its quality for
biological organisms, especially plant growth (Batjes, 1996; Girard et al, 2011). A
relationship between SLA and nutrient availability is widely assessed in literature
(Meziane & Shipley, 1999; Cornelissen et al., 2003), and the inclusion of edaphic factors
had already been shown to improve quality of SLA predictions by Dubuis et al. (2013). It
is therefore not surprising to find them as key predictors to improve SLA models.
Nevertheless, it is interesting to note that we were expecting a deep A horizon to be
synonym of high nutrient availability for the plant, which causes higher SLA values
(Cornelissen et al., 2003). The tendency showed to be inverted in our result, with low
SLA values related to deep A horizons. This might be because in mature soils, organic
matter might indeed accumulate in the topsoil, but in the form of concentrated

degradation-resistant materials, therefore not available for the plant (Troeh &
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Thompson, 1993). A deeper A horizon would then be synonym of less favourable

organic matter degradation conditions, and low nitrogen availability.

Because of the high importance of human activities in the study area, and because of the
results of Randin et al. (2009), we were expecting land use to be of high importance
when trying to improve community trait predictions in the mountain grasslands. Indeed,
vegetative height and species richness both reacted best to land use intensity indicators,
with higher species richness in low intensive exploitations and taller species in low
grazed exploitations. Interestingly, vegetative height was more related to grazing
pasture than to the complete LUI index. This is coherent with ecological theory saying
that grazing should favour short against tall plants (Diaz et al., 2007). Our study also
supports the previous studies showing a relation between increasing land use intensity
and decreasing species richness (Fischer, 1994; Zechmeister et al., 2003; Niedrist et al,,
2008). Nevertheless, it is important to note a possible confounding factor: the two plots
with highest LUI index values had been recently mown when inventoried making
species hard to distinguish. Nevertheless, other parcels with lower LUI values had also
been recently grazed or mown before sampling, and these plots did not behave as

outliers.

In both cases of species richness and vegetative height, the land use indicator was
directly followed by 5 m resolution slope and topographic position. These high
resolution predictors are probably complementary to the land-use information, which is
sampled at the scale of the entire parcel (1 to 25 ha in the present study). Indeed,
variations in the real land-use intensity might occur within the parcel, as a consequence
of variations in the fine scale topography of the site : more flat areas will tend to be more
intensively pastured by cattle and easier to reach by the farmer when fertilizing his
parcel (personal communications). In this context, 5 m resolution topographic factors

might be indicators of fine scale variations in land-use intensity.

Contrarily to our expectations, both vegetative height and seed mass showed an
importance of actual light quantity received on the plot, with shadow index being the
most important predictor for seed mass, and actual exposure of the plot and shadow
index being well ranked amongst vegetative height results. As plant height is a key trait
in the competition for light (Falster & Westoby, 2003), which is a vital resource for

plants (Raven et al, 2000; Westoby et al., 2002), it makes biologically sense that
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increasing the accuracy of the predictors linked to light availability would increase
quality of the prediction of vegetative height. Similarly, a relationship between seed
mass and shade is already well established in literature (Salisbury, 1942; Leishman et
al, 2000; Pakeman et al., 2008), which has even been presented as the main driver in
seed size variation (Westoby et al.,, 1992). Nevertheless, shade is usually measured as
the shade at the soil level - taking into account the light obstruction caused by the
vegetation itself - rather than on the amount of light actually reaching the vegetation

canopy.

Seed mass was also the trait responding the least to topoclimatic models (11.6% of
explained variance). The variables retained in these models (slope and both quadratic
and linear terms of the moisture index at 25m) would highlight an importance of
humidity in controlling seed mass. Similarly, the new predictors used to explain the
residuals with multi modelling inference could be related to humidity, with a good
representation of soil physical proprieties (soil and A horizon depths). In the silt-rich,
loess derived soils of the region, a higher soil depth is linked to a higher water retention
potential (Gobat et al., 2010). Increasing the amount of organic matter also affects the
water retention potential of the soil (Gobat et al., 2010). This relationship with humidity
finds some support in literature (Baker, 1972). Nevertheless, it has been heavily
discussed (Westoby et al,, 1992; Pakeman et al., 2008), as most of the hypothesized
drivers for variation in seed mass (Leishman et al., 2000; Pakeman et al, 2008).
Furthermore, instead of an increasing seed mass with shade or dryness of the
environment, as Baker (1972) or Salisbury (1942), we found quadratic responses with
minimal seed mass at intermediate shade and soil depth, and highest seed mass at
intermediate A horizon depth. This difference between studies is difficult to explain, and
would need supplementary data to be confirmed. Previous studies have already
confirmed that the interpretation of mains drivers of variation in seed mass is equivocal
(Salisbury, 1942; Baker, 1972; Westoby et al., 1992; Leishman et al., 2000; Pakeman et
al., 2008).

Contrarily to our expectations, our results partially contradict those of Dubuis et al.
(2013), who found that soil chemical proprieties explain a significant part of the
variance in seed mass in the same study area. Furthermore, we did not find any

correlation between seed mass and temperature, which has been highlighted in various
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works (Pakeman et al, 2008; Dainese & Sitzia, 2013). Nevertheless, these authors
worked on a much broader elevation or geographical range, whereas we focussed on
short gradients. Therefore, we see a plausible explanation for both these last apparent
contradiction: soil proprieties and temperature might be important to distinguish seed
mass variations amongst a wide gradient of different ecological conditions, and not

within the restricted range of ecological conditions and vegetation types studied here.
Potential for prediction

Soil proprieties showed to be important predictors, appearing in three of the four final
models. Soil chemical proprieties were already shown as possible to be modelled across
a geographic area (Burri, in prep), and such maps are currently being developed for the
study area (Burri, unpublished work). These could be valuable information to
implement in future models. Nevertheless, currently, physical soil information, such as
soil or A horizon depths, cannot be inferred from remote sources and therefore still have
to be measured in the field for each plot. As they do not exist as maps, they cannot be

used as predictors for model projections.

The same applies to our fine scale measurements of light availability; as such, they do
not exist as maps for the study area, and are difficult to sample. Nevertheless, the results
of our study showed that the light availability related predictors normally used in
topoclimatic models were not as complete as expected, especially for seed mass. Remote
sensing approaches nowadays permit to detect changes in the earth surface up to the
single tree level, and such approaches are already being applied in forestry (Morsdorf et
al,, 2004). Moreover, Pradervand et al. (2013) already developed maps of solar radiation
at a 1 m resolution, although not accounting for tree cover. Taken together, these
elements could be useful hints to improve models quality, especially for seed mass, as
direct light availability measurements showed to be much more important in our study

than was primarily expected.

High resolution topoclimatic predictors were highlighted in three of the four final
models. As these predictors are nowadays relatively easy to infer and implement in
models (Pradervand et al,, 2013), it is an interesting hint for further improvement of the
models. Nevertheless, for vegetative height and species richness, they accompany land-
use information, probably refining it. Our study does not show whether they would be

able to perform so well without land-use information
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In the context of this study, land use was highlighted as a major new predictor for both
vegetative height and species richness, and was also quite important to explain seed
mass. Nevertheless, it is important to remember that land use is often a very difficult
piece of information to obtain. It rarely exists as maps and was a very time consuming
step in our study, as only available with precision after discussing with the farmer.
Furthermore, Randin et al. (2009) showed that this factor could improve species
abundance models over the entire elevation range zone in the same study area but
improvement was specifically for species occurring in lower areas, where anthropic
disturbance occur. Therefore, it would be important to verify if land use is still as

important when extending modelling efforts to a broader ecological range.
Limitations

Because of trait data availability, we had to put the threshold for minimum cover
proportion with trait data information at 55%, although literature advices a value of
80% (Pakeman & Quested, 2007). A higher threshold would have discarded some of the
42 plots used in the second modelling step, what would have reduced the statistical
power of our analyses. However, as we expect missing species to be regularly
distributed in the spectrum of trait values, the community means ought not to be biased
in one or the other direction. Caution should nevertheless be taken in future works to
sample more trait data for the study area, and whenever possible, high trait-data

availability thresholds should also be applied.

Another limitation in this work is the fact that we used a restricted environmental
gradient. The strength of this approach is to allow detection of small variations that
would normally be lost in the background of a larger gradient, or that could operate
differently amongst different ecological conditions. But on the other hand, it is therefore
difficult to extrapolate the validity of these results to other ecological conditions. One
important step before implementing the suggested predictors in models should be to
test them in other ecological conditions. It would also be interesting to test the
importance of land-use data outside the range of highly managed mountain grasslands,
and the efficiency of high-resolution topoclimatic predictors when uncoupled from land

use data.
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Conclusions

We showed that, in grasslands of the Western Swiss Alps, some part of the remaining
variance in classical topoclimatic models (25 m resolution) could be explained by new
complementary predictors: land use, edaphic and high resolution topoclimatic
predictors (5 m). Some of them (land use, soil physical proprieties) are complicated to
obtain and do not exist as maps for projections. Still, they may yield important
improvement in model quality and should therefore not be omitted in future work, at
least when projection is not needed. On the other hand, predictors such as high
resolution environmental predictors or chemical soil composition, could be
implemented in future modelling works, and therefore offer promising clues for

community trait and species richness models improvement.
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Tables:

Table 1 : Ranges of topoclimatic predictors used in the stratification of the sampling

strategy.
Stratum Mean Slope | Topographic Global solar
temperature position radiations
(°C) (®) (unit-less) (k] -day1- pixel1)
a 13.2-13.4 20-25 |-100-0 2800-3000
“Low elevation,
South exposure”
b 13.2-13.4 20-25 |-100-0 1600-1800
“Low elevation,
North exposure”
c 12.2-12.4 20-25 |-100-0 2800-2900
“High elevation,
South exposure”
d 12.2-12.4 20-25 |-100-0 1600-1800

“High elevation,
North exposure”
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Table 2 : Fractions of the total available ecological range represented by the studied

strata (mountain grasslands)

Predictor Total range over | Restricted Percentage
the study area ranges retained

in sampling
Mean temperature | 2.8-18.3 13.2-13.4 1.3%
June-August (°C) 12.2-12.4
Slope (°) 0-80 20-25 6.25%
Topographic -699 - 1054 -100-0 5.7%
position (unit-less)
Global solar 3133-31068 | 2800-3000 7.2%
radiation

1600-1800

(k] - day1- pixel1)
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751

Table 3 Summary of topoclimatic models for the four traits and species richness. Retained

predictors = predictors retained by the stepwise selection process. These models were

calibrated on plots previously sampled by Dubuis et al.(2013), using only 25 x 25 m topoclimatic

predictors.
%
Trait Retained predictors AIC explained
variance
* Growing degree days
* Global solar radiation
* Slope
* Topographic position
Specific leaf area * Moisture index -1788.5 44.20%
* Global solar radiation?
* Slope?
* Moisture index?
* Growing degree days
* Slope
* Moisture index
Vegetative height -397.1 63.809
egetative heig * Growing degree days? %
* Topographic position?
* Moisture index?
* Slope
Seed mass * Moisture index -113.5 11.60%
* Moisture index?
* Growing degree days
* Slope
* Topographic position
. i 2
Species richness Growing degree days 10356.9 38.40%

* Global solar radiation?
* Slope?

* Topographic position?
* Moisture index?
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752

753  Table 4 : AIC and percentage of explained residual variances for the four models built with
754  the four most important predictors for each trait and for species richness. Percentages are

755  expressed in percentage of the residual variance from the first modeling step.

Trait Retained best predictors AIC % of
explained
variance

Specific * C/Nratio -154.75 36.6 %

leaf area * Ahorizon depth

¢ Slope (5 m resolution)

* Growing degree days (5 m resolution)
Vegetative | ¢ Grazing pressure -39.75 15.9 %
height » Topographic position (5 m resolution)
¢ Slope (5 m resolution)

e Exposition

Seed mass | * Shadow index (linear and quadratic | -9.6894 27.2%

terms)
* Soil depth (linear and quadratic terms)
Species * LUIindex 297.35 23.4%
richness * Topographic position (5 m resolution)
* Slope (5 m resolution)
* C/Nratio

756
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Figures:
Fig. 1 : Map of the study area, with vegetation plots newly inventoried in 2014 (orange

triangles) and previously inventoried (2002-2009, white dots; Dubuis et al., 2013)

0 5 10 20 Kilometers
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762

763  Fig. 2 Scheme of the statistical analyses canvas.
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766
767  Fig. 3 : Relationship between each trait and its most important new predictor. SLA =
768  specific leaf area, VH = vegetative height, SM = seed mass, SR = species richness. Complete

769 information is available in S2.
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Fig. 4 : Relative Importance for the ten best predictors in explaining residuals of the first

species richness.

seed mass, D =

specific leaf area, B = vegetative height, C =

models. A

= Land Use Intensity index, G. degree days =

Topographic pos. = topographic position, LUI

growing degree days.
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786

Fig. 5 : percentage of explained variance for the four models. Dashed lines = variance
explained by the first models (topoclimatic predictors, calibrated on the plots previously
sampled; Dubuis et al.,, 2013); dark grey = supplementary variance explained by the second
models (four most important new predictors, calibrated on the plots sampled in the field season

2014); light grey = unexplained variance.
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Supporting information:

Appendix S1
Ranges of predictors used for the sampling strategy and their distribution over the
study area. A = global solar radiation, B = slope, C = mean temperature, D = Topographic

position. Blue and red show the different strata when applicable. In black is the entire study area
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Appendix S2: relationship between traits and predictors

Appendix S2A: Specific leaf area as a function of each new potential new predictor.

CWM = community weighted mean (mm? mg?!), G. degree days = growing degree days,
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Appendix S2B: Vegetative height. CWM = community weighted mean (m), G. degree

days = growing degree days, Topographic pos. = topographic position.
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Appendix S2C: Seed mass. CWM = community weighted mean (mg), G. degree days =
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Richness. Observed values = observed number of species per

Species

Appendix S2D

813
814

plot, G. degree days = growing degree days, Topographic pos. = topographic position.
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818 Appendix S3:

819  Plot of the residuals of the topoclimatic models for the A) specific leaf area B) vegetative

820  height C) seed mass D) species richness obtained for the 42 new plots.
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828

Appendix S4 :

Weights of the 15 best models for A) specific leaf area B) vegetative height C) seed mass D)
species richness. Variables included in each models are designed by the following code: 1 = C/N
ratio, 2 = topographic position, 3 = growing degree days, 4 = exposition, 5 = shadow index, 6 =
LUl index, 7 = pH. 8 = Grazing pressure, 9 = 5 m resolution slope, 10 = A horizon depth, 11 = soil

depth. 12-22 = quadratic term of these variables, in the same order. 23 = null model.
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