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Abstract 1	
  

Questions Improving predictions of plant species distribution has been widely studied in 2	
  

alpine regions. However, it is difficult to draw clear conclusions because of the confounding 3	
  

of several factors, as a too wide altitudinal range. In this study, we quantified the importance 4	
  

of variables in a restricted altitudinal range, here at the subalpine level. We tested the 5	
  

importance of three high-resolution variables, namely (1) mean solar radiation at 5 m, (2) 6	
  

curvature at 5 m and (3) slope at 5 m; and six environmental variables, namely (1) slope, (2) 7	
  

exposure, (3) soil pH, (4) mean soil depth, (5) mean organo-mineral horizon depth and (6) 8	
  

carbon-to-nitrogen ratio. 9	
  

Location Subalpine level in the Western Swiss Alps, Switzerland 10	
  

Methods 38 vegetation inventories in four strata of samples with similar topographic and 11	
  

climatic conditions have been done at the subalpine level. Predictions of distribution of 208 12	
  

plant species have been modelled with four different techniques. Multi-modelling inference 13	
  

analysis with generalized linear mixed models on the residuals of the species distribution 14	
  

models has been implemented, producing importance values for each variable. 15	
  

Results The predictions of the species distribution models are similar between the strata, on 16	
  

the contrary of the observations in the field. The multi-modelling inference on residuals 17	
  

highlighted four variables that seem to be important to improve the predictions of species 18	
  

distribution models: mean solar radiation at 5 m, soil pH, carbon-to-nitrogen ratio and 19	
  

curvature at 5 m. 20	
  

Conclusions Mean solar radiation, soil pH, carbon-to-nitrogen ratio and curvature are 21	
  

important predictor variable for explaining distribution of subalpine plants considered in our 22	
  

study. It would be needed to have more inventories to build models containing many of these 23	
  

variables together, to check if these variables would still be kept in the models when other 24	
  

variables, such as the ones that are typically used. 25	
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Résumé 36	
  

Questions La prédiction de distribution d’espèces de plantes a été largement étudiée dans les 37	
  

régions alpines, afin de l’améliorer. Cependant il est difficile de tirer des conclusions claires 38	
  

en raison des nombreux facteurs confondants, comme le gradient altitudinal. Dans cette étude, 39	
  

nous avons quantifié l’importance de variables au niveau subalpin. Nous avons testé 40	
  

l’importance de trois variables à haute-résolution, (1) les radiations solaires à 5 m, (2) la 41	
  

courbure à 5 m et (3) la pente à 5 m. Nous avons également testé l’importance de six variables 42	
  

environnementales : (1) la pente, (2) l’exposition, (3) le pH du sol, (4) la profondeur moyenne 43	
  

du sol, (5) la profondeur moyenne de l’horizon organo-minéral et (6) le ratio carbone sur 44	
  

azote. 45	
  

Localisation Etage subalpin dans les Préalpes vaudoises, Suisse. 46	
  

Méthodes Au niveau subalpin, 38 relevés de végétations dans quatre strates d’échantillons 47	
  

ayant des conditions topo-climatiques similaires ont été faits. Les prédictions de distribution 48	
  

de 208 espèces de plantes ont été modélisées avec quatre techniques différentes. Une analyse 49	
  

d’inférence de modèles multiples sur des GLMMs a été implémentée sur les résidus des 50	
  

modèles de distribution, produisant une importance pour chacune des variables. 51	
  

Résultats Les prédictions des modèles sont similaires entre les strates, contrairement aux 52	
  

observations faites sur le terrain. Les modèles sur les résidus ont mis en avant quatre variables 53	
  

qui semblent être importantes pour l’amélioration de la prédiction de distribution d’espèces : 54	
  

les radiations solaires à 5 m, le pH du sol, le ratio carbone sur azote et la courbure à 5 m. 55	
  

Conclusions Les radiations solaires, le pH du sol, le ratio carbone sur azote et la courbure 56	
  

sont d’importantes variables prédictives permettant d’expliquer la distribution des espèces en 57	
  

milieu subalpin. Il nécessiterait d’avoir plus de relevés pour construire des modèles contenant 58	
  

plusieurs de ces variables, ce qui permettrait de contrôler si ces variables seront maintenues 59	
  

dans les modèles comme celles qui sont habituellement utilisées.  60	
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Introduction 61	
  

Plants interact with each other but also with their environment forming a dynamic 62	
  

system. Plant growth is dependent from its environment and influenced by climatic, 63	
  

topographic or edaphic factors. All these factors form a N-dimensional hyper-volume within 64	
  

which a positive growth rate is maintained. This hyper-volume represents the environmental 65	
  

niche, which contains all the suitable habitats for the species. In reality, species only occur in 66	
  

a part of this niche, which is called the realised niche (Hutchinson, 1957). The realised niche 67	
  

is therefore smaller than the environmental niche due to different biotic factors, such as 68	
  

competition, which can be expressed from environmental surrogates, like climate or soil. 69	
  

Usually climatic factors such as temperatures or precipitations are used to define the 70	
  

realised plant distribution (Box et al., 1993; Shao & Halpin, 1995; Heegaard, 2002). But 71	
  

edaphic factors, such as soil depth or soil pH, can also be used (Dubuis et al., 2013). Those 72	
  

climatic variables can be obtained by interpolation of measures taken by meteorological 73	
  

stations using Geographic Information System (GIS) (Ninyerola et al., 2000). These variables 74	
  

allow building Species Distribution Models (SDMs) (Thuiller et al., 2005; Hijmans & 75	
  

Graham, 2006). 76	
  

Nowadays it is known that uncertainties presents in the SDMs can be due to 77	
  

imprecisions in the variables or lack of important variables (Austin & Van Niel, 2011). Part of 78	
  

this problem can result from the interpolation of these variables. These uncertainties 79	
  

contained in the prediction of individual species models can accumulate into larger errors 80	
  

when predicting species assemblage. This situation highlights the importance of using more 81	
  

precise and more accurate environmental predictors to approximate the environmental 82	
  

requirements of species as closely as possible, and to have a more accurate estimation of 83	
  

species distribution. To improve predictive ability of the models, it has been shown that 84	
  

adding new geomorphic (Randin et al., 2009b), edaphic (Dubuis et al., 2013) or topo-climatic 85	
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variables at a higher resolution (Lassueur et al., 2006; Pradervand et al., 2013) can improve 86	
  

model predictions. 87	
  

A few studies have tested different resolutions of variables to see whether high 88	
  

resolution can yield better predictions (Pradervand et al., 2013; Lassueur et al., 2006). No 89	
  

clear improvement was shown, which may be caused by the confounding of several factors 90	
  

along the elevation gradient. Therefore it is important to decrease these factors to calculate an 91	
  

importance of variables. In the lowland, there is a larger effect of the agriculture and other 92	
  

human influence on the landscape, causing stronger effects on plant distributions of the 93	
  

moisture, nutrient and competition than the topography or climatic conditions. This may result 94	
  

because soils, that are already deeper and well differentiated, are also highly fertilized 95	
  

(Dirnböck & Grabherr, 2000; Delarze et al., 1998). As an attempt to decrease the effects of 96	
  

human influence, the study area can be restricted to higher altitudes. In this study, we focused 97	
  

on the subalpine belt, where the effect of agriculture is weaker (Bridge & Johnson, 2000). 98	
  

Moreover at higher altitudes, the influence of climatic and topographic variables is expected 99	
  

to be more pronounced (Ozenda, 2002) and consequently plant life is expected to become also 100	
  

more dependent on topographic and climatic conditions (Pottier et al., 2013). 101	
  

Indeed a too large altitudinal range and/or human influence could accentuate the 102	
  

uncertainties in models and would have an impact on the predictions of species distribution, 103	
  

particularly when realistic scenarios of the impact of climate change want to be yielded 104	
  

(Randin et al., 2009a; Scherrer et al., 2011; Vicente et al., 2011). These uncertainties also 105	
  

decrease the accuracy of species assemblage predictions (Guisan & Rahbek, 2011; Dubuis et 106	
  

al., 2011; Pottier et al., 2013). Therefore their improvement is needed to have more reliable 107	
  

predictions of plant species distribution. 108	
  

Here we compare the differences between what have been found in the field and the 109	
  

predictions of species distribution to estimate the uncertainties in species distribution models 110	
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based on standard predictors by conducting a stratified sampling in series of sites with similar 111	
  

topographic and climatic conditions. Then we test whether adding new environmental 112	
  

predictors at high resolution and/or edaphic factors could decrease these uncertainties. 113	
  

 114	
  

Materials & Methods 115	
  

In this study, we did a directed sampling, in order to have samples with very similar 116	
  

topo-climatic conditions. This sampling method allows seeing only the error rate at a fine 117	
  

scale (sample scale). After the sampling and the species distribution models (SDMs) of plant 118	
  

distribution, we did a multi-modelling inference analysis on the residuals of the SDMs to see 119	
  

which variables could explain these residuals. In these models, we added different edaphic 120	
  

variables, as soil pH, carbon-to-nitrogen (C:N) ratio, mean soil depth, mean organo-mineral 121	
  

horizon depth, slope and exposure, and fine scale variables as mean solar radiation, curvature 122	
  

and slope. With these models we could identify the most important variables that could 123	
  

improve the predictions of species in the subalpine belt. A summary of the following analysis 124	
  

can be found in the flowchart presented in Fig. 1. 125	
  

 126	
  

Study area 127	
  

The study area is located in the Western Swiss Alps (Canton de Vaud, Switzerland, 128	
  

46°10’ to 46°30’N; 6°50’ to 7°10’E) and covers ca. 700 km2 (Fig. 2). The elevation gradient 129	
  

ranges from 375 m to 3210 m asl on the top of the Diableret summit. The climate is temperate 130	
  

with annual temperatures ranging from 8°C at low elevation to -5°C at high elevation. The 131	
  

annual precipitations vary from 1200 mm at low elevation to 2600 mm at high elevation 132	
  

(Bouët, 1972). The vegetation belts’ succession along the altitudinal gradient is typical from 133	
  

the calcareous Alps, with a colline belt of broadleaf deciduous forests, a montane belt with 134	
  

mixed forests, a subalpine belt with coniferous forests, an alpine belt with meadows and 135	
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grasslands vegetation, and finally a nival belt with sparse vegetation of high-elevation species 136	
  

(Randin et al., 2006; Aeschimann & Burdet, 2008). 137	
  

 138	
  

Environmental predictors 139	
  

We used four topo-climatic predictors that were previously shown to be important for 140	
  

explaining plant distributions in the study area (Engler et al., 2009; Randin et al., 2009a; 141	
  

Pellisier et al., 2010). 142	
  

We used one climatic predictor (temperature) and three topographic predictors (solar 143	
  

radiation, slope and topographic position). The climate predictor was computed from the 144	
  

monthly means of the average temperature (°C) and sum of precipitation (mm) data recorded 145	
  

for the period 1961-1990 by the Swiss network of meteorological stations (MeteoSuisse). 146	
  

These data were interpolated across Switzerland based on a 25-m resolution digital elevation 147	
  

model (DEM) (from the Swiss Federal Office of Topography (Swisstopo)) with local thin-148	
  

plate spline-functions for temperature and a regionalized linear regression model for 149	
  

precipitation (Zimmerman & Kienast, 1999). 150	
  

The amount of solar radiations received in each month of the year in each pixel was 151	
  

calculated. Solar radiations reflect the quantity of energy that reaches the ground, meaning 152	
  

that they are an estimation of the potential input of energy. Based on the digital elevation 153	
  

model (DEM), the direct, diffuse and reflected solar radiations were computed with the entire 154	
  

area as input and taking into account the local exposure and shading topography using the 155	
  

spatial analyst tool in ArcGIS 10.2. 156	
  

The slope in degrees was derived from the DEM with the spatial analyst tool in 157	
  

ArcGIS 10.2 using a 3 x 3 pixel moving window. 158	
  

The topographic position is an integration of topographic positions discriminating 159	
  

convex situations (ridges, bumps) from regular slopes (mountain sides, flat areas) and from 160	
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concave situations (valley bottoms, depressions). It was computed by using an ArcInfo Macro 161	
  

Language custom code in ArcGIS 10.2 for the DEM at a 25-m resolution using a 3 x 3 pixel 162	
  

moving window (for more details, see Randin et al., 2009a, 2009c) 163	
  

 164	
  

Sampling strategy 165	
  

The sampling was stratified by these four environmental predictor variables, in order 166	
  

to visit samples with similar topographic and climatic conditions from the perspective of 167	
  

models fitted with these variables. Sampling in this way should allow a better quantification 168	
  

of the variability in the observed presence/absence of species, and to attempt explaining it 169	
  

with local predictors not included in the models used for the stratification. The sampling was 170	
  

directed on mean temperature corresponding to altitudes between 1900 and 1950 m, and 171	
  

between 2100 and 2150 m, in order to remain in one type of environmental conditions, here in 172	
  

the subalpine belt. The values for the predictors (mean temperature, global solar radiation, 173	
  

slope and topographic position) were chosen as a function of 912 plots that had been already 174	
  

sampled in this area between 2002 and 2009 (Dubuis et al., 2011) (Fig. 2). For each variable, 175	
  

histogram of the distribution of the values, restricted to elevations between 1900 and 1950 m, 176	
  

and between 2100 and 2150 m, were done. Then, an interval containing the maximum of the 177	
  

values was selected for the sampling. 178	
  

Firstly, we selected two elevation strata, low and high, based on mean temperature of 179	
  

the growing season, defined between June and August. The temperature intervals were chosen 180	
  

as a function of the altitudes. We selected an interval containing the maximum of temperature 181	
  

values shown on histogram of the distribution of temperatures between 1900 and 1950 m, and 182	
  

an interval containing the maximum of temperature values between 2100 and 2150 m. For 183	
  

that, we used a DEM at a resolution of 25 m. We looked at the mean temperature for two 184	
  

intervals of altitudes: 1900-1950 m (low strata) and 2100-2150 m (high strata). For the low 185	
  



11 

strata, we used an interval of temperatures between 9.5°C and 9.7°C and for the high strata, 186	
  

we used an interval between 8.7°C and 8.9°C. Each of these intervals corresponded to a 187	
  

sampled range of 1% of the distribution of the temperature restricted to the two strata of 188	
  

elevations (1900 to 1950 m, and 2100 to 2150 m). 189	
  

Secondly, two other strata - exposure to North or South - were selected based on 190	
  

global solar radiation. “North” was defined between 340° and 20°, corresponding to solar 191	
  

radiations between 115,000 and 145,000 KJ/day, corresponding to a sampled range of 9.09% 192	
  

from the distribution restricted to the two strata of elevations. “South” was defined between 193	
  

170° and 190°, corresponding to solar radiations between 300,000 and 310,000 KJ/day, 194	
  

corresponding to a sampled range of 3.03% from the distribution restricted to the two strata of 195	
  

elevations (1900 to 1950 m, and 2100 to 2150 m). The interval of values for the “North” 196	
  

strata was larger than the “South” ones, in order to have enough sampled sites exposed in 197	
  

“North”. 198	
  

Finally, every sampled stratum (low-North, high-North, low-South and high-South) 199	
  

had similar topographic conditions for slope and topographic position. The slope was selected 200	
  

within an interval between 30° and 35°, corresponding to a sampled range of 5.56% from the 201	
  

distribution restricted to the two strata of elevations. Topographic position was selected 202	
  

within a window radius with increments ranging from 100 m to 200 m radius, corresponding 203	
  

to a sampled range of 1.67% from the distribution restricted to the two strata of elevations. 204	
  

We then selected pixels within these ecological conditions. The sampling was limited 205	
  

to open, non-woody and non-rocked areas. We selected a total of 38 samples: ten samples for 206	
  

the “South” strata (low and high) and nine samples for the “North” strata (low and high) 207	
  

(summary in Table 1 and Fig. 2).  208	
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Data collection 209	
  

In the field, we recorded the position of each plot using a Trimble GEO Explorer GPS 210	
  

allowing submeter accuracy. We did exhaustive vegetation inventories within 4 m2 and 64 m2 211	
  

for each of the 38 sampled sites. The 4-m2 and the 64-m2 plots had the same lower-left corner. 212	
  

Within the 4-m2 plot, we reported different environmental values, such as field measures of 213	
  

slope and exposure. 214	
  

The species list found in the 4-m2 sampled sites was then reduced in order to contain 215	
  

only species in common with the ones found in the 912 vegetation samples and with a 216	
  

minimum of 30 occurrences in the 912 samples (119 species). This list was the species that 217	
  

could be modelled. This list of 119 species was then reduced to 75 to contain species with a 218	
  

minimum of 5 occurrences in our 4-m2 plots and a minimum of 30 occurrences in the 912 219	
  

plots. 220	
  

 221	
  

Soil measures & soil analyses 222	
  

In the field, we also took different soil measures, such as soil depth with an auger and 223	
  

the organic horizon depth corresponding to the organo-mineral horizon (horizon-A). We also 224	
  

took soil samples in the organo-mineral horizon, at two corners of the 4-m2 plot for lab 225	
  

analyses. For the analyses, the mean soil depth per sample and mean horizon-A depth per 226	
  

sample were used. 227	
  

Soil samples were analyzed in the lab in order to measure the soil pH and the amount 228	
  

of carbon (C), hydrogen (H) and nitrogen (N). The samples were first air-dried, then sieved at 229	
  

2 mm. Soil pH was measured with a pH meter after diluting soil in water in a 1:2.5 soil/water 230	
  

proportion (Page, 1982). Carbon, hydrogen and nitrogen contents analysis were performed 231	
  

using a Carlo Erba CNS2500 CHN Elemental Analyzer coupled with a Fisons Optima mass 232	
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spectrometer (Tamburini et al., 2003). For the analyses, the amount of C, H, N was 233	
  

transformed into a C:N ratio per sample. 234	
  

 235	
  

Species distribution models 236	
  

We used the ‘biomod2’ library (Thuiller et al., 2013) in the R software (3.03, R 237	
  

Foundation for Statistical Computing, Vienna, Austria) to model the distribution of 208 plant 238	
  

species and using the four topo-climatic variables at a resolution of 25 m: mean temperature 239	
  

during the growing season, global solar radiation, slope and topographic position (SDMs on 240	
  

208 species) (Guisan & Zimmermann, 2000). The 208 species were extracted from the 912 241	
  

vegetation plots sampled between 2002 and 2009, with a minimum of 30 occurrences. We 242	
  

used four different modelling techniques (two regression methods and two classification 243	
  

methods): generalized additive models (GAM), generalized boosted models (GBM), 244	
  

generalized linear models (GLM), and random forests (RF) (Elith et al., 2006). We used a 245	
  

repeated (15 times) split-sample cross-validation approach for evaluating the models. Each 246	
  

model was fitted using 80% of the plots and evaluated using the area under the curve of a 247	
  

receiver-operating characteristic plot (AUC; Hanley & Mcneil, 1982) and the true skill 248	
  

statistics (TSS; Allouche et al., 2006) calculated on the excluded 20% partition. The projected 249	
  

distributions for all individual species were then stacked to obtain a probability of presence 250	
  

per species and per plot. For each model, the predicted probabilities were transformed into 251	
  

binary presence/absence data and then the associated binary predictions were stacked for each 252	
  

species. 253	
  

To verify the capacity of the models to predict the distribution of the species present in 254	
  

our samples, an external validation was done. For that we projected 75 species having a 255	
  

minimum of 5 occurrences in our 4-m2 samples and a minimum of 30 occurrences in the 912 256	
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vegetation samples, and we recalculated the AUC values according to this independent 257	
  

dataset (SDMs on 75 species). 258	
  

 259	
  

Comparison between the observations and the predictions 260	
  

In order to compare the observations and the predictions, we calculated the species 261	
  

richness in the observations in the 4-m2 plots, in the 64-m2 plots, the observations reduced to 262	
  

75 species, the predictions and the predictions reduced to 75 species. The species richness for 263	
  

the predictions was calculated by summing the binary presence/absence for each sample. The 264	
  

similarity between the observed samples for all the species in the 4-m2 plots and for the 265	
  

observations reduced to the species used for the models (119 species) has been tested by 266	
  

hierarchical clustering using the ‘vegan’ library. The similarity between the predicted samples 267	
  

has been tested too. 268	
  

 269	
  

Models on residuals 270	
  

Thanks to Principle Component Analyses (PCAs), we selected nine variables with 271	
  

pairwise correlations < 0.7 to limit the risk of multi-colinearity, including variables directly 272	
  

recorded in the field and GIS variables at high resolution. From the field variables, we kept 273	
  

slope, exposure, soil pH, mean soil depth, mean horizon-A depth and C:N ratio. We also 274	
  

selected three high-resolution variables at 5 m: curvature, slope and mean solar radiation 275	
  

(mean of 15th June, 15th July and 15th August). These variables were calculated with the same 276	
  

GIS approach used for the sampling variables, but from a DEM at 1 m. 277	
  

Generalized linear mixed models (GLMMs) were implemented with the residuals of 278	
  

the models (SDMs on 208 species), ranging from −1 to +1, as the response variables and the 279	
  

nine environmental variables as predictors. The residuals have been calculated as 1  − the 280	
  

probability of presence of each species in each sample if the species was present in the 281	
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observations (reduced to 75 species), or as 0− the probability of presence if the species was 282	
  

not present in the observations (reduced to 75 species). The stratum was added as random 283	
  

factor. GLMMs were fitted with the ‘lme4’ library in R, with a Gaussian distribution for the 284	
  

residuals. We fitted GLMMs with all possible combinations of the predictors, allowing a 285	
  

maximum of four variables per model (Grueber et al., 2011). We fitted models with linear 286	
  

and/or quadratic terms for all variables and with only the null model (only the random factor). 287	
  

Then for each of the 75 species, we performed a multi-modelling inference analysis (MMI) 288	
  

using the ‘MuMIn’ library to obtain the importance of variables (Grueber et al., 2011; 289	
  

Symonds & Moussalli, 2010). MMI avoids the problem of selecting a ‘best’ model out of 290	
  

several competing and sometimes nearly equivalent models. Instead, MMI calculates relative 291	
  

AIC weights for all models. These AIC weights, which sum to one across all the models, can 292	
  

be used to calculate the importance of variables, as the sum of the AIC weights across all 293	
  

models that contained the variable. Indeed this importance can be estimated as a percentage. 294	
  

To visualize the results, a co-inertia analysis was performed with the ‘ade4’ library on 295	
  

the 75 species. A co-inertia analysis jointly fit two principal component analyses, in a way 296	
  

that each is reciprocally constrained by the other. It thus applies to two different data 297	
  

matrices. The first PCA was performed on the residuals of each species in each sample. The 298	
  

second PCA was performed on the values of the four most important variables for each site: 299	
  

mean solar radiation at 5 m, soil pH, C:N ratio and curvature at 5 m. In the ordination graphs, 300	
  

we highlighted the plant species as a function of their AUC values from the external 301	
  

validation (SDMs with 75 species) or in function of their ecological indicator values, to better 302	
  

understand the ecological meaning of our most important variables (Landolt et al., 2010). We 303	
  

used the light indicator value to assess the meaning of mean solar radiation, the acidity 304	
  

indicator value for soil pH, the nitrogen indicator value for C:N ratio and the humidity 305	
  

indicator value for curvature.  306	
  



16 

Results 307	
  

Data collection 308	
  

Across our 38 samples, we recorded a total of 245 different plant species in the 4-m2 309	
  

plots and 304 different plant species in the 64-m2 plots. For the following analysis we focused 310	
  

on the 4-m2 plots to have the same resolution as the predictions. There were 119 species in 311	
  

common between the 4-m2 plots and the 30 occurrences dataset of the 912 plots. A total of 75 312	
  

species showed a minimum of 5 occurrences in our 4-m2 plots and 30 occurrences in the 912 313	
  

plots for external validation of the models. 314	
  

 315	
  

Comparison between the observations and the predictions 316	
  

Species richness 317	
  

The mean species richness observed in the field was 35.97 species per sample for the 318	
  

4-m2 plots and 57.16 species per sample for the 64-m2 plots. The species richness values were 319	
  

significantly different between the observations in the 4-m2 and in the 64-m2 plots (Wilcoxon 320	
  

signed rank test, P-value <0.001) (Fig. 3). The species richness for the reduced species list 321	
  

(i.e. 75 species that have a minimum of 5 occurrences in our inventories and a minimum of 30 322	
  

occurrences in the 912 inventories) had a mean of 22.53 species per sample for the 323	
  

observations and 10.32 species per sample for the predictions (Fig. 3). 324	
  

With the binary projections, the models (SDMs with 208 species) predicted a mean of 325	
  

46.71 species per sample.  The species richness values between the predictions and the 326	
  

observations (in the 4-m2 and in the 64-m2
 plots) were significantly different (Wilcoxon 327	
  

signed rank test, P-value <0.001). The number of species predicted in the samples was in-328	
  

between the richness observed in the 4-m2 and the 64-m2 plots. 329	
  

 330	
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Similarity in plant composition 331	
  

The uncertainties associated to the predictions could be visualized through the 332	
  

hierarchical clustering. In the field, the hierarchical clustering revealed that the strata are not 333	
  

grouped together and they have an average similarity of plant composition of only 28.61%, 334	
  

ranging from 25.22% to 34.71% (Fig. 4A). With the observations reduced to the species that 335	
  

can be modelled (119 species), the hierarchical clustering revealed also that the strata are not 336	
  

grouped together and that they have a similarity of plant composition of only 31.49%, ranging 337	
  

from 28.53% to 42.69% (Fig. 4B). As expected, the hierarchical clustering showed that the 338	
  

predicted samples (SDMs on 208 species) are grouped by stratum. They have a similarity of 339	
  

plant composition ranging from 64.22% to 72.98%, and with a mean similarity of 69.34% 340	
  

(Fig. 4C). 341	
  

 342	
  

Species distribution models 343	
  

The evaluation metrics (AUC) values, of the cross-validation models (SDMs on 208 344	
  

species), ranged from 0.66 (poor) to 0.96 (excellent). The vast majority (98.5%) were over 0.7 345	
  

(useful models according to Swets (1988)) (Fig. 5). The mean AUC value was 0.82 (Fig. 5). 346	
  

The lowest AUC values were for Alchemilla coriacea aggr. (0.68), Hieracium bifidum aggr. 347	
  

(0.66) and Silene vulgaris s.l. (0.66). The highest AUC values were for Holcus lanatus (0.96), 348	
  

Lolium perenne (0.95) and Ranunculus bulbosus (0.94). The evaluation metrics (TSS) values, 349	
  

of the SDMs on 208 species, ranged from 0.35 (poor) to 0.85 (excellent), with less than the 350	
  

half of the species (41.5%) over 0.6 (useful models according to Swets (1988)) (Fig. 5). The 351	
  

mean TSS value was 0.58 (Fig. 5). The lowest TSS values were for Hieracium bifidum aggr. 352	
  

(0.35), Silene vulgaris s.l. (0.36) and Alchemilla coriacea aggr. (0.37). The highest TSS 353	
  

values were for Glechoma hederacea sstr. (0.85), Holcus lanatus (0.84) and Lolium perenne 354	
  

(0.82). 355	
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For the external validation to verify the predictive capacity of the models (SDMs on 356	
  

75 species), the AUC values ranged from 0.63 to 0.95 and a mean AUC value of 0.82 (Fig. 5, 357	
  

Appendix S1). Furthermore the vast majority (96%) were over 0.7. The lowest AUC values 358	
  

were for Parnassia palustris (0.63), Alchemilla conjuncta aggr. (0.69) and Pedicularis foliosa 359	
  

(0.70). The highest AUC values were for Alchemilla vulgaris aggr. (0.95), Trifolium medium 360	
  

(0.93) and Astrantia major (0.92). The TSS values ranged from 0.30 to 0.85 and a mean TSS 361	
  

value of 0.57 (Fig. 5). Less than the half of the species (43.2%) were over 0.6. The lowest 362	
  

AUC values were for Parnassia palustris (0.30), Alchemilla conjuncta aggr. (0.36) and 363	
  

Leontodon helveticus (0.38). The highest TSS values were for Astrantia major (0.75), 364	
  

Trifolium medium (0.77) and Alchemilla vulgaris aggr. (0.85). For the following sections, we 365	
  

will focus on the AUC values. 366	
  

The probabilities of presence for the 208 species ranged between 0.04 and 0.93; see 367	
  

Appendix S1 in supplementary material for the probabilities of presence for the 75 species. 368	
  

 369	
  

Models on residuals 370	
  

The models fitted to the residuals of the first model (SDMs on 208 species) produced a 371	
  

total of 38,325 GLMMs, with 255 models per species with linear terms only, 255 models per 372	
  

species with linear and quadratic terms, and 75 null models. 373	
  

The multi-modelling inference analysis gave median importance values ranging from 374	
  

<0.001% to 15.6%. The most important variables were mean solar radiation at 5 m with a 375	
  

median importance of 15.6%, soil pH with a median importance of 8.7%, C:N ratio with a 376	
  

median importance of 7.3% and curvature at 5 m with a median importance of 2.0% (Table 2 377	
  

and Fig. 6). 378	
  

Mean solar radiation was very important (over 70%) for three species: Phleum 379	
  

hirsutum (86%), Scabiosa lucida (84%) and Pimpinella major (82%). Curvature seemed to be 380	
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important (over 60%) for Ranunculus montanus aggr. (65.7%). Soil pH seemed to be very 381	
  

important (over 70%) for Carex sempervirens (79%). The C:N ratio was very important (over 382	
  

70%) for Sesleria caerulea (97%), Alchemilla vulgaris aggr. (93%), Hypericum maculatum 383	
  

aggr. (84%), Aposeris foetida (78%) and Gentiana verna (74%). 384	
  

The co-inertia analysis did not allow separating the plant species in groups related to 385	
  

their reaction to light, humidity, acidity or nitrogen, see Appendix S2 in supplementary 386	
  

material (Fig. S2.1-2.5). It supposed that these variables would not especially affect plants 387	
  

with particular ecological conditions. 388	
  

 389	
  

Discussion 390	
  

In this study, we investigated which environmental variables usually missing in 391	
  

traditional species distribution models could optimize their predictive ability in a mountain 392	
  

landscape. The directed sampling, with four strata identified sites with similar topographic 393	
  

and climatic conditions, sampling a range between 1% and 9% of the totality of the local 394	
  

range of the variables restricted to the two strata of elevations (1900 to 1950 m, and 2100 to 395	
  

2150 m). The species distribution models (SDMs on 208 species) predicted similar plant 396	
  

communities between the strata, with a similarity of plant composition of 69.34%. On the 397	
  

contrary, in the field, the samples from the same strata had a similarity of plants composition 398	
  

of only 33.19%. The most important variables identified by the MMI approach (GLMMs) on 399	
  

the residuals of the first models (SDMs on 208 species), were mean solar radiation at 5 m, soil 400	
  

pH, C:N ratio and curvature at 5 m with importance of 15.6%, 8.7%, 7.3%, 2.0% respectively. 401	
  

 402	
  

High-resolution variables 403	
  

The most important variable missing in previous models was mean solar radiation at a 404	
  

fine scale (5 m) with a median importance of 15.6%. Solar radiations reflect the quantity of 405	
  



20 

energy that reaches the ground. This variable should thus be very important for light-sensitive 406	
  

plants. It did prove very important for three plant species in particular: - Phleum hirsutum, 407	
  

Scabiosa lucida and Pimpinella major - with an importance over 80%. According to its light 408	
  

indicator value (Landolt index), Phleum hirsutum is a species that grows only in sunny 409	
  

habitats, but also occurring in partial shade (light value 4). However, Scabiosa lucida and 410	
  

Pimpinella major are semi-shade plants, rarely in full light, but generally with more than 10% 411	
  

relative illumination (light value 3). So light does not seem to be a limiting factor for these 412	
  

species, although solar radiations seem to be important for them. 413	
  

Curvature is also important, with a median importance of 2.0%. This variable has a 414	
  

similar overall meaning as topographic position, because it represents areas that are convex, 415	
  

concave or flat. But curvature identifies these topographic situations within a narrow 416	
  

neighbourhood and thus reflects finer scale process of drainage. Curvature can also impact 417	
  

plants, because it indirectly translates variations in humidity, and likely also in soil depth and 418	
  

soil pH (Randin et al., 2009a). Curvature appears to be important for Ranunculus montanus 419	
  

aggr. with an importance of 65.7%. According to its humidity indicator value (Landolt 420	
  

index), Ranunculus montanus aggr. is a species that grows on moderately dry to moderately 421	
  

damp soils, with a wide ecological range (humidity value of 3). At the first sight, the humidity 422	
  

does not seem to be a limiting factor for this species, although curvature seems to be 423	
  

important for it. 424	
  

A sampling restricted to a small part of environmental gradients across the study area 425	
  

is expected to better reveal the predictive potential of variables at high resolution. In previous 426	
  

studies, divergent results have been found, but these studies were performed over larger 427	
  

extent and along larger altitudinal ranges. Lassueur et al. (2006) found no significant 428	
  

explanation for curvature, which could be explained by a too wide altitudinal range 429	
  

considered. However, they found that northness (NS), which is related to solar radiations, was 430	
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the most significant explanatory variables at such fine scale showing similar results as we 431	
  

found. Pradervand et al. (2013) found that the best model performance were obtained for 432	
  

models with a resolution of 5 m, but the differences compared with other resolutions 433	
  

(resolutions of 2 m, 10 m, 25 m, 50 m and 100 m) were too small or not significant to derive 434	
  

any meaningful conclusion. Guisan et al. (2007b) found no differences in predictive power 435	
  

between models built for trees with predictors at 100 m and 1 km. Guisan et al. (2007a) found 436	
  

for most of the bird and plant data sets considered that lowering the predictor resolution ten 437	
  

times cause only a slight decrease of the model’s predictive power. These results show that 438	
  

topographic variables can have different importance when a too wide altitudinal range is 439	
  

taken into account, but their resolutions can affect the uncertainties of models. Therefore the 440	
  

importance of variables could be better estimated when a local range, restricted to a small 441	
  

altitudinal range, is selected. Indeed a local range allows decreasing the confounding of 442	
  

several factors along the elevation gradient. 443	
  

 444	
  

Edaphic variables 445	
  

As also expected, our results show that edaphic factors can also improve the predictive 446	
  

ability of SDMs, with soil pH showing a median importance of 8.7%. Soil pH is important, 447	
  

because some plants can only grow on acidic or basic soils (Aerts & Chapin, 2000). High soil 448	
  

pH can prevent the release of important ions (such as nitrogen), causing nutrient deficiency 449	
  

(Gobat et al, 2004). Low soil pH can also cause nutrient deficiencies because ions such as 450	
  

nitrogen can form chemical complexes with other ions and become unavailable for plants 451	
  

(Gobat et al, 2004). Soil pH appears particularly important for Carex sempervirens, with an 452	
  

importance of 79.0%, although this species is considered as in different to pH with a Landolt 453	
  

value of 3 (lightly acid to neutral soils). 454	
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C:N ratio also shows some importance for improving SDMs, with a median 455	
  

importance of 7.3%. C:N ratio expresses the amount of N used as nutrients by plants (Dubuis 456	
  

et al., 2013). Therefore, its amount has a direct impact on plant growth and, consequently, on 457	
  

the formation of plant communities. This variable is influenced by soil pH because its 458	
  

availability depends on the acidity of soil. C:N ratio proved particularly important for Sesleria 459	
  

caerulea, Alchemilla vulgaris aggr., Hypericum maculatum aggr., Aposeris foetida and 460	
  

Gentiana verna (97.0%, 93.0%, 84.0%, 78.0%, 74.0% respectively). Sesleria caerulea and 461	
  

Gentiana verna are present in sites that are more or less infertile (nitrogen value of 2), and 462	
  

Hypericum maculatum aggr. and Aposeris foetida are in sites of intermediate fertility 463	
  

(nitrogen value of 3). Alchemilla vulgaris aggr. has no specific nitrogen value, because it can 464	
  

live everywhere. Globally, these species do not seem to depend on the nitrogen richness in the 465	
  

soil. 466	
  

As these soil variables are very important for plant distribution, it would be important 467	
  

to have mapped representation of these variables. Mapped representation of soil proprieties is 468	
  

needed for the entire region in order to put them in the SDMs, because they have been 469	
  

collected in the field and only for the sampled sites that have been visited. These maps allow 470	
  

seeing the effect of these variables along the global altitudinal gradient. Unfortunately 471	
  

predictor maps of soil proprieties, such as soil pH or ions concentration, are difficult to obtain, 472	
  

so these maps are still rarely available. Moreover this kind of maps is not available for our 473	
  

study area. Producing such data will likely prove important for making progress in future 474	
  

studies. 475	
  

 476	
  

Future perspectives 477	
  

A limitation restricted to our dataset is the number of species that can be modelled. As 478	
  

this number is limited, only 119 species out of a total of 245 species observed in the field, 479	
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could be modelled.  Moreover one cannot add too many variables in the models in order to 480	
  

keep enough power, because it has been shown that a model is likely to be reliable only when 481	
  

the number of predictors is less than 10% of the sample size (Harrell, 2001). 482	
  

 For future studies, it would be interesting to be able to build models containing many 483	
  

of these important variables together. For that, more inventories along the altitudinal gradient 484	
  

would be needed. This would allow checking if these variables would still be kept in the 485	
  

models when other variables, such as the ones that are typically used (e.g. topo-climatic). In 486	
  

order to check if soil variables would really improve SDMs, more inventories would be 487	
  

needed to estimate the soil variables impact on the accuracy of the predictions. Improving the 488	
  

prediction of species distribution at a fine scale in particularly complex landscapes may allow 489	
  

yielding more realistic scenarios of the impact of climate change on plant distribution (Randin 490	
  

et al., 2009a; Scherrer et al., 2011; Vicente et al., 2011). And it could improve the accuracy of 491	
  

species assemblage predictions at high elevations (Guisan & Rahbek, 2011; Dubuis et al., 492	
  

2011; Pottier et al., 2013). 493	
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Figures 635	
  

Figure 1 Flowchart of the analyses done in this study. 1) Sampling strategy done with 636	
  

distribution of topo-climatic variables from 912 samples already done in the study area: mean 637	
  

temperature during the growing season, global solar radiation, slope and topographic position. 638	
  

2) Data collection with a total of 245 species observed in 38 samples (in the 4-m2 plots). 3) 639	
  

Species selection to have only the species in common in the two databases (119 species). This 640	
  

list has been restricted to have only species with a minimum of 5 occurrences in our plots and 641	
  

a minimum of 30 occurrences in the 912 plots (75 species). 4) Species distribution models to 642	
  

project the species in the 38 plots (SDMs on 208 species). 5) External validation to verify the 643	
  

capacity of the dataset using 75 species (SDMs on 75 species). 6) Comparison of the 644	
  

observations and the predictions by comparing the species richness and by hierarchical 645	
  

clustering. 7) Models on the residuals with a multi-modelling inference analysis (GLMMs on 646	
  

the residuals of the SDMs on 208 species), to obtain an importance of variables. Then co-647	
  

inertia analyses have been done to visualize the results and to see if there is pattern between 648	
  

the AUC values, Landolt indices of light, acidity, nitrogen and humidity. 649	
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Figure 2 Map of the study area. The 912 green circles represent the vegetation inventories 651	
  

done between 2002 and 2006; the red stars represent our 38 plots separated in four strata with 652	
  

similar topographic and climatic conditions. 653	
  

654	
  
   655	
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Figure 3 Species richness for the observations and the predictions datasets. The species 656	
  

richness values are significantly different between the observations in the 4-m2 plots, in the 657	
  

64-m2 plots, the observations reduced to 75 species, the predictions and the predictions 658	
  

reduced to 75 species (Wilcoxon signed rank test, P-value <0.001). The predictions have 659	
  

species richness in between the species richness values observed in the 4-m2 and in the 64-m2 660	
  

plots. 661	
  

  662	
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Figure 4 Similarity of plant composition. (A) Hierarchical clustering of all the plant 663	
  

observations in the field. These are not clearly grouped by strata, as shown by the similarity of 664	
  

only 28.61%. (B) Hierarchical clustering of the plant observations restricted to the species 665	
  

that can be modelled (119 species). The plots are not clearly grouped by strata, as shown by 666	
  

the similarity of only 33.19%. (C) Hierarchical clustering of the predictions of the species 667	
  

(SDMs on 208 species). There are grouped by strata, with a similarity of 69.34%. 668	
  

669	
  
  670	
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Figure 5 Evaluation metrics for the SDMs (cross-validation and external validation). The 671	
  

AUC for the cross-validation (SDMs on 208 species) had a mean value of 0.82 and the TSS 672	
  

had a mean value of 0.58 (in red). The mean AUC for the external validation (SDMs on 75 673	
  

species) was 0.82 too and the mean TSS was 0.57 (in blue). 674	
  

  675	
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Figure 6 Importance of variables. The ninth most important variables in the models fitted to 676	
  

the residuals of the SDMs on 208 species are represented. The most important variables are 677	
  

mean solar radiation at 5 m, soil pH, C:N ratio and curvature at 5 m with a median importance 678	
  

of 15.6%, 8.7%, 7.3% and 2.0% respectively. “SRad5m” represents mean solar radiation at 5 679	
  

m, “Curv5m” represents curvature at 5 m and “meanhorA” represents mean horizon-A depth. 680	
  

681	
  
  682	
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Tables 683	
  

Table 1 Summary of the four sampling strata. The four strata have very similar topographic 684	
  

and climatic conditions selected with four environmental variables: mean temperature, global 685	
  

solar radiation, slope and topographic position. The total number of samples is 38 sites.  686	
  

Strata 
Mean 

temperature 
[°C] 

Global solar radiation 
[KJ/day] 

Slope 
[°] 

Topographic 
position  

[m radius] 

Number of 
samples 

Low - North 9.5 – 9.7 115,000 – 145,000 30 – 35 100 – 200 9 
Low - South 9.5 – 9.7 300,000 – 310,000 30 – 35 100 – 200 10 
High - North 8.7 – 8.9 115,000 – 145,000 30 – 35 100 – 200 9 
High - South 8.7 – 8.9 300,000 – 310,000 30 – 35 100 – 200 10 
  687	
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Table 2 Importance of variables in the models fitted to residuals of the SDMs on 208 species. 688	
  

Mean solar radiation at 5 m, soil pH, C:N ratio and curvature at 5 m were the most important 689	
  

variables. The importance was calculated as the sum of the AIC weights of each model in 690	
  

which the variable was present, which can be related to a percentage of importance. 691	
  

Variables Importance [%] 
Mean solar radiation  15.6 
Soil pH 8.7 
C:N ratio 7.3 
Curvature at 5 m 2.0 
Slope at 5 m 1.7 
Mean horizon-A depth 1.6 
Mean solar radiation2 1.0 
Slope (field) 1.0 
Mean soil depth 0.5 
Soil pH2 0.4 
C:N ratio2 6.66 x 10-02 
Exposure 4.64 x 10-02 
Curvature at 5 m2 5.38 x 10-03 
Mean horizon-A depth2 3.40 x 10-03 
Slope at 5 m2 2.73 x 10-03 
Slope (field) 2 3.71 x 10-04 
Mean soil depth2 1.41 x 10-04 
Exposure2 4.81 x 10-07 



36 

Supplementary material 692	
  

Appendix S1 The 75 species used for the MMI, sorted by their AUC values (SDMs on 75 693	
  

species) and their probabilities of presence in each plot. The probabilities range between 0.04 694	
  

and 0.933. In the first table, there are the probabilities of presence in the plots of the low strata 695	
  

(“North” and “South”, and between 1900 and 1950 m). In the second one, the probabilities of 696	
  

presence for the plots in the high strata (“North” and “South”, and between 2100 and 2150 m) 697	
  

are shown. 698	
  

 699	
  

Species AUC Low S1 Low S2 Low S3 Low S4 Low S5 Low S6 Low S7 Low S8 Low S9 Low S10 Low N1 Low N2 Low N3 Low N4 Low N5 Low N6 Low N7 Low N8 Low N10

Alchemilla vulgaris aggr. 0.946 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Trifolium medium 0.927 0.008 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Astrantia major 0.924 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Geranium sylvaticum 0.899 0.009 0.009 0.009 0.009 0.010 0.009 0.009 0.009 0.009 0.225 0.176 0.312 0.137 0.155 0.108 0.133 0.257 0.195 0.117

Carduus defloratus aggr. 0.896 0.038 0.050 0.052 0.062 0.038 0.035 0.037 0.036 0.035 0.038 0.054 0.064 0.065 0.041 0.059 0.044 0.059 0.034 0.056

Poa alpina 0.889 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Hippocrepis comosa 0.885 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.011 0.010 0.010 0.010 0.010 0.012 0.010 0.012 0.011 0.009

Salix retusa 0.883 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.016 0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.014 0.015

Festuca rubra aggr. 0.881 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Crepis aurea 0.881 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

Rumex alpestris 0.879 0.279 0.334 0.281 0.300 0.294 0.404 0.263 0.211 0.166 0.023 0.017 0.016 0.017 0.013 0.018 0.013 0.023 0.013 0.014

Ranunculus acris aggr. 0.878 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Euphrasia minima 0.876 0.368 0.588 0.509 0.543 0.474 0.408 0.351 0.457 0.333 0.024 0.026 0.030 0.031 0.023 0.027 0.026 0.029 0.022 0.025

Veronica chamaedrys 0.873 0.019 0.019 0.018 0.017 0.019 0.018 0.018 0.020 0.019 0.016 0.015 0.014 0.014 0.016 0.015 0.016 0.014 0.015 0.014

Knautia dipsacifolia 0.873 0.035 0.024 0.032 0.028 0.021 0.022 0.029 0.023 0.031 0.009 0.019 0.012 0.010 0.009 0.010 0.009 0.011 0.010 0.010

Helianthemum nummularium aggr. 0.871 0.014 0.011 0.014 0.015 0.011 0.011 0.013 0.010 0.012 0.032 0.044 0.046 0.056 0.038 0.045 0.034 0.041 0.037 0.047

Trifolium badium 0.871 0.042 0.026 0.033 0.032 0.024 0.033 0.046 0.026 0.034 0.416 0.414 0.575 0.249 0.124 0.426 0.144 0.571 0.270 0.238

Phleum rhaeticum 0.870 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Potentilla erecta 0.865 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Gentiana lutea 0.862 0.012 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.013

Silene vulgaris aggr. 0.861 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.024 0.012 0.026 0.008 0.008 0.008 0.008 0.024 0.008 0.008

Myosotis alpestris 0.858 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.037 0.038 0.032 0.014 0.015 0.020 0.015 0.034 0.017 0.014

Cirsium spinosissimum 0.852 0.013 0.012 0.013 0.013 0.012 0.013 0.013 0.012 0.013 0.156 0.033 0.043 0.020 0.018 0.023 0.018 0.240 0.018 0.019

Crepis pyrenaica 0.848 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.007

Homogyne alpina 0.847 0.101 0.181 0.137 0.214 0.213 0.206 0.110 0.136 0.089 0.275 0.203 0.163 0.252 0.251 0.205 0.200 0.214 0.105 0.173

Primula veris aggr. 0.842 0.019 0.014 0.020 0.019 0.012 0.018 0.018 0.013 0.019 0.008 0.009 0.009 0.008 0.008 0.009 0.008 0.009 0.008 0.009

Trollius europaeus 0.842 0.013 0.012 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.063 0.028 0.056 0.013 0.013 0.013 0.013 0.150 0.013 0.012

Scabiosa lucida 0.841 0.028 0.024 0.023 0.020 0.035 0.030 0.026 0.037 0.030 0.350 0.212 0.283 0.138 0.274 0.230 0.241 0.271 0.367 0.204

Vaccinium myrtillus 0.841 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Potentilla aurea 0.840 0.009 0.010 0.010 0.010 0.009 0.010 0.009 0.010 0.009 0.014 0.015 0.017 0.016 0.014 0.016 0.015 0.016 0.013 0.016

Hieracium villosum aggr. 0.837 0.006 0.007 0.006 0.006 0.007 0.006 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Pimpinella major 0.836 0.011 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.027 0.022 0.020 0.017 0.021 0.020 0.020 0.022 0.026 0.017

Dactylis glomerata 0.832 0.020 0.026 0.024 0.024 0.018 0.018 0.020 0.019 0.019 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Deschampsia cespitosa 0.830 0.104 0.141 0.130 0.153 0.149 0.109 0.099 0.138 0.096 0.038 0.046 0.058 0.050 0.034 0.049 0.035 0.052 0.034 0.045

Thymus praecox 0.827 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.012 0.011 0.011 0.010 0.011 0.011 0.011 0.012 0.011 0.010

Ligusticum mutellina 0.827 0.010 0.011 0.010 0.011 0.011 0.011 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Galium anisophyllon 0.824 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.008 0.008 0.008 0.008 0.009 0.008 0.008

Agrostis capillaris 0.823 0.050 0.046 0.050 0.049 0.037 0.038 0.044 0.040 0.047 0.039 0.062 0.058 0.044 0.047 0.040 0.039 0.042 0.072 0.051

Laserpitium latifolium 0.820 0.025 0.016 0.019 0.017 0.020 0.022 0.023 0.021 0.025 0.169 0.154 0.160 0.040 0.140 0.112 0.138 0.187 0.176 0.042

Plantago alpina 0.818 0.145 0.084 0.128 0.112 0.104 0.121 0.144 0.104 0.126 0.021 0.022 0.024 0.022 0.020 0.023 0.019 0.023 0.030 0.021

Pulsatilla alpina aggr. 0.814 0.052 0.053 0.049 0.051 0.062 0.070 0.062 0.062 0.051 0.054 0.016 0.038 0.015 0.016 0.015 0.015 0.040 0.016 0.015

Hypericum maculatum aggr. 0.810 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.008 0.008 0.007 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.007 0.008

Centaurea montana 0.808 0.020 0.019 0.022 0.021 0.016 0.015 0.020 0.018 0.019 0.028 0.021 0.029 0.014 0.013 0.014 0.014 0.033 0.015 0.014

Soldanella alpina 0.806 0.014 0.012 0.015 0.013 0.012 0.012 0.013 0.012 0.013 0.011 0.012 0.015 0.011 0.011 0.012 0.011 0.021 0.012 0.013

Briza media 0.805 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.013

Anthyllis vulneraria aggr. 0.804 0.105 0.072 0.117 0.099 0.086 0.057 0.090 0.107 0.121 0.041 0.036 0.030 0.029 0.036 0.030 0.032 0.029 0.037 0.030

Polygonum viviparum 0.803 0.008 0.008 0.008 0.008 0.009 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.009 0.009 0.009 0.012 0.009 0.008 0.008

Hieracium murorum aggr. 0.802 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.018 0.020 0.056 0.018 0.017 0.022 0.016 0.028 0.018 0.018

Sesleria caerulea 0.792 0.178 0.063 0.098 0.146 0.071 0.076 0.109 0.067 0.081 0.062 0.156 0.127 0.131 0.054 0.097 0.048 0.103 0.068 0.082

Bartsia alpina 0.792 0.017 0.018 0.018 0.018 0.017 0.016 0.017 0.017 0.018 0.498 0.483 0.575 0.354 0.234 0.497 0.158 0.569 0.367 0.393

Carex sempervirens 0.787 0.064 0.079 0.082 0.081 0.078 0.066 0.067 0.086 0.067 0.288 0.324 0.570 0.233 0.182 0.387 0.112 0.368 0.378 0.288

Selaginella selaginoides 0.782 0.102 0.112 0.103 0.111 0.109 0.110 0.104 0.101 0.100 0.011 0.011 0.012 0.012 0.012 0.011 0.012 0.012 0.011 0.012

Ranunculus montanus aggr. 0.782 0.271 0.204 0.244 0.306 0.239 0.290 0.300 0.218 0.254 0.017 0.017 0.017 0.019 0.016 0.017 0.016 0.017 0.017 0.020

Leontodon hispidus aggr. 0.779 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Phyteuma spicatum 0.778 0.026 0.047 0.033 0.037 0.033 0.030 0.027 0.032 0.027 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.010 0.009 0.010

Carex ferruginea 0.778 0.041 0.036 0.043 0.042 0.036 0.035 0.040 0.036 0.039 0.192 0.117 0.208 0.086 0.104 0.103 0.085 0.243 0.153 0.119

Nardus stricta 0.777 0.025 0.015 0.018 0.019 0.012 0.014 0.016 0.014 0.019 0.257 0.513 0.547 0.289 0.094 0.453 0.094 0.555 0.136 0.257

Trifolium pratense aggr. 0.774 0.055 0.071 0.070 0.087 0.059 0.051 0.055 0.061 0.053 0.097 0.101 0.061 0.088 0.092 0.078 0.082 0.072 0.067 0.076

Plantago atrata 0.772 0.158 0.113 0.125 0.133 0.147 0.128 0.132 0.171 0.159 0.412 0.309 0.286 0.166 0.293 0.245 0.270 0.373 0.342 0.155

Hedysarum hedysaroides 0.762 0.028 0.022 0.025 0.025 0.022 0.022 0.023 0.022 0.022 0.059 0.078 0.107 0.082 0.061 0.089 0.060 0.097 0.076 0.076

Gentiana verna 0.755 0.077 0.089 0.081 0.087 0.095 0.079 0.079 0.095 0.075 0.134 0.155 0.236 0.182 0.130 0.174 0.143 0.182 0.135 0.176

Prunella grandiflora 0.754 0.337 0.195 0.306 0.201 0.334 0.328 0.339 0.314 0.354 0.019 0.017 0.017 0.018 0.019 0.017 0.017 0.017 0.020 0.018

Crocus albiflorus 0.749 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.010

Linum catharticum 0.748 0.025 0.032 0.031 0.030 0.045 0.030 0.025 0.030 0.026 0.019 0.020 0.020 0.023 0.020 0.023 0.023 0.022 0.020 0.020

Aster bellidiastrum 0.742 0.014 0.015 0.014 0.014 0.015 0.015 0.014 0.015 0.014 0.015 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.014 0.015

Alchemilla glabra aggr. 0.727 0.021 0.020 0.020 0.022 0.020 0.020 0.020 0.019 0.019 0.019 0.020 0.022 0.021 0.018 0.022 0.019 0.022 0.018 0.020

Aposeris foetida 0.726 0.018 0.027 0.025 0.023 0.021 0.019 0.020 0.020 0.018 0.013 0.013 0.020 0.014 0.013 0.013 0.012 0.017 0.016 0.014

Leontodon helveticus 0.723 0.044 0.039 0.041 0.040 0.045 0.045 0.044 0.048 0.044 0.052 0.047 0.046 0.052 0.051 0.048 0.050 0.049 0.054 0.045

Vaccinium gaultherioides 0.721 0.023 0.027 0.030 0.034 0.025 0.023 0.023 0.024 0.023 0.307 0.282 0.374 0.131 0.118 0.206 0.143 0.423 0.102 0.100

Campanula scheuchzeri 0.706 0.116 0.061 0.107 0.069 0.177 0.162 0.116 0.142 0.162 0.131 0.091 0.146 0.093 0.155 0.122 0.090 0.118 0.247 0.118

Phleum hirsutum 0.703 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.080 0.057 0.067 0.036 0.060 0.066 0.073 0.075 0.067 0.065

Pedicularis foliosa 0.699 0.021 0.024 0.021 0.022 0.019 0.018 0.017 0.018 0.019 0.191 0.147 0.259 0.183 0.169 0.285 0.208 0.190 0.105 0.192

Alchemilla conjuncta aggr. 0.685 0.026 0.019 0.021 0.024 0.020 0.021 0.022 0.021 0.023 0.183 0.093 0.160 0.053 0.126 0.063 0.082 0.166 0.095 0.085

Parnassia palustris 0.634 0.348 0.119 0.191 0.177 0.177 0.235 0.323 0.159 0.227 0.176 0.175 0.256 0.133 0.157 0.199 0.134 0.248 0.271 0.119
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  700	
  

Species AUC High S1 High S2 High S3 High S4 High S5 High S6 High S7 High S8 High S9 High S10 High N1 High N2 High N3 High N4 High N5 High N6 High N7 High N8 High N10

Alchemilla vulgaris aggr. 0.946 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Trifolium medium 0.927 0.008 0.008 0.008 0.008 0.007 0.007 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Astrantia major 0.924 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Geranium sylvaticum 0.899 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.539 0.448 0.426 0.526 0.435 0.379 0.468 0.480 0.483 0.342

Carduus defloratus aggr. 0.896 0.014 0.020 0.019 0.019 0.021 0.026 0.021 0.016 0.020 0.022 0.028 0.025 0.018 0.024 0.022 0.018 0.022 0.017 0.023

Poa alpina 0.889 0.015 0.017 0.016 0.011 0.011 0.011 0.011 0.015 0.011 0.008 0.009 0.009 0.013 0.013 0.021 0.009 0.009 0.009 0.010

Hippocrepis comosa 0.885 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.009 0.008

Salix retusa 0.883 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

Festuca rubra aggr. 0.881 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Crepis aurea 0.881 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

Rumex alpestris 0.879 0.344 0.282 0.241 0.358 0.389 0.328 0.197 0.160 0.279 0.017 0.030 0.023 0.015 0.017 0.018 0.032 0.033 0.013 0.025

Ranunculus acris aggr. 0.878 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Euphrasia minima 0.876 0.387 0.512 0.478 0.451 0.565 0.542 0.506 0.240 0.493 0.027 0.036 0.030 0.022 0.026 0.028 0.034 0.029 0.021 0.030

Veronica chamaedrys 0.873 0.024 0.023 0.024 0.021 0.023 0.021 0.025 0.025 0.022 0.021 0.025 0.025 0.020 0.019 0.018 0.020 0.026 0.021 0.018

Knautia dipsacifolia 0.873 0.172 0.188 0.170 0.229 0.143 0.312 0.156 0.184 0.235 0.020 0.015 0.013 0.021 0.014 0.014 0.013 0.013 0.014 0.015

Helianthemum nummularium aggr. 0.871 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.019 0.021 0.014 0.013 0.013 0.013 0.013 0.014 0.013 0.013

Trifolium badium 0.871 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.033 0.023 0.016 0.194 0.130 0.015 0.020 0.018 0.023 0.018

Phleum rhaeticum 0.870 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.010

Potentilla erecta 0.865 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Gentiana lutea 0.862 0.027 0.018 0.018 0.016 0.020 0.016 0.024 0.037 0.016 0.016 0.018 0.020 0.029 0.043 0.020 0.023 0.027 0.031 0.048

Silene vulgaris aggr. 0.861 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.024 0.025 0.008 0.008 0.008 0.008 0.008

Myosotis alpestris 0.858 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.018 0.019 0.018 0.058 0.077 0.018 0.024 0.019 0.052 0.049

Cirsium spinosissimum 0.852 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.017 0.016 0.015 0.218 0.030 0.015 0.015 0.015 0.017 0.017

Crepis pyrenaica 0.848 0.014 0.013 0.012 0.010 0.012 0.009 0.011 0.014 0.010 0.008 0.008 0.009 0.020 0.024 0.009 0.009 0.009 0.015 0.011

Homogyne alpina 0.847 0.124 0.124 0.087 0.091 0.181 0.135 0.102 0.050 0.108 0.064 0.076 0.075 0.059 0.076 0.062 0.074 0.080 0.042 0.086

Primula veris aggr. 0.842 0.059 0.076 0.088 0.047 0.044 0.077 0.038 0.052 0.059 0.014 0.011 0.011 0.014 0.015 0.046 0.021 0.011 0.019 0.015

Trollius europaeus 0.842 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.012 0.011 0.011 0.153 0.057 0.011 0.012 0.011 0.025 0.013

Scabiosa lucida 0.841 0.014 0.013 0.016 0.021 0.026 0.019 0.027 0.015 0.020 0.091 0.082 0.061 0.075 0.058 0.041 0.055 0.067 0.071 0.043

Vaccinium myrtillus 0.841 0.014 0.013 0.013 0.012 0.013 0.012 0.013 0.013 0.012 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009 0.010 0.010

Potentilla aurea 0.840 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.011 0.011 0.013 0.011 0.013 0.012 0.012 0.012 0.011 0.012

Hieracium villosum aggr. 0.837 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Pimpinella major 0.836 0.013 0.010 0.011 0.011 0.011 0.010 0.010 0.012 0.010 0.025 0.023 0.020 0.039 0.031 0.024 0.031 0.022 0.031 0.028

Dactylis glomerata 0.832 0.036 0.044 0.037 0.052 0.045 0.054 0.039 0.031 0.046 0.009 0.009 0.010 0.008 0.009 0.009 0.009 0.009 0.009 0.009

Deschampsia cespitosa 0.830 0.129 0.132 0.099 0.095 0.147 0.132 0.110 0.066 0.105 0.041 0.044 0.045 0.036 0.046 0.039 0.043 0.036 0.031 0.045

Thymus praecox 0.827 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.008 0.009 0.009 0.008 0.009 0.009 0.009 0.008

Ligusticum mutellina 0.827 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.010 0.011 0.011 0.011

Galium anisophyllon 0.824 0.013 0.013 0.013 0.012 0.013 0.012 0.013 0.013 0.012 0.010 0.010 0.011 0.012 0.013 0.011 0.011 0.011 0.014 0.012

Agrostis capillaris 0.823 0.068 0.089 0.081 0.077 0.068 0.082 0.061 0.061 0.081 0.065 0.059 0.061 0.068 0.070 0.062 0.056 0.064 0.053 0.077

Laserpitium latifolium 0.820 0.020 0.017 0.019 0.020 0.017 0.017 0.018 0.022 0.019 0.077 0.066 0.043 0.232 0.154 0.046 0.180 0.065 0.146 0.121

Plantago alpina 0.818 0.149 0.164 0.144 0.205 0.135 0.177 0.123 0.136 0.184 0.042 0.037 0.035 0.043 0.030 0.028 0.044 0.028 0.036 0.039

Pulsatilla alpina aggr. 0.814 0.017 0.017 0.018 0.026 0.032 0.025 0.033 0.017 0.023 0.013 0.017 0.016 0.019 0.019 0.012 0.012 0.017 0.012 0.012

Hypericum maculatum aggr. 0.810 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Centaurea montana 0.808 0.047 0.053 0.049 0.058 0.048 0.071 0.046 0.046 0.071 0.034 0.033 0.032 0.284 0.240 0.041 0.037 0.031 0.114 0.063

Soldanella alpina 0.806 0.020 0.022 0.021 0.023 0.019 0.077 0.018 0.020 0.025 0.025 0.018 0.019 0.041 0.020 0.021 0.017 0.017 0.018 0.021

Briza media 0.805 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.012 0.011 0.012 0.012 0.012 0.012 0.011 0.012

Anthyllis vulneraria aggr. 0.804 0.128 0.135 0.142 0.109 0.148 0.181 0.139 0.124 0.185 0.083 0.064 0.108 0.077 0.048 0.053 0.138 0.081 0.065 0.072

Polygonum viviparum 0.803 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Hieracium murorum aggr. 0.802 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.018 0.016 0.014 0.016 0.015 0.014 0.014 0.014 0.017 0.025

Sesleria caerulea 0.792 0.067 0.070 0.062 0.103 0.062 0.096 0.054 0.053 0.087 0.103 0.089 0.056 0.102 0.071 0.057 0.091 0.051 0.075 0.083

Bartsia alpina 0.792 0.018 0.017 0.016 0.015 0.018 0.018 0.016 0.016 0.017 0.365 0.294 0.349 0.516 0.448 0.303 0.307 0.296 0.443 0.465

Carex sempervirens 0.787 0.040 0.051 0.053 0.050 0.044 0.062 0.043 0.037 0.056 0.161 0.144 0.112 0.220 0.241 0.201 0.139 0.103 0.303 0.289

Selaginella selaginoides 0.782 0.038 0.045 0.045 0.053 0.048 0.062 0.048 0.038 0.044 0.011 0.010 0.011 0.011 0.012 0.011 0.010 0.010 0.010 0.011

Ranunculus montanus aggr. 0.782 0.086 0.110 0.097 0.134 0.100 0.144 0.096 0.082 0.127 0.016 0.018 0.017 0.015 0.017 0.016 0.016 0.017 0.017 0.016

Leontodon hispidus aggr. 0.779 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Phyteuma spicatum 0.778 0.016 0.017 0.017 0.016 0.019 0.016 0.019 0.016 0.016 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009

Carex ferruginea 0.778 0.069 0.134 0.086 0.067 0.059 0.097 0.058 0.067 0.085 0.253 0.228 0.258 0.464 0.445 0.349 0.195 0.227 0.220 0.293

Nardus stricta 0.777 0.011 0.012 0.011 0.013 0.011 0.014 0.011 0.012 0.014 0.393 0.212 0.064 0.534 0.342 0.111 0.067 0.064 0.208 0.400

Trifolium pratense aggr. 0.774 0.045 0.051 0.048 0.060 0.076 0.062 0.057 0.037 0.072 0.058 0.095 0.087 0.049 0.051 0.065 0.079 0.098 0.054 0.074

Plantago atrata 0.772 0.044 0.043 0.045 0.051 0.042 0.051 0.045 0.046 0.051 0.079 0.064 0.042 0.119 0.066 0.047 0.054 0.051 0.062 0.052

Hedysarum hedysaroides 0.762 0.021 0.031 0.024 0.024 0.023 0.027 0.023 0.021 0.026 0.091 0.076 0.064 0.078 0.069 0.068 0.058 0.059 0.062 0.075

Gentiana verna 0.755 0.039 0.046 0.054 0.057 0.049 0.058 0.042 0.035 0.053 0.145 0.123 0.186 0.104 0.142 0.154 0.109 0.106 0.108 0.134

Prunella grandiflora 0.754 0.203 0.108 0.164 0.304 0.114 0.162 0.197 0.181 0.191 0.021 0.025 0.019 0.022 0.018 0.018 0.023 0.022 0.019 0.026

Crocus albiflorus 0.749 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.010 0.009 0.009 0.009 0.009 0.010

Linum catharticum 0.748 0.052 0.056 0.052 0.038 0.051 0.048 0.049 0.045 0.047 0.028 0.030 0.032 0.031 0.039 0.033 0.032 0.032 0.030 0.036

Aster bellidiastrum 0.742 0.013 0.013 0.013 0.012 0.013 0.012 0.013 0.012 0.012 0.012 0.012 0.013 0.012 0.013 0.013 0.013 0.013 0.012 0.013

Alchemilla glabra aggr. 0.727 0.015 0.016 0.016 0.017 0.016 0.017 0.016 0.015 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015 0.017

Aposeris foetida 0.726 0.013 0.014 0.014 0.013 0.015 0.014 0.014 0.013 0.014 0.011 0.009 0.010 0.009 0.010 0.010 0.010 0.010 0.010 0.010

Leontodon helveticus 0.723 0.029 0.027 0.030 0.037 0.038 0.034 0.041 0.030 0.033 0.056 0.060 0.066 0.043 0.038 0.042 0.057 0.076 0.064 0.039

Vaccinium gaultherioides 0.721 0.016 0.018 0.017 0.018 0.021 0.022 0.018 0.016 0.022 0.052 0.047 0.043 0.113 0.116 0.041 0.046 0.051 0.045 0.050

Campanula scheuchzeri 0.706 0.044 0.036 0.055 0.046 0.033 0.037 0.040 0.038 0.045 0.066 0.081 0.034 0.064 0.044 0.042 0.091 0.058 0.075 0.050

Phleum hirsutum 0.703 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.050 0.048 0.110 0.100 0.091 0.095 0.096 0.074 0.116 0.086

Pedicularis foliosa 0.699 0.012 0.013 0.013 0.019 0.013 0.014 0.013 0.012 0.015 0.034 0.027 0.030 0.027 0.030 0.026 0.030 0.030 0.030 0.030

Alchemilla conjuncta aggr. 0.685 0.027 0.063 0.040 0.033 0.029 0.025 0.027 0.027 0.046 0.079 0.090 0.092 0.335 0.254 0.121 0.119 0.146 0.119 0.120

Parnassia palustris 0.634 0.070 0.079 0.085 0.194 0.075 0.126 0.076 0.074 0.128 0.219 0.126 0.063 0.250 0.071 0.065 0.108 0.068 0.143 0.121
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Appendix S2 Co-inertia analysis fitted the PCA of the residuals of the species distribution 701	
  

models (on 208 species) and the PCA of the values of the most important variables for each 702	
  

plot. The co-inertia analysis did not allow separating the plant species in groups related to 703	
  

their reaction to light, humidity, acidity or nitrogen. 704	
  

S2.1 Co-inertia analysis showing the plant species with the most important variables. In 705	
  

colour, the AUC values of the SDMs on 75 species, from the higher values (in green) to the 706	
  

lower ones (in red).  “Srad” corresponds to mean solar radiation, “pH” for soil pH, “CN” 707	
  

corresponds to C:N ratio, “Curv5m” corresponds to curvature at 5 m. 708	
  

709	
  
  710	
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S2.2 Co-inertia analysis showing the plant species with the most important variables. The 711	
  

colours represent the ecological values of light (L index values) from the higher values (in 712	
  

green) to the lower ones (in red). “Srad” corresponds to mean solar radiation, “pH” for soil 713	
  

pH, “CN” corresponds to C:N ratio, “Curv5m” corresponds to curvature at 5 m. 714	
  

715	
  
  716	
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S2.3 Co-inertia analysis showing the plant species with the most important variables. The 717	
  

colours represent the ecological values of acidity (R index values) from the higher values (in 718	
  

green) to the lower ones (in red). “Srad” corresponds to mean solar radiation, “pH” for soil 719	
  

pH, “CN” corresponds to C:N ratio, “Curv5m” corresponds to curvature at 5 m. 720	
  

721	
  
  722	
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S2.4 Co-inertia analysis showing the plant species with the most important variables. The 723	
  

colours represent the ecological values of nitrogen (N index values) from the higher values (in 724	
  

green) to the lower ones (in red). “Srad” corresponds to mean solar radiation, “pH” for soil 725	
  

pH, “CN” corresponds to C:N ratio, “Curv5m” corresponds to curvature at 5 m. 726	
  

727	
  
  728	
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S2.5 Co-inertia analysis showing the plant species with the most important variables. The 729	
  

colours represent the ecological values of humidity (F index values) from the higher values 730	
  

(in green) to the lower ones (in red). “Srad” corresponds to mean solar radiation, “pH” for soil 731	
  

pH, “CN” corresponds to C:N ratio, “Curv5m” corresponds to curvature at 5 m. 732	
  

 733	
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