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Abstract  39	
Dung beetles depend on mammal droppings as unique trophic resource and are thus 40	
considered key ecosystem services providers. Since our knowledge of dung beetles 41	
distribution and ecology is still limited, we chose to investigate it with Species Distribution 42	
Modeling (SDM), which allows quantifying the species-environment interactions (i.e. their 43	
niche) and predict the species’ presence probability. We sampled coprophagous beetles in 44	
the Vaud Alps and calibrated for each species a regional SDM with our data and another one 45	
with all occurrences for Switzerland. In both cases, the best predictors were temperature and 46	
rock cover proportion, while a soil characteristic was important in the regional models and 47	
precipitations in the Swiss models. The model performances were influenced by the 48	
altitudinal range where the species occur but not by other species characteristics like their 49	
size or nesting behavior (laying eggs inside or below the excrements). We also showed that 50	
species richness decreased with altitude but that the species nesting in the dung represented 51	
a higher proportion of dung beetles at high altitude. Overall this study brought new data and 52	
insights for an ecologically important group of species, which is still poorly studied in 53	
Switzerland. 54	
 55	
Résumé  56	
Les bousiers dépendent exclusivement des excréments de mammifères pour se nourrir et 57	
fournissent donc des services écosystémiques essentiels. La connaissance de la répartition 58	
et de l’écologie des bousiers étant encore limitée, nous avons choisi de nous y intéresser en 59	
utilisant des Modèles de Distribution d’Espèces (Species Distribution Models - SDM) qui 60	
permettent de quantifier les besoins environnementaux des espèces (leurs niches) et de 61	
prédire leur répartition géographique. Nous avons échantillonné des bousiers dans les Alpes 62	
vaudoises et avons calibré pour chaque espèce un SDM régional avec nos données et un 63	
second en utilisant toutes les données disponibles au niveau suisse. Dans les deux modèles, 64	
les meilleures prédicteurs incluaient la température et la proportion de couverture rocheuse, 65	
tandis qu’une des caractéristiques du sol (∂13C) et les précipitations étaient importantes 66	
respectivement pour les modèles des Alpes vaudoises et les modèles suisses. Les 67	
performances des modèles étaient influencées par l’amplitude altitudinale occupée par les 68	
espèces alors que d’autres caractéristiques spécifiques telles que la taille ou le mode de 69	
nidification (ponte des œufs dans les excréments ou en dessous) n’avaient aucun effet. 70	
Nous démontrons également que la richesse spécifique des coléoptères coprophages 71	
décroit avec l’altitude mais que les espèces pondant leurs œufs dans les excréments étaient 72	
proportionnellement plus nombreuses en altitude. Dans cette étude, nous apportons de 73	
nouvelles données et connaissance écologiques sur des taxa peu étudiés en Suisse bien 74	
qu’écologiquement important. 75	
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 80	
Introduction 81	
Coprophagous beetles are part of a specialized entomofauna feeding on the droppings of 82	
mammals (Hanski, 2016). Some species have coprophagous adult and predaceous larvae, 83	
which are chasing fly larvae from dung patches (Hydrophilidae, Sphaeridinae), while other 84	
have coprophagous adults and larvae. In this latter case, some species lay their eggs directly 85	
in the dung (endocoprids: Scarabaeidae, Aphodiinae) and other dig simple wells or 86	
sophisticated network of tunnels and rooms where they stock dung and lay their eggs 87	
(paracoprids: Geotrupidae and Scarabaeidae Scarabeinae) to avoid the harsh intra- and 88	
inter-specific competition to exploit dung patches before they dry (Hanski, 2016). By feeding 89	
and burying excrements, dung beetles are essential for dung decomposition (Gittings et al., 90	
1994) and avoid the accumulation of excrements. Considered as key “Ecosystem Service 91	
Providers” (Nichols et al., 2008), dung beetles prevent the loss of 4.8% of the pasture 92	
surface per year in England (Beynon et al., 2012b) and allow sparing between 380 million 93	
(Losey and Vaughan 2006) and 2 billion (Fincher 1981) of USD in the USA and at least 367 94	
million pounds in the UK (Beynon et al. 2015). In addition, dung beetles represent locally an 95	
important a part of the food for insectivorous animals such as birds (in particular corvids) 96	
(Lumaret and Stiernet, 1990) or mammals (e.g. greater horseshoe bat (Rhinolophus 97	
ferrumequinum)) (Beynon et al., 2015). The economic and ecological importance of dung 98	
beetles coupled with the possibility to characterize the whole species assemblages found at 99	
a given location (dung patch) in a given time point (Finn and Giller 2000; Hanski 2016) 100	
makes them an adequate group to study biogeography (Lumaret 1979) and animal 101	
communities (Hanski and Koskela, 1977). In Europe, the species assemblages of dung 102	
beetle and their relative abundance were already characterized (Lumaret and Stiernet, 1989; 103	
Errouissi et al., 2004; Lumaret and Stiernet, 1984; Negro, 2011) and the importance of 104	
climatic and edaphic factors have been shown by the study of the species richness of the 105	
dung beetles assemblages at a coarse level (Hortal et al., 2001; Lobo and Martin-Piera, 106	
2002; Lumaret and Jay-Robert, 2002). However, ecological needs and fine geographic 107	
distribution of individual dung beetle species remains an understudied topic. 108	
The study of the realized environmental niche of species, adaptation to local conditions and 109	
interspecific interactions (Hutchinson, 1957) allows a better understanding of the distribution 110	
of species (see Niche-Geography duality: Colwell and Rangel 2009), which is crucial to 111	
overcome Wallacean (knowledge about the geographical distribution of species) and 112	
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Hutchinsonian (knowledge about the tolerance of species to abiotic factors) shortfalls 113	
concerning biodiversity (Hortal et al., 2015). The development of statistical models to quantify 114	
the niche and derive geographic predictions, the Species Distribution Models (SDM; also 115	
called ‘habitat suitability’ or ‘ecological niche’ models; see Franklin, 2010; Peterson et al., 116	
2011; Guisan et al., 2017), have brought powerful tools to better understand, compare and 117	
quantify the relationship between organism and environment (i.e. their environmental niche) 118	
but also to predict their distribution in space and time (Guisan and Thuiller, 2005; Guisan and 119	
Zimmermann, 2000), which can bring essential knowledge about the ecology of understudied 120	
taxonomical groups like arthropods (Hochkirch et al., 2020). SDMs have been used to study 121	
various groups of insects (Pradervand et al., 2014; D’Amen et al., 2015; Pellissier et al., 122	
2012; Descombes et al., 2016; Mata et al., 2017) but there are few examples of individually 123	
modeled dung beetle species (Chefaoui et al., 2005; Lobo, 2010).  124	
The aim of this study is to bring a better understanding of the factors influencing the 125	
distribution of individual dung beetle species in temperate mountain environments using an 126	
SDM approach, which was never done before to our knowledge. To do so, we sampled dung 127	
beetles throughout the Western Swiss Alps of the Vaud state in a random stratified manner 128	
with the aim of assessing which dung beetle species are present and obtaining a sufficient 129	
number of accurate species data to quantify species-environment relationships in SDMs. We 130	
additionally obtained all the occurrences available in Switzerland for the beetle families of 131	
interest (Hydrophilidae, Geotrupidae and Scarabaeidae) from the Swiss national database 132	
(infofauna-CSCF). This allowed us to compare fine-scale models calibrated in the study 133	
region using our precisely sampled data and larger-scale models calibrated at the Swiss 134	
level with the infofauna data. We expected the latter to reduce the risk, while calibrating the 135	
SDMs, of truncating the species’ environmental niches, if not covering the complete extent of 136	
the species’ geographic distributions and environmental requirements, as could expectedly 137	
be observed in the smaller extent (Chevalier et al., (In Review); Pearson et al., 2004; Thuiller 138	
et al., 2004; Hannemann et al., 2016; Guisan et al., 2017; El-Gabbas and Dormann 2018; G. 139	
Mateo et al., 2019). Here, we particularly focused on the climatic, land-use and edaphic 140	
factors as environmental predictors of the species’ presence. In addition, we investigated the 141	
effects of species characteristics such as the altitudinal amplitude where the species are 142	
found, the nesting behavior and the species’ size on the SDMs performances. We also 143	
interested us to the species richness of dung beetles patterns and the proportion of 144	
endocoprids compared to the other dung beetles throughout the study region. 145	
 146	
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Material & Methods 147	
Study area 148	
The study was conducted in Western Switzerland, in the alpine region of the Canton de 149	
Vaud, which goes from Vevey to Bex and to Rougemont (Figure 1). It spans a wide altitudinal 150	
gradient, from 372 to 3051 meters above sea level. Since the lower part of the region is 151	
dedicated to crop fields and the slopes of the mountain basis are covered by forests, we only 152	
considered the upper part of the area, starting from an altitude of 1000 meters above sea 153	
level (Figure 1), where pastures grazed by domestic livestock (principally cows an sheeps) 154	
and alpine grasslands inhabited by big wild herbivores, like Alpine chamois (Rupicapra 155	
rupicapra), Alpine ibex (Capra ibex) and Red deers (Cervus elaphus) occur. The study region 156	
is of particular interest for interdisciplinary research as it constitutes a priority region for 157	
research (http://rechalp.unil.ch; Reynard et al., 2020; von Däniken et al., 2014) and is also a 158	
priority region for biodiversity conservation (Lassen and Savoia, 2005) 159	
  160	



	

	 6	

 161	
Figure 1. Map of the study region with the 132 sampling plots.  162	
 163	
Sampling & beetle data acquisition 164	
From the 31 of May to the 12 September 2020, we collected dung beetles in 132 sampling 165	
plots (Figure 1) of 20 meters radius located in a random stratified manner (Guisan and Hirzel, 166	
2002) in open habitats (excluding the forests and built areas). We stratified the study region 167	
in 10 strata according to altitude (every 300 meters until, from 1000 to 2500 meters) and the 168	
yearly sum of solar radiations (two levels: lower and higher than the mean radiation observed 169	
in the study area). In order to perform a monitoring that represents the environment of the 170	
study area, we sampled a number of random points in each stratum proportional to its size. 171	
Since it is the first time such sampling is done for this beetle group, it should ensure 172	

100
Km

N
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optimizing the number of species to be found (according to the species-area relationship; 173	
Lomolino, 2001) while still allowing good species-environment relationships to be fitted 174	
(Hirzel and Guisan, 2002). The effective sampling plots were placed as close as possible to 175	
the point locations in the initial design, but their position was slightly shifted (maximum 200 176	
meters, staying in the same strata) when the initial point was falling in places that had not 177	
been recently pastured by domestic or wild herbivores. In each sampling plot, 20 minutes 178	
were dedicated to the manual search of beetles inside of the dung using a little shovel with 179	
the goal to catch the maximum number of species. The sampled individuals were stored in 180	
Scheerpelz solution (55% water, 30% EtOH 96%, acetic acid 10%, acetic ether 5%). We 181	
identified the collected beetles with the help of a binocular and based on identification keys 182	
found in the specialized literature (Baraud, 1992; Fikáček, 2006; Klausnitzer, 2011; Vorst, 183	
2009). The species were recorded as present or absent in each sampling plot but the 184	
individuals were not counted because our sampling was not thought to reflect the abundance 185	
of these insects. We classified the Scarabaeidae and Geotrupidae species according to their 186	
nesting behaviour in ‘endocoprids’ (laying eggs in the dung), ‘paracoprids’ (laying eggs in 187	
dung buried under the excrement) with the help of the specialized literature (Hanski, 2016; 188	
Rojewski, 1983).  189	
In addition to our sampling dataset, we received from the Swiss Center of Cartography of the 190	
Fauna (infofauna-CSCF) the complete dataset of occurrences (from museums and private 191	
collections) of coprophagous beetles for the whole territory of Switzerland. For the statistical 192	
analyses, we only kept the data that had a geographic accuracy of at least 250 meters. 193	
 194	
Environmental data  195	
To depict the species’ niche and to fit our models, we used as predictors (see Table 1): (i) 196	
land-use variables originating either from the Swiss Federal Office of Statistics (2004) - 197	
alpine pastures, lowland pastures, cultivation, human infrastructures (at a 50 meters 198	
resolution) - or from the Swiss Federal Office of Topography (Topographic Landscape Model 199	
3D catalogue, 2012); - humid habitats, forest edges, rock and bare soil covers (25 meters 200	
resolution); and ii) climatic variables (at a 25 meters resolution) calculated from the 201	
bioclimatic data of Switzerland (Hijmans et al., 2005; Broennimann, 2018) - mean 202	
temperature of the warmest quarter of the year (Bio10), precipitation in the wettest year 203	
quarter (Bio16), and precipitation in the driest year quarter (Bio17). Elevation was not 204	
included as predictor, as it is not a causal variable for species (Guisan et al. 2017) and is 205	
driving many other variables already included as predictors (e.g. temperature). To take into 206	
account the movement of the dung beetles and the precision of the data at the Swiss level, 207	
we ran, for each variable focal window (Bellamy et al., 2013; Scherrer et al., 2019), which 208	
summarized the proportion of each land-use variables (i) and the mean climatic condition (ii) 209	
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in a 250 meters radius around every pixel of 25 meters. These predictors were used to 210	
calibrate models at the Swiss scale (Table 1). 211	
For all species, which were recorded at least 15 times in our sampling (Table 2), we 212	
calibrated models at the scale of the study region including the land-use and bioclimatic 213	
variables and fine scale predictors with a 25 meters resolution (Table 1), such as edaphic 214	
factors; soil pH (Buri et al., 2017) and the carbon isotope composition ∂13C (Bird et al., 2003; 215	
Buri et al., 2020) as an indirect measure of soil texture and organic matter content but also 216	
the yearly sum of solar radiation (Zimmermann and Kienast, 1999). We verified that the 217	
variables used were not too correlated (<0.7) as proposed by Dorman et al. (2013). 218	
 219	
Table 1. The 13 predictors used in our models. For each of the variables, we provide its 220	
category, name, a short description and the model in which it was used: Swiss and/or 221	
regional. 222	

Category Name Description 

Swiss scale   

Bioclim Bio10 Mean temperature of the warmest quarter of year in a 250 meter focal window 

Bioclim Bio16 Mean precipitation in the wettest year quarter in a 250 meter focal window 

Bioclim Bio17 Mean precipitation of the driest quarter of the year in a 250 meter focal window 

Land use Alpine pastures Proportion of alpine pastures (situated above the permanent habitation altitude)  
area in a 250 meter focal window 

Land use Cultivations Proportion of cultivated area in a 250 meter focal window 

Land use Forest edges Proportion of forest edges area in a 250 meter focal window 

Land use Human 
infrastructures 

Proportion of human infrastructures cover in a 250 meter focal window 

Land use Humid habitats Proportion of humid habitats area in a 250 meter focal window 

Land use Lowland 
pastures 

Proportion of lowland pastures (situated in the permanent habitation altitude) 
 area in a 250 meter focal window 

Land use Rock Proportion of rocks and bare soils area in a 250 meter focal window 

Regional scale   

Bioclim Solar radiation Sum of the total radiation over one year 

Soil C13 Predicted carbon isotope composition ∂13C of the soil in the study region 

Soil pH Predicted soil pH in the study region 

 223	
Statistical analyses 224	
All the statistical analyses were performed with R Studio version 1.0.153. (R core team, 225	
2017). The models were built using the biomod2 (Thuiller et al., 2009) and ecospat package 226	
(Di Cola et al., 2017). Among the techniques available to fit Species Distribution Model 227	
(SDM) (Elith et al., 2006; Guisan and al., 2017), we choose to use a particular approach 228	
developed for small sample sizes: Ensemble of Small Models (ESMs; Lomba et al. 2010; 229	
Breiner et al., 2015, 2018), a technique fitting many small (here bivariate) models and 230	
averaging them in a weighted way within a single Ensemble model. This approach avoids 231	
overfitting of the models and is thus very useful in the case of species with few occurrences 232	
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in a dataset (Breiner et al., 2015; Lomba et al., 2010), as was our case here. Using this 233	
modeling approach, we calibrated two models for the dung beetle species found in the Vaud 234	
Alps. First, and only for species found at least 15 times in the study area (Scherrer, et al., 235	
2019), we calibrated a “Regional model” using presence-absence based on our accurately 236	
sampled species data and all predictors (climatic, land use, edaphic and radiance; see Table 237	
1). Secondly, for all the species found at least once in the study region and at least 15 times 238	
in Switzerland, we calibrated a “Swiss model” using all occurrences available in Switzerland 239	
(from infofauna-CSCF and our sampled data) with climatic and land-use variables as 240	
predictors (see Table 1). We added to the “Swiss models” a same number of background 241	
points (also called ‘pseudo-absences’) as the number of presences and iterated the models 242	
many times.  243	
We calibrated our 68 models (Regional and Swiss models) using only two techniques since 244	
the addition of several modeling techniques has a low impact on the quality of the ESMs 245	
predictions (Breiner et al., 2015). We choose to use Generalized Linear Models (GLM) and 246	
Generalized Additive Models (GAM), to represent both parametric (GLM) and semi-247	
parametric (i.e. more data-driven; GAM) modeling approaches. Hundred runs were 248	
conducted with 70% of the dataset used for model calibration and 30% for model validation. 249	
The GLM and GAM models were separately merged in two Ensemble models (ESM-GLM 250	
and ESM-GAM) with the single bivariate runs weighted according to their AUC scores. 251	
Finally, these two single-technique ESMs were included in a final Ensemble model (final 252	
ESM), weighted by their respective SomersD score. All the final models were projected over 253	
the study region. We evaluated the quality of our models, with a maximization of their True 254	
Skill Statistic score (TSS; Allouche et al., 2006; maxTSS; Guisan et al., 2017). The relative 255	
importance’s of each variable in the models were also extracted using the 256	
ecospat.ESM.VarContrib function of the ecospat package, which sums separately the 257	
weights of the bivariate models including each variable and compares them to the sum of all 258	
the bivariate models.  259	
 260	
Model performances in relation with species characteristics 261	
We investigated wherever species’ characteristics impact the performances of the individual 262	
species’ models. We tested the influence of the standard deviation of the altitudinal 263	
amplitude where the beetles are found in Switzerland (i.e. difference between highest and 264	
lowest altitude), the influence of the nesting behavior (endocoprid, paracoprid and non-265	
nesting species: Hydrophilidae) and the body size of the beetles (according to the 266	
specialized literature; Baraud, 1992; Allemand and Leblanc, 2004; Klausnitzer, 2011) on the 267	
quality of the Swiss models (max TSS). Using the package lme4 (Bates et al. 2015), we  ran 268	
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a Generalized Linear Model (GLM) with the three species characteristics as explanatory 269	
variables and the median maxTSS of the final models of each species as response variable. 270	
 271	
Species richness patterns of dung beetles 272	
We wanted to obtain the expected species richness patterns of dung beetles in the study 273	
region, which can be approximated by summing the probabilities of presence of species 274	
(Dubuis et al., 2011). In order to include the highest number of potential species, we summed 275	
the maps of presence probabilities of the Swiss models ESMs to get a map of the global 276	
species richness. We also summed the presence probabilities for the species with the same 277	
nesting behavior (endocoprids, paracoprids or non nesting Hydrophilidae) to obtain 278	
predictions of species richness per group. Finally, we investigated the proportion of the 279	
coprophagous entomofauna represented by the endocoprids. 280	
 281	
Results 282	
Beetles 283	
We recorded 1120 occurrences of coprophagous beetles for a total of 46 species (Table 2, 284	
Figure S3) belonging respectively to Scarabaeidae (28 species, 20 Aphodiinae and 8 285	
Scarabaeinae), Geotrupidae (4 species) and Hydrophilidae (14 species). 286	
 287	
Table 2. Species of coprophagous beetles found in the study area. For the 46 species, 288	
we report the name of the family, the number of sampled points where the species was 289	
present (in brackets the species with a too low number of occurences (less than 15), for 290	
which no regional models, were run) and the number of already existing precise occurrences 291	
in Switzerland (in brackets the species, for which no model was built since there were less 292	
than 15 occurences) and the nesting behaviour (E – Endocoprids, P – Paracoprids, H – 293	
Hydrophilidae [predatory larvae, no nesting]). The species are depicted in Figure S3. 294	

Family Subfamily Species Vaud Alps Switzerland Nesting 

Geotrupidae Geotrupinae Anoplotrupes stercorosus (Scriba, 1791) 26 401 P 

Geotrupidae Geotrupinae Geotrupes spiniger (Marsham, 1802) (9) 124 P 

Geotrupidae Geotrupinae Geotrupes stercorarius (Linnaeus, 1758) 17 76 P 

Geotrupidae Geotrupinae Trypocopris vernalis (Linnaeus, 1758) (2) 72 P 

Hydrophilidae Sphaeridiinae Cercyon haemorrhoidalis (Fabricius, 1775) (8) 82 H 

Hydrophilidae Sphaeridiinae Cercyon impressus (Sturm, 1807) 88 115 H 

Hydrophilidae Sphaeridiinae Cercyon lateralis (Marsham, 1802) 70 203 H 

Hydrophilidae Sphaeridiinae Cercyon melanocephalus (Linnaeus, 1758) 23 82 H 

Hydrophilidae Sphaeridiinae Cercyon obsoletus (Gyllenhall, 1808) (4) 17 H 

Hydrophilidae Sphaeridiinae Cercyon pygmaeus (Illiger, 1801) 46 69 H 

Hydrophilidae Sphaeridiinae Cercyon quisquilius (Linnaeus, 1761) (7) 162 H 

Hydrophilidae Sphaeridiinae Cryptopleurum crenatum (Kugelann, 1794) (8) 17 H 
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Hydrophilidae Sphaeridiinae Cryptopleurum minutum (Fabricius, 1775) 17 61 H 

Hydrophilidae Sphaeridiinae Megasternum concinnum (Marsham, 1802) (1) 131 H 

Hydrophilidae Sphaeridiinae Sphaeridium bipustulatum Fabricius, 1781 17 83 H 

Hydrophilidae Sphaeridiinae Sphaeridium lunatum Fabricius, 1792 78 134 H 

Hydrophilidae Sphaeridiinae Sphaeridium marginatum Fabricius, 1787 (6) 19 H 

Hydrophilidae Sphaeridiinae Sphaeridium scarabaeoides (Linnaeus, 1758) 80 189 H 

Scarabaeidae Aphodiinae Acrossus depressus (Kugelann, 1792) 76 254 E 

Scarabaeidae Aphodiinae Acrossus rufipes (Linnaeus, 1758) 62 304 E 

Scarabaeidae Aphodiinae Agoliinus satyrus (Reitter, 1892) (2) 30 E 

Scarabaeidae Aphodiinae Amidorus obscurus (Fabricius, 1792) 42 88 E 

Scarabaeidae Aphodiinae Ammoecius brevis (Erichson, 1848) (1) 16 E 

Scarabaeidae Aphodiinae Aphodius fimetarius aggr. (Linnaeus, 1758) 16 214 E 

Scarabaeidae Aphodiinae Bodilopsis rufa (Moll, 1782) 59 335 E 

Scarabaeidae Aphodiinae Calamosternus granarius (Linnaeus, 1767) (8) 236 E 

Scarabaeidae Aphodiinae Colobopterus erraticus (Linnaeus, 1758) 82 140 P 

Scarabaeidae Aphodiinae Esymus pusillus (Herbst, 1789) 20 133 E 

Scarabaeidae Aphodiinae Euheptaulacus carinatus (Germar, 1824) (10) 30 E 

Scarabaeidae Aphodiinae Nimbus contaminatus (Herbst, 1783) (3) 90 E 

Scarabaeidae Aphodiinae Oromus alpinus (Scopoli, 1763) 27 121 E 

Scarabaeidae Aphodiinae Otophorus haemorrhoidalis (Linnaeus, 1758) 47 117 E 

Scarabaeidae Aphodiinae Parammoecius gibbus (Germar, 1816) 21 48 E 

Scarabaeidae Aphodiinae Planolinoides borealis (Gyllenhal, 1827) (4) (9) E 

Scarabaeidae Aphodiinae Planolinus fasciatus (A. G. Olivier, 1789) (4) 21 E 

Scarabaeidae Aphodiinae Rhodaphodius foetens (Fabricius, 1787) (4) 19 E 

Scarabaeidae Aphodiinae Teuchestes fossor (Linnaeus, 1758) 64 151 E 

Scarabaeidae Aphodiinae Volinus sticticus (Panzer, 1798) (5) 172 E 

Scarabaeidae Scarabaeinae Copris lunaris (Linnaeus, 1758) (1) 184 P 

Scarabaeidae Scarabaeinae Euoniticellus fulvus (Goeze, 1777) (5) 53 P 

Scarabaeidae Scarabaeinae Onthophagus baraudi Nicolas, 1964 16 33 P 

Scarabaeidae Scarabaeinae Onthophagus coenobita (Herbst, 1783) (3) 125 P 

Scarabaeidae Scarabaeinae Onthophagus fracticornis (Preyssler, 1790) 58 291 P 

Scarabaeidae Scarabaeinae Onthophagus illyricus (Scopoli, 1763) (6) 62 P 

Scarabaeidae Scarabaeinae Onthophagus joannae Goljan, 1953 (10) 155 P 

Scarabaeidae Scarabaeinae Onthophagus verticicornis (Laicharting, 1781) (1) 22 P 
 295	
Swiss model 296	
One of the 46 species that we recorded in the study region had less than 15 occurrences at 297	
the Swiss level (Planolinoides borealis; Table 2) and was therefore not used to build ESMs. 298	
For the 45 other species, the models calibrated at the Swiss level ranged from poor to high 299	
quality with median maxTSS going from 0.27 (Anoplotrupes stercorosus) to 0.93 300	
(Ammoecius brevis) (Figure 2). We present all the maps in the supplementary material 301	
(Figure S1). At the Swiss level the variable with the highest contribution in the models were 302	
the mean temperature of the warmest quarter of year (Bio10), the proportion of rock and bare 303	
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soils (Rock) and precipitation during the driest quarter of the year (Bio17) (Figure 3). The 304	
human infrastructure, wet habitats and cultivation had the lowest impact (Figure 3). 305	
 306	

307	
Figure 2. Results of the Ensemble of Small Models (ESMs) calibrated at the Swiss scale 308	
presented for each of the 45 species treated with the max True Skills Statistics (maxTSS) 309	
ordered by median. The boxplots are colored according to the nesting behavior of the 310	
species (E – Endocoprids, P – Paracoprids, H – Hydrophilidae [predatory larvae, no 311	
nesting]). All the model projections are presented in Figure S1 and all the species are 312	
illustrated in Figure S3.  313	
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 314	
Figure 3. Relative importance of the variables used as predictors in the 45 Ensemble of 315	
Small Models (ESMs) calibrated at the Swiss scale presented in increasing order of 316	
importance. The climatic conditions are Bio 10 (temperature of the warmest quarter of year), 317	
Bio 16 (precipitation in the wettest year quarter) and Bio17 (precipitation of the driest quarter 318	
of the year). For the full descriptions of the predictors, see Table 1.  319	
 320	
Vaud Alps model (Regional) 321	
On the 46 species recorded in the study area, 23 had at least 15 occurrences and were 322	
therefore used to build ESMs. The regional models showed a high heterogeneity in their 323	
performances (worst model: Acrossus rufipes, median maxTSS = 0.40, best: Parammoecius 324	
gibbus, median maxTSS = 0.85) (Figure 4). We present all the maps in the supplementary 325	
material (Figure S2). At the level of the study region, the variable with the highest 326	
contribution in the models were the proportion of rock and bare soil cover (Rock), the carbon 327	
isotope composition of the soil (∂13C) the mean temperature of the warmest quarter of year 328	
(Bio10) (Figure 5), while the cultivation proportion, the human infrastructure and the solar 329	
radiation had the lowest contribution (Figure 5). 330	
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 333	

 334	

 335	
Figure 4. Results of the Ensemble of Small Models (ESMs) calibrated at the Regional scale 336	
presented for each of the 23 species treated with the max True Skills Statistics (maxTSS) 337	
ordered by median. The boxplots are colored according to the nesting behavior of the 338	
species (E – Endocoprids, P – Paracoprids, H – Hydrophilidae [predatory larvae, no 339	
nesting]). All the model projections are presented in Figure S2 and all the species are 340	
illustrated in Figure S3. 341	
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 343	
Figure 5. Relative importance of the variables used as predictors in the 23 Ensemble of 344	
Small Models (ESMs) calibrated at the Regional scale presented in increasing order of 345	
importance. The climatic conditions are Bio 10 (temperature of the warmest quarter of year), 346	
Bio 16 (precipitation in the wettest year quarter) and Bio17 (precipitation of the driest quarter 347	
of the year). For the description of the predictors see Table 1. 348	
 349	
Model performances in relation with species characteristics 350	
The altitudinal amplitude where the species occur had a significant influence on the median 351	
maxTSS in the models (GLM result: p-value = 1x10-9, t-value = -7.98; Figure 6A). Neither the 352	
nesting strategies (GLM result: p-values = 0.88 and 0.24, t-values = -0.16 and -1.20; Figure 353	
6B), nor the size of the species had an influence on the performance of the models (GLM 354	
result: p-value = 0.89, t-value = 0.14; Figure 6C). There was no significant interaction 355	
between variables. 356	
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 358	
Figure 6 Model performances in relation with species characteristics. The median max True 359	
Skills Statistics (maxTSS) of each species are plotted (A) against the altitudinal amplitude 360	
standard deviation where the species are found in Switzerland; (B) according to the nesting 361	
behavior of the species (E – Endocoprids, P – Paracoprids, H – Hydrophilidae [predatory 362	
larvae, no nesting]); (C) against the species size. The grey area represents the confidence 363	
interval 95%. 364	
 365	
Species richness models 366	
Our models predicted a global decrease in species richness from the low to the high altitudes 367	
(min = 11.06, max = 24.58 species) (Figure 7A). This trend was particularly sharp for the 368	
paracoprids (min =2.39, max = 7.66) (Figure 7B) but much less for the endocoprids (min = 369	
5.65, max = 8.85) (Figure 7C). Hydrophilidae also show a strong loss of species diversity 370	
with the increasing altitude (min = 2.51, max = 8.52 species). (Figure 7D). The highest 371	
proportion of endocoprid was observed at higher altitude (min = 0.33, max = 0.55) (Figure 372	
7E). 373	
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 375	
Figure 7. Predicted species richness in the study region starting at 1000 meters above sea 376	
level according to the models calibrated at the Swiss scale considering (A) all species, (B) 377	
the Paracoprids, (C) the Endocoprids, (D) the Hydrophilidae and (E) the proportion of the 378	
global diversity represented by Endocoprid. 379	
 380	
Discussion 381	
We investigated the influence of various factors on the distributions of coprophagous beetle 382	
species in the Western Swiss Alps using correlative species distribution modeling (SDM) 383	
approaches based on quantifying habitat suitability (Guisan et al. 2017). Given the high 384	
number of species with small number of occurrences, we used a particular approach recently 385	
developed for small sample sizes: ensemble of small models (ESMs; Lomba et al., 2010; 386	
Breiner et al., 2015, 2018). In our models, the predictors with the greatest importance always 387	
included climatic variables (Figure 3; Figure 5), like in many SDM studies (Pradervand et al., 388	
2013; Scherrer et al., 2019), demonstrating once more the importance of those limiting 389	
factors. Interestingly, in both models (i.e. Swiss and Regional) the proportion of rock and 390	
bare soil cover (Rock) was an important predictor (Figure 3B, Figure 5B), which could be due 391	
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to a higher proportion of unvegetated surfaces at higher altitudes, where the species are also 392	
better modeled, artificially increasing the influence of species inhabiting these areas in the 393	
results. Another possibility could be that more species are expected in pastures of high 394	
ecological value (i.e. with a high overall biodiversity), which are grasslands with 395	
discontinuous vegetation cover due to low fertilization rate (Delarze et al., 2015). In addition, 396	
the superficial cover by rocks could be an indirect way of quantifying the heterogeneity of the 397	
landscape around the occurrence points. For instance, Negro et al. (2011) suggested that 398	
habitat heterogeneity, especially the presence of natural forested areas next to pastures, 399	
plays an important role in increasing dung beetle species richness. Forest edges brought an 400	
important contribution as predictor in our models even if this predictor was not in the top ones 401	
(Figure 3B; Figure 5B). In contrast, some variables had little influence in our models. These 402	
are often land cover or land use variables with small cover in Switzerland (e.g. wet habitats) 403	
or in the study region (e.g. cultivations) but it is difficult to know if it is the low frequency of 404	
these variables over the landscape that induces their smaller influence in the models or if 405	
they really do not have an influence on species distributions. 406	
Our ESMs had very variable predictive performances as measured by the maximized TSS 407	
(see Guisan et al., 2017), with values ranging from 0.27 to 0.93 for the Swiss models (Figure 408	
2) and from 0.40 to 0.85 for the regional models (Figure 4). We tried to explain the variability 409	
of our model performances with species characteristics and found that species present over 410	
a wide altitudinal range had weaker models compared to the species occurring in a narrower 411	
altitudinal amplitude (Figure 6A). Our results are in line with those of Guisan and Hofer 412	
(2003) and Grenouillet et al. (2011), who showed that the distributions of generalist species 413	
are more difficult to predict. These results are also consistent with those of Tessarolo et al. 414	
(2021), who found that niche marginality has a major influence on the models’ quality for 415	
dung beetles in Spain. On the other hand, we found no influence of the nesting behavior 416	
(Figure 6B) nor the size of the species (Figure 6C) on the maxTSS of the models meaning 417	
that these biological traits seems not being relevant to explain the models quality. However, 418	
further analyses could be performed to try to improve the predictive performances of 419	
generalist species by taking into account the co-occurrences patterns through the region, 420	
which could be possible using our precise sampled data. 421	
When looking at species richness of coprophagous beetles obtained by cumulating models 422	
for single species in the study region, the global trend is a diminution of the number of 423	
species with increasing altitude (Figure 7). This result is also mainly true for the richness of 424	
other taxa in the same region (Dubuis et al., 2011; Pradervand et al., 2013; Reymond et al., 425	
2013; Pellissier et al., 2013; Scherrer et al., 2019; Seppey et al., 2020), for which the climatic 426	
predictors and especially temperature were also of great importance. However, it is important 427	
to notice that, for the dung beetles studied here, the strength of the decrease in species 428	
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richness depends on the nesting behavior: the paracoprids (Figure 7B) and the 429	
Hydrophilidae (Figure 7D) show a sharp decrease while the endocoprid a smoother one. This 430	
latter group forms the biggest part of the dung beetle diversity at high altitude where almost 431	
no paracoprids and Hydrophilidae are found (Figure 6B and 6E). This is consistent with other 432	
studies (Lobo et al. 2007) and is explained by the fact that endocoprid beetles are expected 433	
to be more cold tolerant since they need the dung patches to remain moist for the entire 434	
development of their larval stage and are outcompeted in warmer climates by paracoprids, 435	
which avoid the endocoprid to use dung by burying it (Hanski, 2016). 436	
Our field sampling designed in a random stratified manner permitted to be representative of 437	
the environment of the study area and likely allowed us to find a high number of dung beetles 438	
species. From a faunistical point of view, our study brings precious new records for 439	
coprophagous beetles, an under sampled taxon in comparison to other insect groups such 440	
as orthopteras or butterflies, and even more compared with vertebrates (Troudet et al., 2017. 441	
Indeed, the data sampled in our study represents now 17.9% (N=1120) of all precise 442	
occurrences existing for the 46 dung beetle species in Switzerland (N=6258). We also found 443	
that an important proportion of the coprophagous beetle species of Switzerland is found in 444	
the Vaud Alps (41.6%). These data represent a key source of knowledge for ecologically and 445	
economically important taxa, which had never been studied in the Vaud Alps region, contrary 446	
to many other groups of organisms, reinforcing the status of biodiversity hotspot of this study 447	
region in the European Alps (Lassen and Savoia, 2005).  448	
 449	
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 702	
Figure S1. Map of all the 45 species for which a model was run at the Swiss scale. Red 703	
represent areas with high presence probability while blue the areas with low presence 704	
probability of the species. 705	
  706	

Legend
Value

High : 0.602

Low : 0.055

Legend
Value

High : 0.625

Low : 0.163

Otophorus haemorrhoidalis 

Legend
Value

High : 0.877

Low : 0.04

Parammoecius gibbus 

Legend
Value

High : 0.636

Low : 0.209

Planolinus fasciatus 

Legend
Value

High : 0.733

Low : 0.023

Rhodaphodius foetens 

Volinus sticticus 

Legend
Value

High : 0.659

Low : 0.061

Copris lunaris 

Legend
Value

High : 0.65

Low : 0.064

Euoniticellus fulvus 

Legend
Value

High : 0.726

Low : 0.07

Onthophagus baraudi 

Legend
Value

High : 0.606

Low : 0.053

Onthophagus coenobita 

Legend
Value

High : 0.646

Low : 0.258

Onthophagus fracticornis 

Legend
Value

High : 0.66

Low : 0.059

Onthophagus illyricus 

Legend
Value

High : 0.65

Low : 0.103

Onthophagus joannae 

Legend
Value

High : 0.76

Low : 0.034

Onthophagus verticicornis 

-	0.62	

-	0.16	

-	0.88	

-	0.04	

-	0.64	

-	0.21	

-	0.73	

-	0.02	

Legend
Value

High : 0.785

Low : 0.16

Teuchestes fossor 

-	0.78	

-	0.16	

-	0.61	

-	0.05	

-	0.73	

-	0.07	

-	0.65	

-	0.06	

-	0.66	

-	0.06	

-	0.60	

-	0.05	

-	0.65	

-	0.26	

-	0.66	

-	0.06	

-	0.65	

-	0.10	

-	0.76	

-	0.03	

Legend
Value

High : 0.802

Low : 0.084

Oromus alpinus 

-	0.80	

-	0.08	



	

	 27	

 707	

 708	

 709	
Figure S2. Map of the 23 species for which a model was run at the Regional scale. Red 710	
represent areas with high presence probability while blue the areas with low presence 711	
probability of the species. 712	
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 715	
Figure S3. Illustration of all the dung beetle species found in the study region. Illustration: 716	
Vivien Cosandey.  717	
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