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ABSTRACT 
 
Species Distribution Models (SDMs) are commonly used to understand and predict species 
distributions across space and time by combining information about the species occurrences 
and environment. However, biotic interactions are expected to be key drivers of species 
distributions, and the stress-gradient hypothesis predicts that their type and quantity may vary 
along an environmental stress-productivity gradient. Given that, the question whether biotic 
interactions should be included in SDMs has been risen. Models containing biotic predictors 
(as species presences/absences or biomass) and Joint Species Distribution Models (JSDMs), 
able to capture species associations, have been proposed to consider biotic interactions and their 
influence on species distribution across a landscape. Here, we used vegetation data from a 
mountain environment to investigate if species distribution predictions can be improved with 
SDMs including proxies for biotic interactions as predictors and JSDMs. Our results showed 
that JSDMs performed equally as the models containing only abiotic variables. The predictions 
slightly improved when biotic predictors were added for all models. In addition, we found 
variation in the amount of biotic interactions along the elevation gradient. All models performed 
better at sites of low species richness. Nevertheless, adding biotic interactions in our models 
only brought small improvements on predictions. 
 

KEYWORDS: SDMs, JSDMs, stress-gradient hypothesis 
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RÉSUMÉ 
 
Comprendre le fonctionnement de la distribution des espèces est un défi en écologie. Nous 
savons qu’une grande partie de ces distributions peut être expliquée par l’environnement. 
Néanmoins, les interactions entre espèces y jouent aussi un rôle majeur. Ces interactions 
peuvent varier en intensité ainsi qu’en nature. En effet, elles peuvent être négatives, lorsque 
deux espèces sont en compétition pour la même ressource, ou positives lorsque deux espèces 
s’apporte mutuellement un avantage. Une récente théorie a proposé l’hypothèse que la 
fréquence de ces interactions dépend de la quantité de stress à laquelle les espèces sont 
soumises : tendant à être plus négatives lorsque les conditions sont moins stressantes et plus 
positives lorsque les conditions sont difficiles. Aujourd’hui les modèles de distribution 
d’espèces (SDMs) sont utilisés afin de caractériser et prédire la distribution de ces dernières. 
Ces derniers utilisent principalement des paramètres environnementaux. Néanmoins, comme 
les interactions biotiques sont également importantes, de nouveaux modèles utilisant des 
mesures d’interactions biotiques comme prédicteurs ont été testés et d’autres capables 
d’intégrer ces interactions ont été développés. Nos résultats montrent que ces nouveaux 
modèles n’améliorent pas la précision des prédictions lorsqu’ils sont comparés aux modèles 
basés uniquement sur des paramètres abiotiques. Cette précision montre une augmentation 
minime lorsque des paramètres biotiques sont ajoutés comme prédicteurs dans nos modèles. 
Nous avons également observé une variation de la quantité des interactions biotiques en 
fonction de l’altitude. En conclusion, nous montrons que l’intégrations des interactions 
biotiques n’apporte que de petites améliorations avec nos données.  
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INTRODUCTION 
 
Understanding the relationship between environment and species distribution has been a central 
issue in ecology since a long time (Humboldt & Bonpland, 1807; Austin, 2002). It is known 
that environmental conditions play a key role for species distributions. To study this matter, 
Species Distribution Models (SDMs) have been developed and are used to understand and 
predict species distributions (Guisan & Zimmermann, 2000). In addition, SDMs can also be 
used to predict species distributions under past and future conditions to assess the changes and 
potential challenges resulting from global environmental changes such as climate (Bakkenes et 
al., 2002; Peterson et al., 2002; Midgley et al., 2003), land-use change (Faleiro et al., 2013) 
and nitrogen deposition (Vries et al., 2010) and to evaluate the invasive potential of a newly 
introduced species (Nyari et al., 2006; Zimmermann et al., 2010). 
 
Classical SDMs are usually based on abiotic predictor variables representing environmental 
conditions. However, it is known that biotic interactions play a key role in shaping species 
distributions, and thus, may need to be accounted for when building models and making the 
predictions (Callaway et al., 2002; Araújo & Luoto, 2007; Gotelli et al., 2010). These 
interactions can be negative, such as competition, locally decreasing occurrences of species 
(Weiner et al., 2001) or reducing fitness (Lovett Doust & Lovett Doust, 1990), or positive such 
as facilitation resulting in a beneficial effect for at least one species and no negative effect for 
the other (Stachowicz, 2001). This can lead to reduction of the abiotic stress by neighbouring 
species allowing them to survive in conditions where they could not grow alone (Bertness & 
Callaway, 1994; Bertness & Leonard, 1997; Cavieres & Badano, 2009). Surely, not all species 
affect each other, and many relationships are neutral. Finally, species traits can be an indicator 
of species’ ability to compete and could thus, give hints about the nature and amount of the 
biotic interactions among species (Kunstler et al., 2016). For instance, it has been demonstrated 
that species with higher leaf area tended to be more competitive in fertile environments (Fynn 
et al., 2005). 
 
In addition to species traits, environmental conditions of a site may influence the nature and 
amount of biotic interactions. This has been formalized as Stress-Gradient Hypothesis (SGH) 
which states that the frequency of negative biotic interactions (competition) is bigger in a low-
stress environment, while in a high-stress environment, the interactions tend to shift to neutral 
and positive interactions (facilitation) (Maestre et al., 2009). This theory is controversial, yet 
several studies have found supporting results (Cavieres & Badano, 2009; Meier et al., 2011). 
For example, it has been shown that when looking at survival of species, biotic interactions 
change from competition to facilitation with the increasing abiotic stress and from negative to 
less negative when looking at the growth and reproduction instead of abundance or occurrences 
(He et al., 2013). Further, it has been demonstrated that species interactions tends to shift from 
competition to facilitation with stress in a cold alpine environment (Callaway et al., 2002) and 
along a salinity gradient (Bertness & Shumway, 1993). Nevertheless, several other studies 
found rejecting results in semi-arid environments (Maestre & Cortina, 2004; Liancourt et al., 
2005) suggesting that this hypothesis could not be applied to every type of stress gradient 
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(Maestre et al., 2009) or that the data were not appropriate to test this hypothesis. In addition, 
a related hypothesis, the Species-Interactions Abiotic-Stress Hypothesis (SIASH), states that 
abiotic forces (e.g. minimum temperatures) define species range limits in stressful conditions 
while biotic forces (e.g. competition) set the species range limits in less challenging 
environments (Louthan et al., 2015) (Figure 1). From the SIASH, we can also hypothesize that 
more negative biotic interactions occur at low elevation compared to high elevation. Indeed, 
more species will be able to cope with soft environmental conditions, leading to a higher species 
richness and number of competitors there, compared to harsh and stressful environment where 
a lower number of species have the appropriate adaptations (Liancourt et al., 2005). 
Altogether, combining the two (related) hypothesis, one can expect that species occurrence at 
the sites with low abiotic stress are likely more defined by negative interactions, whereas at 
sites with high abiotic stress, species occurrences are more driven by abiotic environmental 
conditions and rather positive than negative interactions. 
 

 
Figure 1: Visualization of the SIASH hypothesis (Louthan et al., 2015); On the left: the hypothetical species fundamental 
niche, defined by the environmental conditions only. On the right, species realized niche, as subsets of the fundamental niche 
driven by the environmental conditions and the competition between species. 

 
Because of the biotic interactions’ importance in shaping species distribution, the question 
whether they should be taken into account in SDMs has been examined (Hubbell, 2001; Wisz 
et al., 2013; Anderson, 2017). Several studies tried to include biotic interactions using other 
species as predictors to improve models’ accuracy (Araújo & Luoto, 2007; Heikkinen et al., 
2007), but these represent a small proportion of unidirectional biotic interactions and does not 
take into account the effects and networks of all species (Kissling et al., 2012; Harris, 2016). 
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Moreover, a single or few dominating, generally influential, species cannot be identified in all 
environments (Mod et al., 2016a). Instead of single species, comprehensive measures such as 
site biomass have also been used and demonstrated to improve the models (Meier et al., 2010), 
yet such information is rarely available, or is correlated with abiotic factors (such as NDVI and 
temperature in the northern hemisphere (Schultz & Halpert, 1993)). In order to improve the 
integration of biotic interactions in modelling, Joint Species Distribution Models (JSDMs) have 
recently been proposed (Pollock et al., 2014), and numerous different models have been 
developed (Clark, Gelfand, Woodall, & Zhu, 2014; Clark, Nemergut, Seyednasrollah, Turner, 
& Zhang, 2017; Hui, 2016; Pollock et al., 2014; Thorson et al., 2015). JSDM have several new 
advantages: i) they build species-to-species association matrices; ii) some take into account 
species traits and phylogenetic correlations, and iii) some can help choosing suitable 
environmental predictors. Nevertheless, their capacity to increase accuracy of predictions is 
controverted as some studies showed improved results using them (Thorson et al., 2015; 
Ovaskainen et al., 2016; Tikhonov et al., 2017), while others found no difference compared to 
classical SDMs (Copenhaver-Parry & Bell, 2018). In fact, it is possible that biotic interactions 
may not be necessary to include in the models, as the species occurrence data, used for model 
training represent the realized niche of species (Guisan & Zimmermann, 2000) and thus, the 
influence of biotic interactions could already be incorporated implicitly in the models. 
 
To further examine the incorporation of biotic interactions in SDMs, the two aims of this thesis 
were: i) to investigate how well biotic interactions help in predicting species distributions; and 
ii) to quantify their effect on different species distribution models along a stress-gradient. In 
order to answer these, we used elevation to represent a stress-gradient, tried several modelling 
methods and used different explanative variables as proxy for the biotic interactions. We first 
assessed how much we can improve classical SDMs by incorporating occurrence of other 
species as a proxy for biotic interactions and how these compared to JSDMs. As biotic 
interactions are important for species distributions, we expected improvement in model 
performance, especially for less competitive species. Second, we examined if accuracy of 
model predictions varies along the elevation gradient. According to the SGH, we expected the 
improvement, and thus influence of biotic interactions, to be higher at low compared to higher 
elevations. Finally, two additional technical questions were investigated. First, we asked 
whether species distribution predictions could be improved when statistical interactions 
between the predictors are added in the models. And second, we tested if using species richness 
as a proxy for biotic interactions is more precise than using occurrences of specific species. As 
the analyses presented in this thesis are based on presence/absence information of species, 
identification of biotic interaction is based on species co-occurrences patterns. This means that 
for example, competition is identified if segregation of two species cannot be explained with 
abiotic variables only (i.e. one species locally excludes another from a suitable patch). Further, 
only the 100 most prevalent species of our study area were included, meaning that our results 
do not apply to the entire plants community. 
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MATERIAL AND METHODS 
 
Analyses were carried out in three steps (Figure 2): pre-modelling, modelling and post-
modelling, with all of the codes available here: https://github.com/EleonoreLavanchy/Master. 
During a pre-modelling phase, we chose species and environmental predictors to be included 
in the analyses. For modelling, species occurrences were modelled using the 80% of the 
available data and predicted against the remaining 20% (modelling phase) within each cross-
validation round. Once the models were fitted, their predictions were compared to the observed 
species occurrences and the different models’ performances were compared among species and 
sites in a post-modelling phase. The importance of statistical interactions among the predictors 
was assessed comparing the predictions built with and without them. Additionally, the SGH 
was tested by comparing the variance partitioning among 3 bands of elevation (Figure 2). 
 

 
Figure 2: Framework of the study. 1. Pre-modelling phase, where the plants species and the environmental variables to 
include in the models were selected. In addition, the sites were divided in training and evaluating datasets. 2. Modelling phase, 
where the models were fitted on the 80% of the data and predictions were done against the 20% of remining data. 3. Post-
modelling phase, where the models’ predictions were evaluated by comparisons with the observed species occurrences. The 
performances were compared among the different models. Finally, the importance of statistical interactions and the SGH were 
investigated. 

 
  



Master Thesis, January 2019  Eléonore Lavanchy 

 8 

Study area 
 
The study was conducted in the Western Swiss Alps and covers all the Alpine areas of cantons 
of Vaud (ca. 700 !"#; center point: 46°22’ N; 7°2’ E). This mountainous area is a priority area 
for the University of Lausanne and for its new mountain center (CIRM: Centre 
Interdisciplinaire sur les Régions de Montagnes), and is also a priority conservation area for the 
WWF and ProNatura for instance (http://www.leregional.ch/N67958/la-position-du-wwf-et-
de-pro-natura-en-detail.html). occurrence of vascular plant species were surveyed from 911 
open vegetation sites (size 4 m2) by following a random-stratified sampling design considering 
elevation, slope and aspect as strata (Hirzel & Guisan, 2002). The minimum distance between 
the sites was set to 200 m to avoid spatial auto-correlation (Dubuis et al., 2011). Elevation of 
the sites ranges from 418.8 m to 3101.4 m (Figure 3). 
 

 
Figure 3: Map of the sampled sites, represented with orange dots, and their elevation. Geographic coordinates are provided 
in Swiss coordinate system (LV03). 

 
Pre-modelling 
 
Plant species selection 
 
Out of 900 plant species recorded across the sites, the 100 most represented (with a minimum 
of 70 occurrences across sites) were chosen for the analyses. Only 100 species with a minimum 
prevalence were used to reduce the number of species modelled in order to decrease the 
analytical time and to ensure confidential parameter estimates, while still being able to 
incorporate the influential environmental predictors without overparameterizing the models 
(Merow et al., 2014)(see the list of plants species and their prevalence in Figure S1 in 
Appendix). This study thus concerns the most prevalent open-habitat plant species in our study 
area. 
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Environmental predictors selection 
 
Out of 93 available environmental predictors, (representing temperature, precipitation, 
evapotranspiration, topography, etc.), five were selected to build the models: growing season 
precipitation sum, mean temperature of growing season, growing season potential solar 
radiation, pH and slope. The growing season ranges from May to September. 
 
These parameters were chosen to cover the main ecological dimensions of plants (temperature, 
water availability, light, nutrients, topography)(Mod et al., 2016b). A principal component 
analysis (PCA) was additionally performed in order to select the parameters explaining the 
greatest proportion of variance in environmental conditions of the sites and to avoid highly 
correlated parameters (correlation table in the Appendix, Table S1). Among the selected 
variables, the only correlation above 0.7 was between temperature and precipitation with a 
value of 0.822. However, we still decided to keep both variables because they are of a high 
ecological importance. 
 
The first and second order parameters (i.e. including squared terms) were used in the models 
for all five predictors according to the output of an analysis summarizing the parameters used 
in the best model for each plant species (glmulti function on R from the glmulti package 
(Calcagno & Mazancourt, 2010); see glmulti table results in Appendix, Table S2). Statistical 
interactions were not considered here because they were not yet implemented in the HMSC 
package (see modelling section). 
 
 

 
Figure 2 : PCA circle of the selected environmental predictors. GS_t represents the growing season temperature, GS_p the 
growing season precipitations and GS_S_Rad the growing season solar radiations. 

All parameters were scaled (mean = 0 and standard deviation = 1) prior to analyses following 
recommendations of the HMSC package developers (see HMSC manual; 
https://www.helsinki.fi/sites/default/files/atoms/files/hmsc_manual_0.pdf). 
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Cross-validation 
 
A random stratified cross-validation was used to determine which sites were used for model 
training or for model evaluation. Within each 200 m band of elevation, 80% of the sites were 
randomly sampled in the training dataset while the remaining 20% were assigned to the 
evaluating dataset. The highest elevation band was 400 m due to the small number of sites 
available at the highest elevations. This procedure was repeated 10 times to choose for each run 
different sites in the training and test datasets as it ensures that each site was selected seven to 
eight times for the training and two to three times for the evaluation. 

 
Modelling 
 
To investigate the performance of traditional SDMs and JSDMs along with their 
differences, we applied GLMs (Generalized Linear Model) and HMSC (Hierarchical 
Modelling of Species Communities), respectively. Different models were built with both 
approaches, including and excluding biotic components for all 100 species. Predictions were 
then evaluated across species and sites by comparing observed and predicted occurrences using 
several evaluation metrics (refer to M&M page 11, post-modelling section). 
 
SDM models 
 
GLM was chosen as the HMSC is based on it (Ovaskainen et al., 2016). We used two abiotic 
and two biotic GLMs. 
 
The first biotic model (Biotic GLM1) contained the occurrence (as presences and absences) of 
the three species with the highest sum of absolute residual correlation as calculated by the 
function corRandomEff in HMSC package (Lolium perenne, Lotus corniculatus and Holcus 
lanatus; Matrix of the residual correlation in Appendix) as biotic predictors in addition to the 
environmental variables. According to co-occurrences among species (independently of the 
abiotic environment), these species are expected to be strongly associated with other species 
and thus, might potentially affect their distributions (Pollock et al., 2014). In order to keep same 
number of predictors in both abiotic and biotic models, the first abiotic model (Abiotic GLM1) 
contained the same predictors as the Biotic GLM1 but the presences and absences of the biotic 
predictors were randomized among the sites, yet still retaining the same number of presences 
and absences for each plant species. Therefore, only the abiotic predictors should be expected 
to explain part of the variance in the Abiotic GLM1. 
 
In addition to the five environmental predictors, the second biotic model (Biotic GLM2) used 
the presences and absences of the three most prevalent plant species in the dataset (le Roux et 
al., 2014) (Festuca rubra, Trifolium pratense and Antoxanthum odoratum with respectively 
434, 421 and 384 presences) as a high prevalence is likely to be correlated with competitiveness. 
The last model (Abiotic GLM2) is like the Abiotic GLM1: the same biotic predictors than in 
Biotic GLM2 but randomized. 
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JSDM models 
 
The package HMSC (Hierarchical Modelling of Species Communities) (Ovaskainen et al., 
2017) was used to build JSDMs as it allows the spatial predictions of species probability of 
occurrence under novel environmental realm and set of occurring species (“conditional 
predictions in new area”). 
 
HMSC is a framework for modelling and analysing community data. Variance within the data 
is first attributed among environmental predictors and the remaining non-explained variance 
(i.e. residuals) is then associated with latent variables implemented in the model. Species-to-
species matrices are built in order to capture the species association (i.e. potential biotic 
interactions) based on residual correlation representing co-presence, co-absences, or presence-
absence repeated patterns not explained by the abiotic predictors (Ovaskainen et al., 2016, 
2017). 
 
The first model (Abiotic HMSC) makes no conditional predictions making it a purely abiotic 
model (i.e. in theory comparable to the Abiotic GLMs). The second model (Biotic HMSC) 
makes predictions of each species conditional to the presence of all other species in the 
evaluation sites, making it a model aiming to account for biotic interactions. This last model 
contained latent variables in order to attempt to explain additional variance not explained by 
the abiotic predictors (see R help files of the package: https://github.com/guiblanchet/HMSC). 
To facilitate the latent variables in models, two random factors were incorporated to group sites 
among which the species associations were to be resolved. The first random factor contained 
the same value for all sites as they were sampled with the same method. The second one 
contained one value according to the elevation of a site. Sites at low elevation (i.e. with an 
elevation below the median elevation of the sampled sites) (from 400m to 1819m) received a 
value of 2 and the sites at high elevation (from 1819 to 3100m) received a value of 3. The latter 
random factor was done in accordance to the SGH; i.e. the nature of biotic interactions may 
vary along a stress gradient (here elevation). 
 

Post-modelling 
 
The mean predicted probability of occurrences within the 10 cross-validation runs was recorded 
for each plant species at each evaluation site, and then compared to observed occurrences in 
order to evaluate the models. Model performance per species was evaluated using four metrics. 
The first one was the $%&' − )# (Tjur, 2012) which ranges from 0 to 1. Additionally, Maximum 
True Skill Statistics (Max TSS) and Maximum Kappa (Max Kappa, based on Cohen’s kappa 
(Cohen, 1960)) were used, both from the ecospat package in R (Di Cola et al., 2017) and 
ranging from -1 to 1, where 1 indicates perfect predictions and 0 not better than random. Finally, 
we used AUC from the AUC package, ranging from 0 to 1, with 1 indicating perfect predictions 
and 0.5 not better than random. Model performance per site was evaluated with Community 
AUC (implementing AUC R-package) and Maximum Sørensen Index (Max Sørensen), 
originally from (Sørensen, 1948) but calculated in a similar way as the Max Kappa and Max 
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TSS (see Scherrer et al. in prep.). The AUC and Max Sørensen metrics range from 0 to 1. 
Repeated measures ANOVA and post-hoc Tukey tests were used to assess if the performances 
of the models differed. Then the models’ performances were examined across species and sites 
and relative to their properties. More specifically, we tested whether the best modelling 
technique per species is dependent on species prevalence and species’ Specific Leaf Area (SLA; 
the ratio of leaf area to dry mass calculated by Dubuis et al., 2013), and whether the best 
modelling technique per site is dependent on elevation and observed species richness. For these, 
Wilcoxon rank-sum tests were used. 
 

Variance partitioning 
 
In order to assess the magnitude of species association captured by the latent variables, we 
computed a variance partitioning among the different predictors of both HMSC models (Abiotic 
HMSC and Biotic HMSC) using the variPart function of the HMSC package. 
 
To test the SGH, we also applied a variance partitioning along the elevation gradient 
(comparing low elevation [418.8m à 1479.4m], mid elevation [1479.4m à 2040.5m] and high 
elevation [2040.7m à 3101.4m]) by fitting separate HMSC models for the three subsets of 
data. This was done in order to see if the proportion of the variance explained by the latent 
variables vary depending on elevation. 
 

Assessing interactions between predictors 
 
In addition to previous analyses, we built Random Forest (RF) models to see if models’ 
predictions can be improved by adding statistical interactions among the predictors 
(automatically incorporated in RF). Two RFs were built: the first with the most prevalent 
species as predictors (Random Forest 2) for comparison with Biotic GLM2 as it was on average 
the best model per species (see Results), and the second RF (Random Forest 2) with the species 
having the highest sum of absolute residual correlation as calculated by the function 
corRandomEff in HMSC package (Random Forest 1) to compare it to Biotic GML1 as it was 
the best model per site. 
 
Additionally, the species richness per site was used as a predictor to see if using another proxy 
of biotic interaction was more efficient than adding presences and absences of some species. 
With this, we built two different models: one GLM (Biotic GLM SR) and one RF (Random 
Forest SR). Finally, we tested which models was predicting the more accurately species 
richness. The predicted species was calculated as the sum of the predicted probabilities of 
occurrence of species as proposed by Calabrese et al., (2014).  



Master Thesis, January 2019  Eléonore Lavanchy 

 13 

RESULTS 
 

Species occurrences as a proxy for biotic interactions 
 
Models performances per species 
 
Generally, the four metrics measuring model performance per species indicate some, yet small, 
differences among the different models with Biotic GLMs being the most performant ones 
(repeated Measures ANOVA: Tjur − R#: Df = 5, Sum of Squares = 0.02756, Mean of Squares 
= 0.055115, F-value = 199.19, Adjusted P-value (Bonferroni correction) < 0.001. Max TSS: Df 
= 5, Sum of Squares = 0.0450, Mean of Squares = 0.009004, F-value = 31.467, Adjusted P-
value (Bonferroni correction) < 0.001. Max Kappa: Df = 5, Sum of Squares = 0.1005, Mean of 
Squares 0.020102, F-value = 47.12, Adjusted P-value (Bonferroni correction) < 0.001. AUC: 
Df = 5, Sum of Squares = 0.02460, Mean of Squares = 0.0049203, F-value = 69.213, Adjusted 
P-value (Bonferroni correction) < 0.001, detailed analyses and Post-hoc Tukey tests available 
in Appendix Table S4). According to $%&' − )#, the models’ performances are divided in three 
groups (shown in decreasing order of performances): the Biotic GLMs (with mean $%&' − )# 
of 0.299	 ± 0.127 for Biotic GLM1 and 0.305	 ± 0.128 for Biotic GLM2 compared to 0.249	 ±
0.121 for Abiotic HMSC which has the lowest value), the Abiotic GLMs and finally the HMSCs 
models (Figure 3A, detailed values for all models in table S3 in Appendix). The differences are 
small but significant among these groups and non-significant within the groups (Table S4 in 
Appendix). The three remaining metrics, Max TSS, Max Kappa and AUC showed the similar 
order in models’ performance. For these three metrics, the models are divided in two groups: 
one containing both the HMSCs models and the Abiotic GLMs and one containing the Biotic 
GLMs (with mean Max TSS of 0.582	 ± 0.106 for Biotic GLM1 and 0.588	 ± 0.108 for Biotic 
GLM2 compared to 0.565	 ± 0.110 for Abiotic GLM2 which has the lowest value; mean Max 
Kappa of 0.439	 ± 0.134 for Biotic GLM1 and 0.447	 ± 0.130 for Biotic GLM2 compared to 
0.414	 ± 0.135 for Abiotic GLM1 which has the lowest value; mean AUC of 0.853	 ± 0.055 
for Biotic GLM1 and 0.855	 ± 0.056 for Biotic GLM2 compared to 0.839	 ± 0.059 for Abiotic 
GLM2 which has the lowest value)(Figure 3BCD, values for all models in Table S3 in 
Appendix). Altogether, the difference in model performances is small but significant comparing 
the Biotic GLMs, which are on average the best models, and the others (Figure 4 and Table S4 
in Appendix). 
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Figure 4: Model performance per species according to four metrics. A. $%&' − )#. B. Max TSS. C. Max Kappa. D. AUC. 
Boxes span from 1st to 3rd quantile, with median marked in-between with a black line. Whiskers span from “1st quantile - 1.5 
x box height” to “3rd quantile + 1.5 x box height”. Black brackets connect the groups with non-significant comparisons 
according to repeated-measures Anova and Tukey post-hoc tests. Complete pairwise comparisons in Table S4 in supplementary 
materials. 

 
Models performances per sites 
 
The two metrics measuring model performance per site indicate some, yet very small and 
mainly non-significant, differences among the different models (repeated measures ANOVA, 
Community AUC: Df = 5, Sum of Squares = 0.043, Mean of Squares = 0.008648, F-value = 
24.95, Adjusted P-value (Bonferroni correction) < 0.001. Max Sørensen: Df = 5, Sum of 
Squares = 0.108, Mean of Squares = 0.021690, F-value = 12.131, Adjusted P-value (Bonferroni 
correction) < 0.001, detailed analyses and Post-hoc Tukey tests available in Appendix Table 
S6). Biotic GLMs have the highest mean Community AUC (respectively 0.869	 ± 0.090 for 
Biotic GLM1 and 0.867	 ± 0.093 for Biotic GLM2 compared for instance to the lowest value 
0.861	 ± 0.096 for Abiotic GLM1, values for all models in Table S5 in Appendix), yet the 
difference to other models is more often significant for Biotic GLM1 (Figure 5A and Table S6 
in Appendix). According to the Max Sørensen, the models form two groups. As before, one 
with the Abiotic GLMs and the HMSC and one with the Biotic GLMs (0.682	 ± 0.195 for Biotic 
GLM1 and 0.678	 ± 0.194 for Biotic GLM2 compared to the lowest value 0.669	 ± 0.200 for 
Abiotic GLM2, values for all models in table S5 in Appendix). However, as for the Community 
AUC, the Biotic GLM2 is not significantly higher that the HMSC models, and Biotic GLM1 
shows slightly higher performances compared to the other models (Figure 5B and Table S6 in 
Appendix). 
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Figure 5: Models performances per sites according to two different metrics. A. Community AUC B. Maximum Sörensen Index. 
Boxes span from 1st to 3rd quantile, with median marked in-between with a black line. Whiskers span from “1st quantile - 1.5 
x box height” to “3rd quantile + 1.5 x box height”. Black brackets connect the groups with non-significant comparisons 
according to repeated-measures Anova and Tukey post-hoc tests. Complete pairwise comparisons in Table S6 in supplementary 
materials. 

 
Variance partitioning between an abiotic and a biotic model 
 
Variance partitioning of HMSC models demonstrates that variance explained by the biotic 
interactions (i.e. latent variables) is small compared to the proportion explained by the 
environmental predictors (0.045% on average between all the species) (Figure 6). 
 

 
Figure 6: Variance partitioning among the predictors. Each vertical bar represents a species, ordered from 1 to 100. Names 
corresponding to the numbers can be found in the Appendix A: Abiotic HMSC; B: Biotic HMSC. 
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Species characteristics 
 
According to Max Kappa, 89 % of species are best predicted by a biotic model versus 11 % by 
an abiotic model. Mean prevalence of the species for which a biotic model is the best 
(157.843	 ± 87.063) is higher than the prevalence of the species for which abiotic model is the 
best (116.182	 ± 56.798), whereas mean SLA of the species for which an abiotic model is the 
best (23.729	 ± 9.060) is higher than mean SLA of the species for which a biotic model is the 
best (21.642	 ± 9.725) (Figure 7). However, none of these differences are significant according 
to the Wilcoxon rank-sum tests (Prevalence: W = 659, Adjusted P-value (Bonferroni correction) 
= 0.12522; SLA: W = 384, Adjusted P-value (Bonferroni correction) = 0.4944). 
 

 
Figure 7: Characteristics of species the best predicted with a biotic or abiotic model. A: Prevalence. Wilcoxon rank-sum test 
B: Leaf Area. Wilcoxon rank-sum test. 

Site characteristics 
 
Out of the 76 % of sites for which only one model category (biotic or abiotic) appears as the 
best, 69% are better predicted with a biotic model and 31% with an abiotic model. Site’s 
elevation and observed species richness are higher in these 69% of sites (mean elevation: 
1663.566	 ± 485.668; mean species richness: 20.160	 ± 9.415) compared to the 31% others 
(mean elevation: 1595.692	 ± 561.538; mean species richness: 19.344	 ± 10.146) (Figure 8). 
These differences are however not significant using the Wilcoxon rank-sum tests (elevation: W 
= 54158, Adjusted P-value (Bonferroni correction) = 0.3718; species richness: W = 53207, 
Adjusted P-value (Bonferroni correction) = 0.7042). 
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Figure 8: Similarities between sites better with Biotic models compared to Abiotic models. A: Elevation. Wilcoxon rank-sum 
test. B: Species Richness. Wilcoxon rank-sum test. 

 
Biotic interactions variation along elevation (SGH) 
 
Models performances along the elevation gradient 
 
Along the elevation gradient, all models perform almost equally well, and better when the 
species richness is lower (repeated measure ANOVA, Models: Df = 5, Sum of Squares = 0.108, 
Mean of Squares = 0.02169, F-value = 0.5584, P-value = 0.732, Elevation: Df = 1, Sum of 
Squares = 0.508, Mean of Squares = 0.50819, F-value = 13.0828, P-value < 0.001) (Figure 9). 
 
Variance partitioning 
 
Variance partitioning based on HMSC along the elevational gradient (i.e. the three separate 
models with sites from the three elevation bands) shows that the variance explained by the latent 
variables is significantly higher at low and mid elevation compared to high elevation (repeated 
measures ANOVA, Elevation: Df = 2, Sum of Squares = 0.095476, Mean Sum of Squares = 
0.046638, F-value = 34.4730, P-value < 0.001, Species :Df = 99, Sum of Squares = 0.181183, 
Mean Sum of Squares = 0.00183, F-value = 1.3202, P-value = 0.05104 ,Post-hoc Tukey range’s 
test, Low-High Elevation: difference = 0.040 Lower = 0.028, Upper = 0.05, Adjusted P-value 
< 0.001; Mid-High Elevation: difference = 0.035, Lower = 0.022, Upper = 0.047, Adjusted P-
value < 0.001; Mid-Low Elevation : difference = -0.005, Lower = -0.018, Upper = 0.007, 
Adjusted P-value = 0.558). Additionally, the importance of abiotic predictors varies along 
elevation. Temperature has the biggest importance at low elevation but is replaced by pH and 
slope at mid elevation, while precipitations seems to be driving species distributions at high 
altitudes (Figure 10). 
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Figure 10: Variance partitioning along the elevation gradient. A: Low elevation (418.8m à 1479.4m). B: Mid elevation 
(1479.4m à 2040.5m). C. High elevation (2040.7m à 3101.4m). 
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Figure 9: Models’ performance along the elevational gradient. A: Max Sørensen: each site based on the six models are indicated by dots. Dots representing same sites are bound together by a 
black line. B: Local polynomial regression curves of models’ performances (assessed with the Maximum Sörensen Index) with the standard error, in black: Local polynomial regression curve 
of the observed species richness with the standard error. 



Master Thesis, January 2019  Eléonore Lavanchy 

 20 

Species richness as a proxy for biotic interactions and statistical interactions 
on models’ performances, 
 
RF models (Random Forest 1 and Random Forest 2) are compared to Biotic GLM2 when 
looking at per species metrics and to Biotic GLM1 when looking at per sites metrics as they are 
the best models when using species occurrences as proxy for biotic interactions. Species 
richness is used as a proxy for biotic interactions and implemented in both GLM and RF 
methods. The !"#$ − &' metric is left out of these analyses because the PseudoR2 function in 
R is not implemented for RF models. 
 
Models performances per species 
 
There are small yet significant differences among the models (repeated measures ANOVA, 
Max TSS: Df = 3, Sum of Squares = 0.1447, Mean of Squares = 0.048237, F-value = 39.385, 
Adjusted P-value (Bonferroni correction) < 0.001. Max Kappa: Df = 3, Sum of Squares = 
0.2128, Mean of Squares = 0.070941, F-value = 46.638, Adjusted P-value (Bonferroni 
correction) < 0.001. AUC: Df = 3, Sum of Squares 0.04905, Mean of Squares = 0.0163505, F-
value = 45.574, Adjusted P-value (Bonferroni correction) < 0.001, detailed analyses and Post-
hoc Tukey tests available in Appendix Table S7). For all metrics, best models per species are 
Biotic GLM SR and Random Forest SR (mean Max TSS: 0.626	 ± 0.096 for Biotic GLM SR 

and 0.632	 ± 0.089 for Random Forest SR; mean Max Kappa: 0.492	 ± 0.125 for Biotic GLM 

SR and 0.499	 ± 0.117 for Random Forest SR; mean AUC: 0.878	 ± 0.047 for Biotic GLM SR 

and 0.881	 ± 0.041 for Random Forest SR). These two models are significantly different from 
Biotic GLM2 and Random Forest 2 (mean Max TSS: 0.594	 ± 0.093; Max Kappa: 0.453 ±
0.124; mean AUC: 0.861	 ± 0.046 for Random Forest 2) (Figure 11 and Table S7). 
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Figure 11: Model performance per species according to three metrics. A. Max TSS. B. Max Kappa. C. AUC. Boxes span from 

1st to 3rd quantile, with median marked in-between with a black line. Whiskers span from “1th quantile - 1.5 x box height” to 

“3th quantile + 1.5 x box height”. Black brackets connect the groups with non-significant comparisons according to Repeated-

measures Anova and Tukey post-hoc tests. Complete pairwise comparisons in Table S7 in supplementary materials. 

 
Models performances per sites 
 
Based on the evaluation per sites, there are no significant differences in Community AUC 
between the four models (repeated measures ANOVA, Df = 3, Sum of Squares = 0.0023, Mean 
of Squares = 0.000760, F-value = 0.8355, Adjusted P-value (Bonferroni correction) = 0.9484, 
detailed analyses and Post-hoc Tukey tests available in Appendix Table S8). The mean was 
0.869	 ± 0.090 for Biotic GLM1, 0.870	 ± 0.094 for Biotic GLM SR, 0.870	 ± 0.093 for 
Random Forest 1 and 0.872	 ± 0.095 for Random Forest SR), and the Random Forest SR has 
slightly and significantly higher Max Sørensen than the three other models (Repeated measures 
ANOVAs: Df = 3, Sum of Squares = 0.165, Mean of Squares = 0.055113, F-value = 11.646, 
Adjusted P-value (Bonferroni correction) < 0.001, detailed analyses and Post-hoc Tukey tests 
available in Appendix Table S8. The mean was 0.682	 ± 0.195 for Biotic GLM1, 0.686	 ±
0.195 for Biotic GLM SR, 0.687	 ± 0.190 for Random Forest 1 and 0.700	 ± 0.189 for 
Random Forest SR) (Figure 12 and table S8). 
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Figure 12: Models performances per sites according to two different metrics. A. Community AUC. B. Max Sørensen. Black 

brackets represent Non-Significant comparisons. Complete pairwise comparisons (from repeated measures ANOVAs) in Table 

S8 in supplementary materials. 

 
Along the elevational gradient, the Max Sørensen of RF models and GLMs at low and mid 
elevation are comparable and even if RFs performances are higher at high elevation, the 
difference is not significant (repeated measures ANOVA, Models: Df = 3, Sum of Squares = 
0.165, Mean of Squares = 0.05511, F-value = 1.504, P-value = 0.2121, Elevation: Df = 1, Sum 
of Squares = 0.974, Mean of Squares = 0.97508, F-value = 26.5363, P-value < 0.001) (Figure 
13). 
 
RF models are better at predicting the observed species richness compared to GLMs, 
independently of the proxy used for biotic interactions and especially when the species richness 
is high (above 21 species) (Figure 14).
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Figure 13: Models’ performance along the elevational gradient. A: Max Sørensen: each site based on the four models are indicated by dots. Dots representing same sites are bound together by 
a black line. B: Local polynomial regression curves of models’ performances (assessed with the Maximum Sörensen Index) with the standard error, in black: Local polynomial regression curve 
of the observed species richness with the standard error. 
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Figure 14: Predicted species Richness compared to observed species richness according to four modelling methods. Perfect 

species richness prediction is represented with a black line. 

 
DISCUSSION 
 
Our results showed that including a measure of biotic interactions among the predictors leads, 
on average, to a small improvement of the models’ performances. In addition, JSDMs showed 
the same predictions accuracy compared to abiotic models. All of the models’ performances 
were correlated with the species richness per site and performed better at low and high 
elevation, i.e. at sites of low species richness. The variance partitioning along the elevation 
gradient also revealed a difference between low and mid versus high elevation. 
 
Model performance of abiotic and biotic models with other species 
occurrences as proxy for biotic interactions 
 
Differences in model performance were minor, yet biotic models more often performed better 
than abiotic models. Considering the species, model performance of both Biotic GLMs was 
significantly higher than the other models, even though the differences were small and are not 
likely to change considerably the results when performing ecological studies (Figure 4 and 5). 
When looking at the evaluation metrics across sites, only the biotic GLM containing the three 
species with the highest sum of absolute residual correlation (Biotic GLM1) significantly 
differed from the other models but once more, the difference was almost negligible. Significant 
result was mainly because of the high statistical power (100 species and 911 sites). The small 
improvements in predictions observed in biotic models compared to abiotic ones could be 
explained by the size of the sites. Indeed 4 !" sites could be large enough to allow competitors 
to occur in same sites without contact and thus without measurable competition (Scherrer et al., 
2019). Moreover, using the species cover (abundance) instead of just presences/absences could 
have led to better results (Meier et al., 2010) but here no such data was available. Nevertheless, 
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adding a species as predictor is not the most optimal way of taking into account biotic 
interactions as it only allows unidirectional interactions between the species (Kissling et al., 
2012) and because different species have different competitors (Mod et al., 2016) and all cannot 
be taken into account as supplementary predictors. 
 
Both JSDMs (HMSC) models gave the same performances as the Abiotic GLMs, suggesting 
that their GLM fundamentals were correct and there was no problem in the basic structure of 
the model. Given that they had the same performances according to the used evaluation metrics 
also implied that the biotic JSDM (Biotic HMSC) failed to improve the models and thus to 
capture/apply biotic interactions here. This hypothesis is supported by the variance partitioning 
(Figure 6) where it is possible to see that the proportion of the variance explained by the biotic 
interactions (latent variables) was comparatively small. This is congruent with a previous study 
that showed that biotic interactions have a lower importance on species distribution compared 
to environmental predictors in alpine plants (D’Amen et al., 2018). Those results are also 
congruent with previous studies where it has been demonstrated that JSDMs do not really 
improve species distributions predictions (Copenhaver-Parry & Bell, 2018). 
 
Furthermore, this low proportion of explanative power of latent variables could also be due to 
the complexity of the data, and in this case the model might not be able to extract or transfer to 
predictions reliable information about co-occurrences patterns. Thus, JSDM could better work 
when a lower number of species is involved (as used e.g. in Hui, 2016; Ovaskainen et al., 2017). 
In addition, models’ parameters (such as priors and latent variables values) could, in theory, 
influence the output, but in practice we tried different of them and the biotic JSDM (Biotic 

HMSC) performances did not change (results not shown). Finally, co-occurrences of species 
used in the latent variables of the JSDM can be due to different things than biotic interactions, 
such as shared niche, phylogenetic history and common migration patterns (Dormann et al., 
2018). However, we must be careful as another study showed that the importance of biotic 
interactions in shaping a species distribution can be misleadingly attributed to the environment 
using SDMs (Godsoe et al., 2017). 
 

Species characteristics and best modelling method 
 
Leaf area has been shown to be a trait correlated with higher competitiveness (Fynn et al., 2005; 
Kunstler et al., 2016), and prevalent species are likely to over-compete the less prevalent 
species (le Roux et al., 2014). Consequently, we expected that the distribution of the species 
with lower leaf area and prevalence would be better predicted with biotic models as their ranges 
should be limited by other species. This was supported as those species better predicted by 
biotic model had on average a higher prevalence and a larger specific leaf area (Figure 7). 
However, none of the species characteristics were found to be significantly different between 
the best modelling techniques. This could be explained as we had only 11 species for which the 
predictions were better using an abiotic model versus 89 with a biotic model. Hence, we could 
lack power to detect such difference. Besides, we selected only the 100 most prevalent species 
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and thus removing rarest species of our study area from the analyses could have affected the 
analyses and derived interpretations (about the prevalence for instance). 
 

Sites characteristics and best modelling method 
 
According to the SGH, elevation can have an influence on models’ performances (Callaway et 

al., 2002). Thus, we decided to focus on elevation to compare biotic and abiotic models’ 
performances. In addition, we decided to concentrate on species richness as it was correlated 
with models’ performances as observed in Figure 9 and shown in Pottier et al., (2013). We 
expected that sites with a higher number of species should contain more biotic interactions and 
thus be better predicted with biotic models. No different characteristics between sites better 
predicted with abiotic or biotic models were found either. 400 sites were better predicted with 
biotic models but in this case the 74 sites with higher prediction accuracy with an abiotic model 
should be enough to have a sufficient statistical power. Elevation did not seem to make any 
difference among the models but as we excluded the rarest species (occurring at the highest 
elevations), many sites at high elevation appeared as empty in our analyses and all models were 
performing equally at predicting realized absences. Thus, considering less prevalent species 
could bring better and more reliable results. We did not detect any difference between the two 
modelling techniques (biotic or abiotic) and species richness but as seen in Figure 9 and in 
Pottier et al., (2013), all models were affected by the species richness: the higher it was the 
lower were the models’ performances. This might be due to the metrics used to asses models’ 
performances. Indeed, their calculation depends on sites species richness and their results are 
thus, likely influenced by it (Wolda, 1981). 
 
We demonstrated that all models performed worst at mid elevation, but this is likely affected 
by the species richness per sites (Pottier et al., 2013). At this elevation with higher species 
richness, we expected biotic models to perform better as they should take into account the biotic 
interactions, but this was not the case. 
 
Looking at the variance partitioning of the biotic JSDM (Biotic HMSC) along the elevation 
gradient (Figure 10), we showed that the proportion of variance explained by the biotic 
interactions (latent variables), was smaller at high elevation compared to low and mid 
elevations. This could support the SGH, showing that with our data, more biotic interactions 
occur at low/mid elevation, probably representing competition, and that those interactions tend 
to shift towards neutral at high elevations (Maestre et al., 2009). Although we must be careful 
with the interpretation of this output since several sites at higher elevation were empty and most 
sites had lower species richness, and thus, biotic interactions could not occur and be captured 
by the models. 
 
We also observed that the proportion of variance explained by each abiotic predictor varied 
along space (elevation)(Figure 10). At low elevation, temperature seemed to be the main driver 
of the species distribution. This result could be explained because plants at lower elevation are 
used to good climatic conditions and thus are less resistant to changes compared to plants at 
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higher elevation that have adapted to resist wider range of temperature. At mid elevation, pH, 
slope and solar radiations had a bigger importance while at high elevation solar radiation was 
replaced by precipitations. Light availability importance at mid elevation could be due to 
topography and surrounding mountains. At low elevation, the slope does not vary as it is mostly 
flat and thus, it is logical that its effect was relatively higher at mid and high elevation. At high 
elevation, the main driver seemed to be precipitation which at those altitudes probably represent 
snow. Snow is known to be an important parameter for high altitude plants (Niittynen & Luoto, 
2018). For instance, snow cover can be a very effective protector against freezing, wind and 
winter desiccation (Sakai & Larcher, 1987). 
 

Species richness as a proxy for biotic interactions and including statistical 
interactions using Random Forest 
 
Considering per species performances, models with the species richness as predictor 
(independently of the base model GLM or RF) seemed to be the best of the tested models here 
(Figure 11). This was congruent with some previous results showing that using site’s 
characteristics such as biomass can improve the models (as applied in Meier et al., 2010) and 
that RFs and GLMs can have the same accuracy in predictions (Syphard & Franklin, 2009). 
Once again, the difference was small but still a little bit higher compared to the first tested proxy 
for biotic interactions (other species distributions). 
 
Per sites, we saw no difference between the models. Even if Random Forest SR was 
significantly higher than the other models using the Max Sørensen, the difference was minimal 
(Figure 12). 
 
When we looked at the models’ performances along the elevation gradient (Figure 13), even if 
the difference was not significant, we could see that both RFs were performing slightly better 
at high elevation. This may be because statistical interactions allowed to change a predictor’s 
effect according to another predictors (Guisan & Zimmermann, 2000), and because RFs 
allowed more flexible response curves of the explanative variables. For example, at low and 
mid elevations, the biotic interactions should be in general negative (following the SGH) while 
it tends to shift towards facilitation at high elevation (Bertness & Callaway, 1994; Callaway et 

al., 2002; Maestre et al., 2009; D’Amen et al., 2018). Including the statistical interactions may 
help the model to change the effect of other species along the elevation gradient (negative at 
low and mid elevation and positive at high elevation). 
 
Finally, we looked at which models were closer to the realized SR when predicting species 
distributions. The RFs were the most performant ones irrespectively of their predictors (i.e. 
species richness or species occurrences) probably for the same reasons as stated before 
(statistical interactions and flexible response curves) (Figure 14). Nevertheless, adding biotic 
interactions as predictor(s) did not seem to improve the calculation of species richness. This 
result was not congruent with a previous study where adding biotic interactions as predictor led 
to a better estimation of species richness (Mod et al., 2015). This may be due to the fact that, 
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unless in the latter study, in our data we did not have clear dominant species competing with 
the other species (Mod et al., 2016a). 
 
Altogether, while we cannot show that using other proxies for biotic interactions should not 
influence the predictions, incorporating biotic interactions as predictors in the models may not 
be necessary. Indeed, what the models captured was already the realized niche, and thus the 
biotic interactions, such as competitive exclusion, were already taken into account (Guisan & 
Zimmermann, 2000). In some particular cases, when for example one species dominates 
strongly the landscape, taking its distribution or cover into account can highly improve the 
results (Pellissier et al., 2010). Another example is modelling the distribution of an invasive 
beetle species where including its host greatly improved the models (Simões & Peterson, 2018). 
 
However, it is important to keep in mind that the improvements (even if small) of the biotic 
models (here biotic GLMs and RFs) could be due to the fact that these new predictors (here 
species occurrences or species richness) could represent an environmental dimension not 
covered by the used abiotic predictors (Kissling et al., 2012; Warton et al., 2015). We also have 
to acknowledge that the best modelling method depends on the data, such as geographical 
properties of the modelled species (prevalence, local or widespread etc.)(Elith & Graham, 2009; 
Marmion et al., 2009; Aguirre-Gutiérrez et al., 2013). 

 
CONCLUSION 
 
Using other species occurrences as a proxy for biotic interactions did not lead to great 
improvement of the models. We could not find strong evidence to support or reject the SGH 
but found that models performances per sites are negatively correlated with species richness. 
In addition, more complex RFs were performing slightly better at estimating species richness 
and high elevation predictions with our data. Finally, using species richness as a predictor led 
to better results than using other species occurrences. To conclude, with our data, adding species 
occurrence or richness as a proxy for biotic interactions did not improve the models. However, 
it does not mean that biotic interactions would not influence the species distribution, yet their 
inclusion in models did not appear necessary with the used proxies. As mentioned above, 
further work could imply redoing the analyses but without discarding the less prevalent species 
in order to cover the entire species community of the study area. 
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APPENDIX 
 
Plant species 
 

1. Achillea millefolium 

2. Agrostis capillaris 

3. Ajuga reptans 

4. Alchemilla conjuncta 

5. Alchemilla vulgaris 

6. Alchemilla xanthochlora 

7. Anthoxanthum odoratum 

8. Anthyllis vulneraria 

9. Aposeris foetida 

10. Arrhenatherum elatius 

11. Aster bellidiastrum 

12. Astrantia major 

13. Bartsia alpina 

14. Brachypodium pinnatum 

15. Briza media 

16. Bromus erectus 

17. Campanula cochleariifolia 

18. Campanula rhomboidalis 

19. Campanula scheuchzeri 

20. Carduus defloratus 

21. Carex ferruginea 

22. Carex flacca 

23. Carex pallescens 

24. Carex sempervirens 

25. Carlina acaulis subsp caulescens 

26. Carum carvi 

27. Cerastium fontanum 

28. Chaerophyllum hirsutum 

29. Crepis aurea 

30. Crepis pyrenaica 

31. Crocus albiflorus 

32. Cynosurus cristatus 

33. Dactylis glomerata 

34. Deschampsia cespitosa 

35. Euphorbia cyparissias 

36. Euphrasia minima 

37. Festuca pratensis 

38. Festuca quadriflora 

39. Festuca rubra 

40. Festuca violacea 

41. Galium album 

42. Galium anisophyllon 

43. Gentiana campestris 

44. Geranium sylvaticum 

45. Helianthemum nummularium 

46. Heracleum sphondylium 

47. Hieracium lactucella 

48. Hieracium murorum 

49. Holcus lanatus 

50. Homogyne alpina 

51. Hypericum maculatum 

52. Knautia dipsacifolia 

53. Lathyrus pratensis 

54. Leontodon hispidus 

55. Leucanthemum vulgare 

56. Ligusticum mutellina 

57. Linum catharticum 

58. Lolium perenne 

59. Lotus corniculatus 

60. Nardus stricta 

61. Phleum rhaeticum 

62. Phyteuma orbiculare 

63. Phyteuma spicatum 

64. Pimpinella major 

65. Plantago alpina 

66. Plantago atrata 

67. Plantago lanceolata 

68. Plantago media 

69. Poa alpina 

70. Poa pratensis 

71. Poa trivialis 

72. Polygonum viviparum 

73. Potentilla aurea 

74. Potentilla erecta 

75. Primula elatior 

76. Prunella vulgaris 

77. Pulsatilla alpina 

78. Ranunculus acris 

79. Ranunculus montanus 

80. Ranunculus nemorosus 

81. Rhinanthus alectorolophus 

82. Rumex acetosa 

83. Salix retusa 

84. Sanguisorba minor 

85. Saxifraga aizoides 

86. Scabiosa lucida 

87. Selaginella selaginoides 

88. Sesleria caerulea 

89. Silene vulgaris 

90. Soldanella alpina 

91. Taraxacum officinale 

92. Thymus praecox subsp polytrichus 

93. Thymus pulegioides 

94. Trifolium pratense 

95. Trifolium repens 

96. Trisetum flavescens 

97. Trollius europaeus 

98. Vaccinium myrtillus 

99. Veronica chamaedrys 

100. Vicia sepium
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Species occurrences 
 

 
Figure S1: Total number of occurrences for each selected species. Species numbers correspond to species names in Appendix 
p°32. Red line represents the minimum occurrences selected (70). 

 
Environmental predictors selection (detailed) 
 
Temperature is an important ecological variable for plants, but many temperatures measures 
were available (growing degree day, bioclim11, etc.). The Growing season temperature was 
chosen because of the PCA results (better loadings scores). Besides, temperature is better than 
elevation as it is more transferable to other areas as temperature changes in same elevation 
comparing different areas. 
 
Water availability is also a very important parameter for plants’ ecology. The best parameter 
has been estimated to be soil moisture (Mod et al., 2016b), unfortunately not available in our 
area, thus precipitation in the growing season have been chosen (better loadings scores in the 
PCA). 
 
Light availability is another important parameter for plants’ ecology. Here Growing Season 
Solar radiations (daily potential incoming sunshine radiation [without taking into account 
clouds or trees]) has been chosen (better loadings scores in the PCA). 
 
Soil quality and composition is another important dimension of plants’ ecology. Two 
parameters were available: pH and Carbon quantity. PH have been selected because in the PCA 
results Carbon quantity was highly correlated with precipitations. 
 
Finally, slope have been chosen as the slope, e.g. combined with precipitation can be used to 
assess water availability in the soil as water tends to flow down. 
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Correlation of environmental variables 
 
Table S1: Correlation of environmental parameters, Spearman correlation tests. Precipitations – Solar radiations: t = -

305.79, Df = 1155200, p-value < 0.001; Temperature – Solar radiations: t = 283.4, Df = 1155200, p-value < 0.001 ; pH – 

Solar radiations : t = -253.91, Df = 1155200, p-value < 0.001; Slope – Solar radiations: t = -630.49, Df = 1155200, p-value 

< 0.001; Precipitations – Temperature: t = -1552.5, Df = 1155200, p-value < 0.001; Precipitations – pH: t = -102.89, Df = 

1155200, p-value < 0.001; Precipitations – Slope: t = 576.5, Df = 1155200, p-value < 0.001; Temperature – pH: t = 161.4, 

Df = 1155200, p-value < 0.001; Temperature – Slope: t = -616.8, Df = 1155200, p-value < 0.001; pH – Slope: t = 0.79618, 

Df = 1155200, p-value = 0.4259. 

 Solar Radiations Precipitations Temperature pH slope 
Solar Radiations  - 0.274 0.255 - 0.230 - 0.506 
Precipitations   - 0.822 - 0.095 0.473 
Temperature    0.149 - 0.498 
pH     0.001 
slope      

 

glmulti table results 
 

Number of species for which a variable appeared in the best model (i.e. the model with the 
lowest AIC value) 
 
Table S2: Number of times a predictor was chosen for the best GLM without statistical interactions. Maximum is 100 times 

for all the plants species. GS states for Growing Season and _2 for the second order parameters. 

Parameters Number of occurrences 
  
pH 1st order 85 
slope 1st order 91 
GS temperature 1st order 79 
GS precipitations 1st order 96 
GS Solar radiations 1st order 74 

pH 2nd order 74 
slope 2nd order 68 
GS temperature 2nd order 52 
GS precipitations 2nd order 91 
GS solar radiations 2nd order 60 
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Matrix of the residual correlation 

 
Figure S2: Matrix correlation of residuals of presences-absences of plants species. Red squares represent positive 

correlations, white ones no correlation and blue ones are negative correlations. The number represent plants species 

(corresponding names in Appendix p°32). 
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Table S3 per species metrics values 
 
Table S3: detailed values of mean and standard deviation for all metrics and models. 

Metrics Model Mean Standard deviation 
    

#$%& − () Abiotic HMSC 0.249 0.121 
Biotic HMSC 0.251 0.121 
GLM Abiotic 1 0.273 0.121 
GLM Biotic 1 0.274 0.122 
GLM Abiotic 2 0.299 0.127 
GLM Biotic 2 0.305 0.128 

Max TSS Abiotic HMSC 0.571 0.108 
Biotic HMSC 0.569 0.110 
GLM Abiotic 1 0.566 0.108 
GLM Biotic 1 0.582 0.106 
GLM Abiotic 2 0.565 0.110 
GLM Biotic 2 0.588 0.108 

Max Kappa Abiotic HMSC 0.418 0.134 
Biotic HMSC 0.417 0.135 
GLM Abiotic 1 0.414 0.135 
GLM Biotic 1 0.439 0.134 
GLM Abiotic 2 0.141 0.134 
GLM Biotic 2 0.447 0.130 

AUC Abiotic HMSC 0.843 0.057 
Biotic HMSC 0.842 0.058 
GLM Abiotic 1 0.839 0.058 
GLM Biotic 1 0.853 0.055 
GLM Abiotic 2 0.839 0.059 
GLM Biotic 2 0.855 0.056 
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Table S4 per species repeated measures ANOVA and post-hoc Tukey tests 
 
Table S4: Post-hoc Tukey range’s tests, P-values adjusted with Bonferroni correction. Significant differences are bolded. 

Previous Repeated Measures ANOVA: #$%& − (): Models: Df = 5, Sum of Squares = 0.02756, Mean of Squares = 0.055115, 

F-value = 199.19, Adjusted P-value (Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares = 8.9245, Mean of 

Squares = 0.090146, F-value = 325.80, Adjusted P-value (Bonferroni correction) < 0.001. 

Maximum TSS: Models: Df = 5, Sum of Squares = 0.0450, Mean of Squares = 0.009004, F-value = 31.467, Adjusted P-value 

(Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares = 6.8554, Mean of Squares = 0.069246, F-value = 242.002, 

Adjusted P-value (Bonferroni correction) < 0.001. 

Maximum Kappa: Models: Df = 5, Sum of Squares = 0.1005, Mean of Squares 0.020102, F-value = 47.12, Adjusted P-value 

(Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares 10.3672, Mean of Squares = 0.104719, F-value = 245.47, 

Adjusted P-value (Bonferroni correction) < 0.001. 

AUC: Models: Df = 5, Sum of Squares = 0.02460, Mean of Squares = 0.0049203, F-value = 69.213, Adjusted P-value 

(Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares 1.90556, Mean of Squares = 0.0192481, F-value = 270.759, 

Adjusted P-value (Bonferroni correction) < 0.001. 

 

Metrics Comparison Difference Lower Upper Adjusted P-value 
      
#$%& − () Biotic HMSC – Abiotic HMSC 0.002 -0.005 0.008 1.000 

Abiotic GLM1 – Abiotic HMSC 0.024 0.018 0.031 <0.001 
Biotic GLM1 – Abiotic HMSC 0.050 0.044 0.057 <0.001 
Abiotic GLM2 – Abiotic HMSC 0.025 0.019 0.032 <0.001 
Biotic GLM2 – Abiotic HMSC 0.056 0.049 0.063 <0.001 
Abiotic GLM1 – Biotic HMSC 0.023 0.016 0.029 <0.001 
Biotic GLM1 – Biotic HMSC 0.049 0.042 0.055 <0.001 
Abiotic GLM2 – Biotic HMSC 0.024 0.017 0.030 <0.001 
Biotic GLM2 – Biotic HMSC 0.054 0.048 0.061 <0.001 
Biotic GLM1 – Abiotic GLM1 0.026 0.019 0.033 <0.001 
Abiotic GLM2 – Abiotic GLM1 0.001 -0.006 0.008 1.000 
Biotic GLM2 – Abiotic GLM1 0.032 0.025 0.038 <0.001 
Abiotic GLM2 – Biotic GLM1 -0.025 -0.032 -0.018 <0.001 
Biotic GLM2 – Biotic GLM1 0.006 -0.001 0.012 0.592 
Biotic GLM2 – Abiotic GLM2 0.031 0.024 0.037 <0.001 

Max TSS Biotic HMSC – Abiotic HMSC -0.002 -0.009 0.005 1.000 
Abiotic GLM1 – Abiotic HMSC -0.005 -0.012 0.002 1.000 
Biotic GLM1 – Abiotic HMSC 0.012 0.005 0.018 <0.001 
Abiotic GLM2 – Abiotic HMSC -0.005 -0.012 0.002 0.908 
Biotic GLM2 – Abiotic HMSC 0.018 0.011 0.025 <0.001 
Abiotic GLM1 – Biotic HMSC -0.003 -0.010 0.004 1.000 
Biotic GLM1 – Biotic HMSC 0.013 0.007 0.020 <0.001 
Abiotic GLM2 – Biotic HMSC -0.003 -0.010 0.003 1.000 
Biotic GLM2 – Biotic HMSC 0.020 0.013 0.026 <0.001 
Biotic GLM1 – Abiotic GLM1 0.016 0.009 0.023 <0.001 
Abiotic GLM2 – Abiotic GLM1 -0.001 -0.007 0.006 1.000 
Biotic GLM2 – Abiotic GLM1 0.022 0.016 0.029 <0.001 
Abiotic GLM2 – Biotic GLM1 -0.017 -0.024 -0.010 <0.001 
Biotic GLM2 – Biotic GLM1 0.006 -0.001 0.013 0.410 
Biotic GLM2 – Abiotic GLM2 0.023 0.016 0.030 <0.001 

Max Kappa Biotic HMSC – Abiotic HMSC -0.001 -0.010 0.007 1.000 
Abiotic GLM1 – Abiotic HMSC -0.005 -0.013 0.004 1.000 
Biotic GLM1 – Abiotic HMSC 0.020 0.012 0.029 <0.001 
Abiotic GLM2 – Abiotic HMSC -0.004 -0.012 0.004 1.000 
Biotic GLM2 – Abiotic HMSC 0.028 0.020 0.037 <0.001 
Abiotic GLM1 – Biotic HMSC -0.003 -0.011 0.005 1.000 
Biotic GLM1 – Biotic HMSC 0.022 0.013 0.030 <0.001 
Abiotic GLM2 – Biotic HMSC -0.002 -0.011 0.006 1.000 
Biotic GLM2 – Biotic HMSC 0.030 0.022 0.038 <0.001 
Biotic GLM1 – Abiotic GLM1 0.025 0.016 0.033 <0.001 
Abiotic GLM2 – Abiotic GLM1 0.001 -0.008 0.009 1.000 
Biotic GLM2 – Abiotic GLM1 0.033 0.025 0.041 <0.001 
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Abiotic GLM2 – Biotic GLM1 -0.024 -0.032 -0.016 <0.001 
Biotic GLM2 – Biotic GLM1 0.008 0.000 0.017 0.226 
Biotic GLM2 – Abiotic GLM2 0.032 0.024 0.041 <0.001 

AUC Biotic HMSC – Abiotic HMSC -0.001 -0.004 0.002 1.000 
Abiotic GLM1 – Abiotic HMSC -0.003 -0.007 0.000 0.241 
Biotic GLM1 – Abiotic HMSC 0.010 0.007 0.013 <0.001 
Abiotic GLM2 – Abiotic HMSC -0.003 -0.007 0.000 0.377 
Biotic GLM2 – Abiotic HMSC 0.013 0.009 0.016 <0.001 
Abiotic GLM1 – Biotic HMSC -0.002 -0.006 0.001 1.000 
Biotic GLM1 – Biotic HMSC 0.011 0.008 0.014 <0.001 
Abiotic GLM2 – Biotic HMSC -0.002 -0.006 0.001 1.000 
Biotic GLM2 – Biotic HMSC 0.014 0.010 0.017 <0.001 
Biotic GLM1 – Abiotic GLM1 0.013 0.010 0.017 <0.001 
Abiotic GLM2 – Abiotic GLM1 0.000 -0.003 0.004 1.000 
Biotic GLM2 – Abiotic GLM1 0.016 0.013 0.020 <0.001 
Abiotic GLM2 – Biotic GLM1 -0.013 -0.017 -0.010 <0.001 
Biotic GLM2 – Biotic GLM1 0.003 -0.001 0.006 0.797 
Biotic GLM2 – Abiotic GLM2 0.016 0.012 0.019 <0.001 

      

 
Table S5 per plots metrics values 
 
Table S5: detailed values of mean and standard deviation for all metrics and models. 

Metrics Model Mean Standard deviation 
    
Community AUC Abiotic HMSC 0.865 0.095 

Biotic HMSC 0.865 0.096 
GLM Abiotic 1 0.861 0.096 
GLM Biotic 1 0.869 0.090 
GLM Abiotic 2 0.861 0.097 
GLM Biotic 2 0.867 0.093 

Max Sørensen Abiotic HMSC 0.674 0.198 
Biotic HMSC 0.673 0.198 
GLM Abiotic 1 0.670 0.199 
GLM Biotic 1 0.682 0.195 
GLM Abiotic 2 0.669 0.200 
GLM Biotic 2 0.678 0.194 
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Table S6 per plots repeated measures ANOVA and post-hoc Tukey tests 
 
Table S6: Post-hoc Tukey range’s tests, P-values adjusted with Bonferroni correction. 

Previous Repeated measures ANOVA: Community AUC: Models: Df = 5, Sum of Squares = 0.043, Mean of Squares = 

0.008648, F-value = 24.95, Adjusted P-value (Bonferroni correction) < 0.001. Sites: Df = 812, Sum of Squares = 42.207, 

Mean of Squares = 0.051979, F-value = 149.96, Adjusted P-value (Bonferroni correction) < 0.001. 

Maximum Sørensen Index: Models: Df = 5, Sum of Squares = 0.108, Mean of Squares = 0.021690, F-value = 12.131, 

Adjusted P-value (Bonferroni correction) < 0.001. Sites: Df = 910, Sum of Squares = 204.422, Mean of Squares = 0.224639, 

F-value = 125.636, Adjusted P-value (Bonferroni correction) < 0.001. 

 
Metrics Comparison Difference Lower Upper Adjusted P-value 
      
Community 
AUC 

Biotic HMSC – Abiotic HMSC -0.001 -0.003 0.002 1.000 
Abiotic GLM1 – Abiotic HMSC -0.004 -0.007 -0.002 <0.001 
Biotic GLM1 – Abiotic HMSC 0.004 0.001 0.007 <0.001 
Abiotic GLM2 – Abiotic HMSC -0.004 -0.007 -0.002 <0.001 
Biotic GLM2 – Abiotic HMSC 0.002 -0.001 0.004 0.660 
Abiotic GLM1 – Biotic HMSC -0.004 -0.006 -0.001 0.004 
Biotic GLM1 – Biotic HMSC 0.005 0.002 0.007 <0.001 
Abiotic GLM2 – Biotic HMSC -0.004 -0.006 -0.001 0.004 
Biotic GLM2 – Biotic HMSC 0.003 0.000 0.005 0.137 
Biotic GLM1 – Abiotic GLM1 0.008 0.006 0.011 <0.001 
Abiotic GLM2 – Abiotic GLM1 0.000 -0.003 0.003 1.000 
Biotic GLM2 – Abiotic GLM1 0.006 0.003 0.009 <0.001 
Abiotic GLM2 – Biotic GLM1 -0.008 -0.011 -0.006 <0.001 
Biotic GLM2 – Biotic GLM1 -0.002 -0.005 0.000 0.363 
Biotic GLM2 – Abiotic GLM2 0.006 0.003 0.009 <0.001 

Max Sørensen Biotic HMSC – Abiotic HMSC -0.001 -0.007 0.005 1.000 
Abiotic GLM1 – Abiotic HMSC -0.004 -0.010 0.002 0.664 
Biotic GLM1 – Abiotic HMSC 0.008 0.002 0.013 0.004 
Abiotic GLM2 – Abiotic HMSC -0.006 -0.011 0.000 0.090 
Biotic GLM2 – Abiotic HMSC 0.004 -0.002 0.009 0.956 
Abiotic GLM1 – Biotic HMSC -0.003 -0.009 0.003 1.000 
Biotic GLM1 – Biotic HMSC 0.008 0.003 0.014 <0.001 
Abiotic GLM2 – Biotic HMSC -0.005 -0.010 0.001 0.283 
Biotic GLM2 – Biotic HMSC 0.004 -0.001 0.010 0.460 
Biotic GLM1 – Abiotic GLM1 0.012 0.006 0.017 <0.001 
Abiotic GLM2 – Abiotic GLM1 -0.002 -0.007 0.004 1.000 
Biotic GLM2 – Abiotic GLM1 0.008 0.002 0.013 0.004 
Abiotic GLM2 – Biotic GLM1 -0.013 -0.019 -0.008 <0.001 
Biotic GLM2 – Biotic GLM1 -0.004 -0.010 0.002 0.638 
Biotic GLM2 – Abiotic GLM2 0.009 0.004 0.015 <0.001 
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Table S7 Additional Analyses per species models comparisons 
 
Table S7: Post-hoc Tukey range’s tests, P-values adjusted with Bonferroni correction. 

Previous Repeated measures ANOVA: Maximum TSS: Models: Df = 3, Sum of Squares = 0.1447, Mean of Squares = 

0.048237, F-value = 39.385, Adjusted P-value (Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares = 3.3241, 

Mean of Squares = 0.033576, F-value = 27.415, Adjusted P-value (Bonferroni correction) < 0.001. 

Maximum Kappa: Models: Df = 3, Sum of Squares = 0.2128, Mean of Squares = 0.070941, F-value = 46.638, Adjusted P-

value (Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares = 5.6309, Mean of Squares = 0.056878, F-value = 

37.393, Adjusted P-value (Bonferroni correction) < 0.001. 

AUC: Models: Df = 3, Sum of Squares 0.04905, Mean of Squares = 0.0163505, F-value = 45.574, Adjusted P-value 

(Bonferroni correction) < 0.001. Species: Df = 99, Sum of Squares = 0.80693, Mean of Squares = 0.0081508, F-value = 

22.719, Adjusted P-value (Bonferroni correction) < 0.001. 

 
Metrics Comparison Difference Lower Upper Adjusted P-value 
      

Max 
TSS 

Biotic GLM SR – Biotic GLM 2 0.038 0.025 0.051 < 0.001 
Random Forest 2 – Biotic GLM 2 0.006 -0.007 0.019 1.000 
Random Forest SR – Biotic GLM 2 0.043 0.030 0.056 < 0.001 
Random Forest 2 – Biotic GLM SR -0.032 -0.045 -0.019 < 0.001 
Random Forest SR – Biotic GLM SR 0.005 -0.008 0.018 1.000 
Random Forest SR – Random Forest 2 0.037 0.025 0.050 < 0.001 

Max 
Kappa 

Biotic GLM SR – Biotic GLM 2 0.045 0.031 0.060 < 0.001 
Random Forest 2 – Biotic GLM 2 0.006 -0.008 0.020 1.000 
Random Forest SR – Biotic GLM 2 0.052 0.038 0.066 < 0.001 
Random Forest 2 – Biotic GLM SR -0.039 -0.054 -0.025 < 0.001 
Random Forest SR – Biotic GLM SR 0.007 -0.008 0.021 1.000 
Random Forest SR – Random Forest 2 0.046 0.032 0.060 < 0.001 

AUC Biotic GLM SR – Biotic GLM 2 0.023 0.016 0.030 < 0.001 
Random Forest 2 – Biotic GLM 2 0.005 -0.002 0.012 0.586 
Random Forest SR – Biotic GLM 2 0.026 0.019 0.033 < 0.001 
Random Forest 2 – Biotic GLM SR -0.018 -0.025 -0.011 < 0.001 
Random Forest SR – Biotic GLM SR 0.003 -0.004 0.010 1.000 
Random Forest SR – Random Forest 2 0.021 0.014 0.027 < 0.001 

      

 
Table S8 Additional Analyses per sites models’ comparisons 
 
Table S8: Post-hoc Tukey range’s tests, P-values adjusted with Bonferroni correction. 

Previous Repeated measures ANOVA: Community AUC: Models: Df = 3, Sum of Squares = 0.0023, Mean of Squares = 

0.000760, F-value = 0.8355, Adjusted P-value (Bonferroni correction) 0.9484. Sites: Df = 812, Sum of Squares = 25.9088, 

Mean of Squares = 0.031907, F-value = 35.0735, Adjusted P-value (Bonferroni correction) < 0.001. As the ANOVA per models 

was not significant, not post-hoc Tukey range’s test was performed. 

Maximum Kappa: Models: Df = 3, Sum of Squares = 0.165, Mean of Squares = 0.055113, F-value = 11.646, Adjusted P-

value (Bonferroni correction) < 0.001. Sites: Df = 910, Sum of Squares 121.633, Mean of Squares = 0.133663, F-value = 

28.244, Adjusted P-value (Bonferroni correction) < 0.001. 

 
Metrics Comparison Difference Lower Upper Adjusted P-value 
      
Max 
Sørensen 

Biotic GLM SR – Biotic GLM 2 0.004 -0.004 0.012 1.000 
Random Forest 2 – Biotic GLM 2 0.005 -0.003 0.013 0.889 
Random Forest SR – Biotic GLM 2 0.018 0.010 0.026 < 0.001 
Random Forest 2 – Biotic GLM SR 0.001 -0.008 0.009 1.000 
Random Forest SR – Biotic GLM SR 0.014 0.006 0.022 < 0.001 
Random Forest SR – Random Forest 2 0.013 0.005 0.021 < 0.001 

      


