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Abstract 
Context: Increasing of modern and more specialised agriculture alters the Alpine landscape and 

its biodiversity. The strong ecological interest of medicinal and aromatic plants (MAPs), 

combined with their high economic value, could make the MAP cultivation a solution to 

promote more sustainable agriculture in the Alpine region. 

Objectives: The first objective was to predict the distribution of some MAP species and their 

assemblages in the Alpine region, to identify most suitable areas for MAP cultivation. We then 

aimed to assess the impact of climate change on predicted suitable areas. 

Methods: The study was conducted across the Alpine region. Species distribution modelling 

was used to predict suitable sites for MAP species and their assemblages. Then, richness and 

composition of MAP assemblages were assessed by combining the “sum of predicted 

probabilities” approach with the probability ranking rule. 

Results: We found that, depending on environment, MAP assemblages are composed of 

different species and are of varying richness. Our results also showed that climate change would 

reshuffles MAP species in space in species-specific ways and affect both richness and 

composition of MAP assemblages.  

Conclusions: With our findings, sustainable agriculture may be promoted by helping policy 

makers to support the emergence of MAPs production where it is most ecologically appropriate. 

 

Keywords: medicinal and aromatic plants, species distribution modelling, Alpine region, 

biodiversity promotion, agricultural land planification, climate change 
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Résumé 
Contexte : L'augmentation de l'agriculture moderne et plus spécialisée altère le paysage alpin 

et sa biodiversité. Le fort intérêt écologique des plantes aromatiques et médicinales (PAMs), 

allié à leur haute valeur économique, pourrait faire de la culture des PAMs une solution pour 

promouvoir une agriculture plus durable dans la région alpine. 

Objectifs : Le premier objectif était de prédire la distribution de certaines espèces de PAMs et 

de leurs assemblages dans la région alpine, afin d'identifier les zones les plus appropriées pour 

la culture de PAMs. Nous avons ensuite cherché à évaluer l'impact du changement climatique 

sur les zones propices prédites. 

Méthodes : L'étude a été menée dans toute la région alpine. La modélisation de la distribution 

des espèces a été utilisée pour prédire les sites appropriés aux espèces de PAMs et à leurs 

assemblages. Ensuite, la richesse et la composition des assemblages de PAMs ont été évaluées 

en combinant l'approche de la « somme des probabilités prédites » avec la règle de classement 

des probabilités. 

Résultats : Nous avons constaté que, selon l'environnement, les assemblages de PAMs sont 

composés de différentes espèces et sont de richesse variable. Nos résultats ont également 

montré que le changement climatique entraînerait un remaniement des espèces de PAMs dans 

l'espace de manière spécifique à chaque espèce et affecterait à la fois la richesse et la 

composition des assemblages de PAMs. 

Conclusions : Avec nos résultats, l'agriculture durable peut être promue en aidant les décideurs 

politiques à soutenir l'émergence de la production de PAMs là où elle est la plus écologiquement 

appropriée. 
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Abbreviations and acronyms 
AUC: Area Under the Curve            

EM: Ensemble Model       

GAM: Generalised Additive Model        

GBIF: Global Biodiversity Information Facility 

GBM: Gradient Boosting Machine (i.e. boosted regression trees)       

GLM: Generalised Linear Model 

MAP: Medicinal and Aromatic Plant       

PCA: Principal Component Analysis 

PRR: Probability ranking rule        

RF: Random Forest  

ROC: Receiver Operating Characteristics       

SDM: Species Distribution Modelling 

TSS: True Skill Statistic  
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1. Introduction 
Over the past decades, human activities such as agriculture have profoundly changed the Alpine 

landscape (Gurung et al., 2012; Price, 1999). Mountainous regions are today increasingly 

subject to intensive use (Spehn et al., 2010). In the Alpine valleys, agriculture has intensified 

in the most favourable areas, while more traditional forms of farming, where different 

agricultural products are produced over small surfaces, are wiped off the map as older 

generations of farmers disappear and  remote mountain pastures are abandoned (Dobremez et 

al., 2015; Gellrich et al., 2007). With the increase of modern and more specialised farming, 

source of monocultures, biodiversity is decreasing (Chappell & LaValle, 2011; Firbank, 2005; 

Marini et al., 2011).  

In the lowlands, as the Swiss Plateau, the negative impacts associated with intensive agriculture 

are mainly due to high fertilisation, massive pesticides use or even alteration of the initial nature 

of the environments, such as drain of wetlands (FOEN, 2017; Geiger et al., 2010). Resulting 

from large-scale over-fertilisation of ecosystems, vegetation is becoming increasingly 

homogeneous (FOEN, 2017). In Switzerland, the flora associated with cultivated land is now 

one of the most threatened plant groups, with 42% of these species assessed as vulnerable 

(Bornand et al., 2016). Likewise, intensive land use leads to generalised uniform ecological 

conditions and thus to a decrease in the diversity of habitats on these lands. (FOEN, 2017). A 

very high proportion of threatened environments is observed in habitats linked to agriculture 

(Delarze et al., 2016). Thus, unsustainable agriculture is one of the main culprits for the loss of 

biodiversity (Benton et al., 2021). 

However, agricultural policies in Europe are currently changing from supporting production to 

developing ecological connectivity and thus to strengthen, improve and restore biodiversity 

(https://www.alpine-region.eu). As a result, there is a window of opportunity to seek to counter 

biodiversity loss by promoting agro-biodiversity in agricultural policies (EU, 2020). Emergence 

of more agro-biodiverse landscapes can be achieved through increased use of diverse mixed 

farming systems, generally support by organic farms (van Mansvelt et al., 1998).  The adoption 

of more diversified practices, nevertheless, depends on the decision making of farmers, who 

will only adopt practices that are beneficial to them (Pfeifer et al., 2009).  

Over the last two millennia, medicinal and aromatic plants (MAPs) have been widely used in 

Europe for different purposes, the main one being medicine (Dal Cero et al., 2014). Due to their 

use for therapeutic and culinary purposes, but also as components of cosmetics and other natural 

health products, MAPs are particularly implicated in human well-being and provide many 
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ecosystem services (Millennium Ecosystem Assessment, 2005). Nowadays, many industries 

have developed an increasing interest in MAPs in order to use them as raw materials in the 

production of pharmaceutical, cosmetic and food products (Lubbe & Verpoorte, 2011). 

Consumers have also contributed to the growing demand for herbal extracts by paying more 

and more attention to natural ingredients produced in a sustainable manner. In the European 

market, Germany plays a dominant role in the production of MAPs (27%), followed by France 

(22%) and Italy (11%). In Germany, however, the current cultivation area for MAPs covers 

only 12% of the growing area required to meet the needs of industry (Argyropoulos, 2019).  

As a result, there is an opportunity to expand the production of MAPs and many farmers might 

consider their cultivation as more profitable than other crops. Furthermore, the promotion of 

MAP crops could increase the value of biodiversity and promote its connectivity in monotone 

agriculturally shaped landscapes (Padulosi et al., 2002). Thus, the interest of the pharmaceutical 

and food industries for plant material, brought together with the need to protect plant 

biodiversity, creates an opportunity for farmers to diversify their production and improve their 

income while participating in a more sustainable agriculture (EIP-AGRI, 2020). MAPs however 

have different environmental requirements and can not grow everywhere. Accounting for these 

different requirements is particularly important for the organic production of MAPs, which tries 

to rely on ongoing ecological processes, instead of chemical input such as pesticides or 

synthetic fertilisers. 

There is thus an increasing need to assess the potential for growing MAP crops at specific sites. 

One approach to this is to assess the environmental suitability of MAP species through the use 

of models and predict it at sites to be evaluated. Predictive species distribution modelling 

(SDM; Franklin, 2010; Guisan et al., 2017; Guisan & Zimmermann, 2000; Peterson et al., 2011) 

is a standard tool that can be used for this purpose, as for many other ones, including to support 

conservation decision making (Guisan et al., 2013; Tulloch et al., 2016). In addition, SDMs can 

produce future predictions under changing environmental conditions (Guisan et al., 2017), such 

as under climate change (Engler et al., 2011). Over the past two decades, SDMs have made 

great progress (Araújo et al., 2019; Guisan et al., 2017; Zurell et al., 2020), particularly in the 

establishment of ensemble modelling techniques (Hao et al., 2020). Ensemble modelling 

involves combining the projections of several different statistical techniques (or other aspects 

of the model parameterisation or of the data used) into a single projection (Araújo & New, 

2007; Thuiller, 2004). As a result, this combined projection will have a smaller mean error than 

any of its individual components (Thuiller et al., 2009). Ensemble modelling has become 
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increasingly used in SDM, although sometime challenged (Hao et al., 2020), and this approach 

will be used in this study as well.  

The aims of the present study are, first, to predict the distribution of some characteristic MAP 

species in the Alpine region, to highlight areas that have the best potential for their cultivation, 

today and in a climatically changed future. Secondly, we aimed at identifying the most 

productive sites for MAP cultivation, i.e. where several of these species could grow together 

into MAP assemblages. To do this, we used the individual MAP predictions to assess the MAP 

richness and composition of the evaluated sites. We were particularly interested in 5 locations 

in Switzerland, where we know that existing farms grow MAPs species. We also investigated 

the impact of climate change on the predicted MAP assemblages. Based on previous work 

(Losapio et al., 2021), we assumed that due to global warming, we would observe a decline in 

the presence of MAPs in the Alpine zone, as well as changes in the composition of MAP 

assemblages. We also hypothesised that some species would colonise new areas in the future. 

In brief, this paper intends to answer the following questions: (1) How are MAP species 

distributed in the Alpine area and what are the environmental factors controlling them? (2) 

Where and how do MAP species assemble? (3) How will the distribution, richness and 

composition of medicinal and aromatic plant species assemblages change under climate 

change? 

Here, we modelled more specifically the current and future spatial distribution of 27 commonly 

used medicinal and aromatic plant species in the Alpine region, at a 1 km x 1 km resolution. To 

this end, secondary data, including citizen science data as well as recent existing geographical 

product, such as soil, climatic or topographic maps were used. More precisely, we combined 4 

different statistical modelling techniques in an ensemble modelling approach to obtain 

probabilistic distribution maps and associated uncertainties for each of our studied species. By 

summing predicted probabilities, the projections were then used to assess the richness per site 

of the species assemblages across the study area. The composition of the species assemblages 

was then identified using the probability ranking rule, combined with the previously used “sum 

of predicted probabilities” approach. Additionally, we examined species associations using 

multivariate ordination applied to the predictions obtained from our ensemble models. We 

finally investigated the effects of climate change on each of the elements mentioned above. 
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2. Methods 

2.1 Overall approach 

Figure 1 represent an overview of the major steps and research questions of this study. After 

preparing the various species and environmental predictor data (see Sections “2.3” to “2.5”), 

we built species distribution models (SDMs) for each species (see Sections “2.6” to “2.7”). The 

resulting spatial predictions were then used to several purposes, including mapping the species 

distribution and assessing richness and composition of species assemblages (see Section “2.8”). 

The whole process was also carried out for future forecasts using a climate change scenario. 

Codes produced during this study are available here: https://github.com/louldd/Master-

Thesis.git. 

Figure 1. Overview of the major steps and research questions of this study, with a more 
detailed insight of the species distribution modelling (SDM) procedure used (on the right). 
The SDM procedure indicated here corresponds to the procedure applied for a species. It 
was therefore repeated 27 times, for each species studied. The whole process was also 
carried out for future forecasts using a climate change scenario, to answer the 3rd research 
question of this study not shown here: How will the distribution, richness and composition 
of medicinal and aromatic plant species assemblages change under climate change? 
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2.2. Study area 

The study was conducted across the Alpine region, understood as the region extending from 

the Mediterranean coast to Vienna and defined by the EUSALP transboundary area (Figure 2; 

https://ec.europa.eu/regional_policy/index.cfm/en/policy/cooperation/macro-regional-

strategies/alpine/). The study area spans seven countries: Austria, France, Germany, Italy, 

Liechtenstein, Slovenia, and Switzerland, with a total area of ≈ 441,006 km2. Elevation ranges 

from -3 to 4809 m a.s.l. The area’s climate is very diverse, including the Mediterranean, 

continental, and oceanic climates. 

 
Figure 2. Elevation above sea level (in meters) of the EUSALP area.  

 

2.3. Medicinal and aromatic plant data 

We selected 27 medicinal and aromatic plant (MAP) species cultivated in the study area (Table 

1). These species are used in food and pharmaceutical industries especially in Switzerland and 

were thus chosen because of their strong economic interest. They represent a diverse mix of 

plant families and growth altitude, with species growing from the colline (lowlands) to the 

alpine (highlands) belts. Elevation of occurrences ranges from -3 to 3745 m a.s.l. This selection 

also contains various plant growth forms (Raunkiaer et al., 2005) like herbaceous, woody 

plants, and shrubs.  
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Raw occurrence data for the 27 plant species were retrieved for the study area from the Global 

Biodiversity Information Facility (https://www.gbif.org). In addition, we received from Info 

Flora (https://www.infoflora.ch) the complete dataset of occurrences of the 27 MAP species at 

a 1 km x 1 km resolution, from 1980 to 2020 and for the whole territory of Switzerland. 

For both GBIF and Info Flora datasets, data were then selected to cover a time range from 1980 

to 2020 and match the temporal range of environmental variables (they correspond to averages 

or sums for this 40-year period). Initially, the observations coordinates were in the WGS84 

coordinate system (i.e. World Geodetic System) for GBIF and CH1903+ (i.e. Swiss geodetic 

reference system) for Info Flora. We reprojected the coordinates of GBIF and Info Flora 

datasets in the EPSG:3035 projection system, which is the reference coordinate system for 

European Union (EU) countries and Europe in general. The two datasets were eventually bound 

before being aggregated so that there was only one observation per species per square kilometre. 

Finally, to ensure a minimum sample size sufficient for accurate model fitting (van Proosdij et 

al., 2016), only species with a minimum of 30 occurrences between 1980-2020 in the study area 

were considered. 
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Table 1. List of the twenty-seven medicinal and aromatic plant species studied 

Scientific name 
 

Common name 
 

Abbreviation 
 

Family 
 

Growth altitude 
 

GBIF DOI 
 

Achillea 
millefolium L. Yarrow YARR Asteraceae Colline - 

subalpine belts 
https://doi.org/10.
15468/dl.ejt564  

Alchemilla 
xanthochlora 
Rothm. 

Lady’s mantle LAMA Rosaceae Meadows - 
montane belt 

https://doi.org/10.
15468/dl.q4xf6n  

Althaea 
officinalis L. Marsh mallow MAMA Malvaceae Colline belt https://doi.org/10.

15468/dl.haaaqw  
Artemisia 
umbelliformis 
Lam. 

Wormwood WORM Asteraceae Subalpine - 
alpine belts 

https://doi.org/10.
15468/dl.33mx5q  

Artemisia 
vallesiaca All. 

Mugwort from 
Valais MUVA Asteraceae Colline - montane 

zone 
https://doi.org/10.
15468/dl.6a6umz  

Cannabis sativa 
L. Hemp HEMP Cannaba-

ceae Colline belt https://doi.org/10.
15468/dl.hpd7fb  

Centaurea 
cyanus L. Cornflower CORN Asteraceae Colline - 

montane belts 
https://doi.org/10.
15468/dl.mwxrfd  

Gentiana lutea 
L. Yellow gentian YEGE Gentiana-

ceae 
Montane - 
subalpine belts 

https://doi.org/10.
15468/dl.42s8nt  

Leontopodium 
alpinum Cass. Edelweiss EDEL Asteraceae Subalpine -  

alpine belts 
https://doi.org/10.
15468/dl.kanwb7  

Malva sylvestris 
L. 

Common 
mallow MALL Malvaceae Colline - 

montane belts 
https://doi.org/10.
15468/dl.nwkdqe  

Marrubium 
vulgare L. 

White 
horehound WHHO Lamiaceae Colline - 

montane belts 
https://doi.org/10.
15468/dl.xj8akp  

Melissa 
officinalis L. Lemon balm LEBA Lamiaceae Colline belt https://doi.org/10.

15468/dl.5xptpz  
Mentha 
´piperita L. Peppermint PEPP Lamiaceae ´ https://doi.org/10.

15468/dl.4eyhkd  
Ocimum 
basilicum L. Basil BASI Lamiaceae Colline -  

montane belts 
https://doi.org/10.
15468/dl.658gc7  

Origanum 
vulgare L. Oregano OREG Lamiaceae Colline - 

subalpine belts 
https://doi.org/10.
15468/dl.kncusq  

Pimpinella 
saxifraga L. 

Scarlet 
pimpernel SCPI Apiaceae Colline - 

subalpine belts 
https://doi.org/10.
15468/dl.ymkntv  

Plantago 
lanceolata L. 

Ribwort 
plantain RIPL Plantagina-

ceae 
Colline - 
subalpine belts 

https://doi.org/10.
15468/dl.hdt9za  

Primula veris L. Cowslip COWS Primula-
ceae Meadows https://doi.org/10.

15468/dl.wudqvd  
Rhodiola rosea 
L. Golden root GORO Crassula-

ceae 
Subalpine -  
alpine belts 

https://doi.org/10.
15468/dl.sesqqn  

Rosmarinus 
officinalis L. Rosemary ROSE Lamiaceae Colline belt https://doi.org/10.

15468/dl.ufpb7u  
Salvia 
officinalis L. Sage SAGE Lamiaceae Colline belt https://doi.org/10.

15468/dl.jpzs6g  
Sambucus nigra 
L. Elderberry ELBE Caprifolia-

ceae 
Colline -  
montane belts 

https://doi.org/10.
15468/dl.bhdjmu  

 

Saxifraga 
rotundifolia L. 

 

Round-leaved 
saxifrage 

 

RLSA 
 

Saxifraga-
ceae 

 

Montane - 
subalpine belts 

 

https://doi.org/10.
15468/dl.bafj7c  

Thymus vulgaris 
L. Thyme THYM Lamiaceae Colline -  

montane belts 
https://doi.org/10.
15468/dl.8p4f45  

Vaccinium vitis-
idea L. Lingonberry LIBE Ericaceae Montane - 

subalpine belts 
https://doi.org/10.
15468/dl.svmy95  

Verbena 
officinalis L. 

Common 
vervain VERV Verbena-

ceae 
Colline -  
montane belts 

https://doi.org/10.
15468/dl.z53cbq  

Veronica 
officinalis L. 

Common 
speedwell 

 

SPEE 
Scrophu-
lariaceae 

Montane - 
subalpine belts 

https://doi.org/10.
15468/dl.m7664z  



 13 

2.4. Environmental variable preparation  

Twenty-nine environmental variables - climatic, topographic or edaphic - were prepared at a 1 

km ´ 1 km spatial resolution (Table 2). Current and future European bioclimatic data at a 30 

arc-seconds resolution (~1 km2) were recovered from CHELSA (Karger et al., 2017, 2018). To 

assess climate sensitivity, we worked with CMIP6 scenario SSP585 (see Appendix S1 for 

details), the worst case climatic scenario assuming a radiative forcing of 8.5 W/m2. We retrieved 

bioclimatic variables representing the average of 5 different climatic models for the 2011-2040 

time range. Slope, elevation, and aspect (sine and cosine) were upscaled from the existing 250 

m resolution digital elevation model GMTED (Amatulli et al., 2018), using bilinear 

interpolation. Bilinear interpolation assigns a value at the output cell by taking the weighted 

average of the four nearest cell centres. The closer an input cell centre is to the output cell 

centre, the more influence its value will have on the output cell value. Likewise, edaphic 

variables were retrieved from SoilGrids (Poggio et al., 2021) and aggregated from 250 m 

resolution data to 1 km using bilinear interpolation. Finally, we recovered the WorldClim (Fick 

& Hijmans, 2017) solar radiation data at 30 arc-seconds resolution (~1 km2) and computed the 

mean of the 12 months. For the future predictions, we assumed that the physical soil properties 

and topography would be unchanged by 2040. 

All 29 variables were aligned to have the exact origin, with the CHELSA bioclimatic variables 

as reference. They were also reprojected in the projection system used in this study, 

EPSG:3035.  
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Table 2. List of environmental variables prepared at a 1 ´ 1 km m resolution and tested for multi-
collinearity 

Variable 
 

Description and unit 
 

Reference 
 

 

bio1 
 

Mean annual air temperature (°C) 
 

CHELSA  
(Karger et al., 
2017, 2018) 

bio2 Mean diurnal air temperature range (°C) 
bio3a Isothermality (i.e. ratio of diurnal variation to annual variation in 

temperatures) (°C) 
bio4a Temperature seasonality (i.e. standard deviation of the monthly mean 

temperatures) (°C) 
bio5 Mean daily maximum air temperature of the warmest month (°C) 
bio6 Mean daily minimum air temperature of the coldest month (°C) 
bio7 Annual range of air temperature (i.e. the difference between the 

maximum temperature of warmest month and the minimum 
temperature of coldest month) (°C) 

bio8a Mean daily mean air temperatures of the wettest quarter (°C) 
bio9a Mean daily mean air temperatures of the driest quarter (°C) 
bio10 Mean daily mean air temperatures of the warmest quarter (°C) 
bio11 Mean daily mean air temperatures of the coldest quarter (°C) 
bio12 Annual precipitation amount (kg ´ m-2) 
bio13a Precipitation amount of the wettest month (kg ´ m-2) 
bio14 Precipitation amount of the driest month (kg ´ m-2) 
bio15a Precipitation seasonality (i.e. standard deviation of the monthly 

precipitation estimates) (kg ´ m-2) 
bio16 Mean monthly precipitation amount of the wettest quarter (kg ´ m-2) 
bio17 Mean monthly precipitation amount of the driest quarter (kg ´ m-2) 
bio18 Mean monthly precipitation amount of the warmest quarter (kg ´ m-2) 
bio19a 
 

Mean monthly precipitation amount of the coldest quarter (kg ´ m-2) 
 

Slopea Slope angle (°) GMTED 
(Amatulli et al., 
2018) 

Elevation Altitude (m a.s.l.) 
Aspect (sine)a Slope direction (east-west) 
Aspect (cosine) 
 

Slope direction (north-south) 
 

bulka Bulk density of the fine earth fraction (cg/cm³) SoilGrids 
(Poggio et al., 
2021) 

coarsea Volumetric fraction of coarse fragments (> 2 mm) (vol‰) 
claya Proportion of clay particles (< 0.002 mm) in the fine earth fraction 

(g/kg) 
sand Proportion of sand particles (> 0.05 mm) in the fine earth fraction 

(g/kg) 
silta Proportion of silt particles (≥ 0.002 mm and ≤ 0.05 mm) in the fine 

earth fraction (g/kg) 
 

Solar radiationa Mean of monthly average of daily global solar radiation	(kJ ´ m-2 ´ 
day-1) 

WorldClim 
(Fick & Hijmans, 
2017) 

a Denotes variables that were kept for model calibration.  
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2.5. Environmental variable selection 

To avoid multi-collinearity among the environmental variables, we performed bivariate 

Pearson’s Correlation tests between all pairs of the 29 candidate variables. They were assessed 

sequentially in decreasing order of the Pearson Correlation coefficient values. The collinearity 

threshold was set at 0.70 in absolute value (Dormann et al., 2013). Thus, only variables “non-

collinear” with any previously added variable were kept (i.e. pairs that had a correlation 

coefficient r < |0.7|). This strategy was applied one time to the whole set of occurrences of all 

species. As a result, out of the original 29 variables, 14 significant variables were kept for model 

calibration (Table 2). 

 

2.6. Model calibration 

For each species, models were calibrated with a set of explanatory variables corresponding to 

the previously selected variables. Using the biomod2 package (Thuiller et al., 2021; Thuiller et 

al., 2009) and the R v 4.0 software, probabilistic models were calibrated using four different 

statistical techniques: generalised linear models (GLM; McCullagh & Nelder, 2019), 

generalised additive models (GAM; Hastie & Tibshirani, 2017), boosted regression trees 

(GBM; Ridgeway, 1999), and random forest (RF; Breiman, 2001). These models associate the 

response to the explanatory variables to derive the probability of a pixel to host a given target 

species. While GLM is a traditional regression algorithm that allows the response variable to 

take several distributions and non-constant variance functions to be modelled, GAM is a semi-

parametric extension of GLM that allows to implement non-parametric smoothers. Regarding 

GBM and RF, they are boosting and bagging tree-based (recursive partitioning) approaches 

respectively. Summarising, GLM and GAM are both regression approaches fitting a single 

model at a time, whereas GBM and RF are tree-based approaches that are averaging many 

models at each run. Working with four techniques within two different categories (regressions 

and trees) is an advantage as it allows comparing their predictions and assessing the associated 

uncertainty. Furthermore, these four techniques are among the most used and the choice of one 

over the others is not easy.  

We finally built a consensual projection of potential medicinal and aromatic plant distribution 

by combining the results of the four different individual modelling techniques (GLM, GAM, 

GBM, and RF) into an ensemble model (EM; Araújo & New, 2007; Thuiller, 2004). Using 

ensemble modelling aims to reduce the error in the prediction. As long as the base models are 
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diverse and independent, the prediction error decreases when the ensemble approach is used 

(Kotu & Deshpande, 2019). In the present case, we have decided to mix all models (i.e. all 

techniques and cross-validations runs; see Section ‘‘2.7’’) to produce our ensemble model. This 

one was obtained by averaging the individual model projections after having weighted them 

proportionally to the maximised value if the true skill statistic (maxTSS) score, which is a 

measure of model quality (Guisan et al., 2017; see Section “2.7”). This method has been shown 

to be particularly robust (Engler et al., 2011; Marmion et al., 2009).  

All the mentioned modelling techniques require both presence and absence data. Yet, we only 

had species presence records available. We thus generated a set of 10'000 pseudo-absences 

(Barbet-Massin et al., 2012) using the biomod2 package (Thuiller et al., 2021, 2009), as now 

commonly done (Buisson et al., 2010). So that the models are not biased towards an 

overestimation of presence or pseudo-absence and to limit spatial autocorrelation, presence and 

pseudo-absence data were weighted equally during model calibration so that both had equal 

prevalence.  

 

2.7. Model evaluation 

The predictive power of individual models was evaluated through a repeated random data-

splitting procedure. Each model was trained on 70% of the data (chosen randomly) and 

evaluated on the remaining 30% using two evaluation metrics: the maximisation of the true 

skill statistic (maxTSS; Allouche et al., 2006; see Guisan et al., 2017 for the maximisation 

procedure) and the area under the curve (AUC) of a receiver operating characteristics (ROC) 

plot (Fielding & Bell, 1997). TSS (i.e. its maximisation) and AUC are two complementary 

accuracy methods widely used to assess model performance (Shabani et al., 2018). TSS is 

calculated as specificity (fraction of correctly predicted presences) + sensitivity (fraction of 

correctly predicted absences) – 1 at every probability threshold (e.g. every 0.01 increment) and 

the maxTSS is obtained by taking the maximum TSS value across all. MaxTSS thus allows to 

evaluate the concordance between predicted and observed values independent of a specific 

threshold. The TSS metric varies between negative values (systematically wrong), 0 (random 

model) and 1 (perfect accordance). For example, a TSS of 0.5 means that the proportion of 

correctly predicted presences and absences is roughly 75% (0.75 + 0.75–1 = 0.5). As for the 

maxTSS metric, the AUC provides a single measure of overall accuracy that is not dependent 

upon a particular threshold (DeLeo, 1993), but is obtained through a measure of the area under 

the curve of a ROC plot obtained by plotting the combinations of sensitivity and  [1 – 



 17 

specificity] at all thresholds. Its value ranges between 0.5 (area under the diagonal line, meaning 

that the scores of the two groups do not differ) and 1 (no overlap in the distributions of the 

group scores). For instance, an AUC of 0.8 means that in 80% of the time, a random selection 

from the positive group (e.g. absences correctly classified as absences) will score higher than a 

random selection from the negative class (e.g. presences wrongly classified as absences).  

The maximised TSS metric was further used as an evaluation reference to build our ensemble 

models. The quality threshold was set at 0.4, which is the threshold above which models are 

considered “useful” (Engler et al., 2013). Thus, only individual models with a maxTSS greater 

than or equal to this value were kept. 

The entire split-sample evaluation procedure was repeated 25 times for each individual model. 

Therefore, for each species, 101 models were generated (25 resampling run models x 4 

modelling techniques + 1 ensemble model). The final ensemble model was also assessed using 

the same metrics as in the previous steps.  

 

2.8. Assessing the species richness and composition of medicinal and 

aromatic plant assemblages 

2.8.1. Species richness maps  

Projections from our ensemble models are continuous probability values between 0 and 1. To 

obtain an estimate of the medicinal and aromatic plant species richness in each site, we summed 

the projections that we got from our single species ensemble models (Dubuis et al., 2011). 

Summing predicted probabilities is a more advised approach than summing thresholded (i.e. 

binarised) individual species predictions (Calabrese et al., 2014), as it does not require a 

species-specific threshold but instead uses site-specific ecological constraints (i.e. through 

defining the individual species probabilities) to estimate richness in each site, which can then 

be also used to predict composition (“site-threshold”; Scherrer et al., 2018). Furthermore, it has 

been shown that summing predicted probabilities was a more robust approach as it yields an 

unbiased estimate of species richness at each prediction site (Calabrese et al., 2014; Dubuis et 

al., 2011), i.e., unlike summing binary predictions, it does not overpredict richness. Using this 

approach, we obtained current and future richness maps where each site was attributed an 

estimated number of species, ranging between 0 and 27, suitable to grow at this location. For 

example, with a value of 8.5, it is estimated that this location has the necessary conditions for 

the growth of about eight different species.  
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2.8.2. Ranking of probabilities of presence 

In each study site, we wanted to assess the composition of the community of medicinal and 

aromatic species and know which species had the greatest probability of being present. We, 

therefore, used the probability ranking rule (PRR; D’Amen et al., 2015). In combination with 

summing predicted probabilities to estimate richness, the PRR allows identifying which species 

are the most likely to be present based on the ranking of the predicted probabilities of 

occurrence of all species in each site up to the (sum of probabilities-based) estimated richness 

(Scherrer et al., 2020). More specifically, the probabilities of occurrence calculated by the 

SDMs were ranked in decreasing order, the species with the highest probability of occurrence 

being classified first and the one with the lowest probabilities being last (in our case number 

27). A number of species equal to the expected species richness previously determined (see 

Section “2.8.1”) was then selected for each site. Using this approach, we obtained, for each 

species, current and future ranking maps where each site was attributed the rank of the species, 

ranging between 1 and 27. In addition, using pie charts, we observed in detail MAP species 

composition of 5 following Swiss farm locations: Attiswil (BE), Ebnat-Kappel (SG), Noble-

Contrée (VS), Poschiavo (GR), Soral (GE). 

 

2.8.3. Ordination for species associations analysis  

We used ordination applied to the predictions obtained from our single species ensemble 

models to identify co-occurrence patterns (i.e. associations) in our medicinal and aromatic plant 

assemblages. The use of ordination allows summarising a multidimensional dataset so that, 

when it is projected onto a reduced dimensional space, any intrinsic pattern the data may possess 

becomes visually apparent (Pielou, 1984). Given the nature of our data (continuous 

probabilities), we had recourse to a Principal Component Analysis (PCA) to define our 

ordination space. This allowed us to uncover how the species were associated in current 

predicted plant assemblages and if potential changes in composition would happen in the future. 
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3. Results 

3.1. Environmental variable selection 

The 14 variables that were kept for model calibration had pairwise Pearson Correlation 

coefficient r smaller than |0.7| (Figure S2). Among them, half are bioclimatic variables. Three 

of them represent variations in climatic factors like bio3, bio4 and bio15. The others correspond 

to measurements of temperature (i.e. bio8 and bio9) and precipitation (i.e. bio13 and bio19) at 

different times of the year. All edaphic variables were selected except the proportion of sand in 

the fine earth fraction. Finally, the slope, slope direction (east-west) and solar radiation were 

also retained. 

 

3.2. Model performance 

All individual models obtained a TSS score greater than 0.4 which is the threshold above which 

models are considered “useful” (Engler et al., 2013; Figure S3). For this reason, all individual 

modelling techniques were considered for computing the ensemble models (EMs). The 

algorithm that obtained the best TSS and AUC scores across all species was RF. 

When considering the EM projections, all species obtained elevated evaluation scores, with 

TSS values between 0.696 and 1 (Table 3). Such TSS values mean that, on average, presence 

and absence occurrences of a species were correctly predicted with a rate of 85–100%. 

Artemisia vallesiaca is the species that obtained the highest evaluation score, with a TSS value 

of 1. The majority of species achieved a TSS score greater than 0.85. Only 2 species had a score 

just below 0.7, Achillea millefolium and Salvia officinalis, with TSS values of 0.698 and 0.696 

respectively, but in absolute terms their models remain very good. Regarding the AUC (= 

ROC), all species achieved values between 0.933 and 1, which are considered as good to 

excellent predictions (Guisan et al., 2017; Swets, 1988). More than two-thirds of the species 

even scored more than 0.95 for AUC, meaning that for more than 95% of the time a random 

selection from the positive group (e.g. absences correctly classified in absences) will have a 

score greater than a random selection from the negative class (e.g. presences wrongly classified 

as absences; DeLeo, 1993). 

In view of the very good evaluation scores obtained, solely the results of the EM projections 

were used to produce the following results. 
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Table 3. TSS and ROC values for ensemble models of each species 

Species 
 

TSS 
 

ROC 
 

Achillea millefolium L. 0.698 0.933 
Alchemilla xanthochlora Rothm. 0.857 0.985 
Althaea officinalis L. 0.730 0.949 
Artemisia umbelliformis Lam. 0.951 0.997 
Artemisia vallesiaca All. 1 1 
Cannabis sativa L. 0.938 0.992 
Centaurea cyanus L. 0.808 0.971 
Gentiana lutea L. 0.857 0.984 
Leontopodium alpinum Cass. 0.932 0.996 
Malva sylvestris L. 0.748 0.947 
Marrubium vulgare L. 0.851 0.977 
Melissa officinalis L. 0.738 0.945 
Mentha ´piperita L. 0.929 0.991 
Ocimum basilicum L. 0.999 1 
Origanum vulgare L. 0.733 0.948 
Pimpinella saxifraga L. 0.851 0.982 
Plantago lanceolata L. 0.739 0.952 
Primula veris L. 0.766 0.958 
Rhodiola rosea L. 0.969 0.998 
Rosmarinus officinalis L. 0.933 0.995 
Salvia officinalis L. 0.696 0.934 
Sambucus nigra L. 0.716 0.941 
Saxifraga rotundifolia L. 0.855 0.983 
Thymus vulgaris L. 0.849 0.980 
Vaccinium vitis-idea L. 0.852 0.983 
Verbena officinalis L. 0.797 0.967 
Veronica officinalis L. 0.803 0.967 

 

3.3. Predictions of current and future medicinal and aromatic plant species 

distributions  

For each species, the maps of the predicted probabilities of presence in the present and future 

are available in Appendix S4.1-S4.27. Under current climate, some species are predicted to 

cover almost the entire EUSALP area, such as Achillea millefolium or Origanum vulgare. 

Others, like Artemisia umbelliformis or Leontopodium alpinum, are predicted to be only present 

at higher altitudes in the Alps. There are on the contrary species for which the predictions of 

their current distribution do not include the Alps, as Althaea officinalis or Melissa officinalis. 

The maps of predicted future distributions reflect the impact of climate change on the species 

distributions. As these maps show, species would not react to climate change in the same way, 

rather experiencing substantial but different changes in their distributions. Two different types 
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of changes are highlighted by our results (Table S5). While some species should persist in the 

same sites but with a reduced probability of occurrence, some should appear in new places 

where they were not previously observed. The latter, in addition to remaining present in the 

same places as now (although with a declining probability of presence), should also colonise a 

great part of the rest of the EUSALP area. Taking up some of the examples given above, A. 

officinalis and M. officinalis are two medicinal and aromatic plants which will, in the future, 

"go up" in the Alps and invade higher altitude areas. A. umbelliformis and O. vulgare, for their 

part, are two species that will see their probability of occurrence get reduced in the future and 

throughout the study area. 

 

3.4. Location, richness, and composition of medicinal and aromatic plant 

assemblages  

We computed the current and future species richness maps of medicinal and aromatic plants 

(MAPs) by summing the predicted probabilities of presence obtained from the ensemble models 

(EM) of all our studied species (Figure 3). Currently, the MAP assemblages with the highest 

species richness (i.e., the highest hotspots) are found in Switzerland, with values up to 18.2 (i.e.  

ca. 18 species; Figure 3A). As a general rule, we observe that the further away the assemblages 

are from Switzerland, the lower their richness. This is the case for instance in Germany, where 

plant assemblages are richer in the south (up to 8.5) than in the north (from 1.86 to 6.73). The 

south of France also contains many hotspots that can suit only around 10 of our selected species. 

By 2040, the EMs predict a drastic decrease in the assemblages of these MAPs (Figure 3B). 

However, the pattern observed in the future seems to remain the same as the one currently 

predicted. Indeed, Switzerland remains the area with the richest assemblages of these plants, 

this time with values reaching only around 8.5. For the rest of the EUSALP zone, the sum of 

probabilities does not exceed 5. Nonetheless, it seems that in certain regions, especially at the 

northern border of the EUSALP area, the hotspots have slightly increased. In the same way as 

we observed with the probability of occurrence maps for each species (see Section “3.3”), two 

distinct events occur in our future predictions: (1) the probability of presence decreases overall 

for all the species and (2) new areas are colonised by some of them. 
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Figure 3. Estimated species richness (A) in the present and (B) by 2040 in the EUSALP 
region. The richness values were computed by summing the predicted probabilities of each 
species obtained from the ensemble models.  

 

Regarding the composition of plant assemblages, we examined the ranking of the probabilities 

of occurrence for each species in the whole of the EUSALP area. The resulting maps for 3 of 

the species - Althaea officinalis, Gentiana lutea and Thymus vulgaris - are presented in this 

section (Figure 4) and the other maps can be found in Appendix S6.1-S6.24. The ranking of 

probabilities per site highlighted 3 types of patterns, represented by the 3 species present in 

Figure 4 (see Appendix S7 for classification of all species). By 2040, either (1) species will 

move up overall in the ranking (per site) over the entire area like A. officinalis (Figure 4; first 

row), (2) go down overall, as for G. lutea (Figure 4; second row), or (3) do both at different 
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locations of the study area, as for T. vulgaris (Figure 4; third row). Therefore, climate change 

would not only impact species distribution in species-specific ways, but also the species per-

site rankings. The fact that climate change can affect the ranking of the per-site species’ 

probabilities of occurrence in multiple ways indicates that the composition of assemblages will 

suffer major modifications in the years to come. 

 

 
Figure 4. Ranking of occurrence probabilities of Althaea officinalis (first row), Gentiana 
lutea (second row) and Thymus vulgaris (third row) in the EUSALP area, in the present 
(left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the highest rank. 
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We focus now more particularly on Switzerland, where we saw that the assemblages were the 

richest. To understand how the ranking influence the composition of medicinal and aromatic 

plants (MAPs) assemblage, we studied 5 locations, all situated in different cantons, where we 

know that existing farms grow MAPs species. Each farm location has a high species richness, 

ranging from around 14 to 16, except for Poschiavo (GR) whose species richness is 7 (Figure 

5A). The assemblages are made up of various species and 7 of the 27 species studied, such as 

Primula veris and Veronica officinalis, can be found in each of the 5 farm locations (Figure 

5B). However, all without exception experience a decrease in richness in the future, by at least 

a half for 4 out of 5 farm locations (Figure 5). P. veris and V. officinalis are expected to 

disappear from all assemblages in the future. In addition to have their richness greatly reduced, 

assemblages of these MAPs will thus also be subject to changes in their composition. For 

instance, according to our models, Althaea officinalis should in the future be present in Noble-

Contrée (VS) and Poschiavo (GR), whereas it is currently absent. 
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Figure 5. (A) Current and future estimated species richness (computed by summing the 
predicted probabilities) of medicinal and aromatic plants at five places in Switzerland. (B) 
Corresponding pie charts showing which species are predicted to be present in each 
location, in the present and by 2040. Pie charts were made using the probabilities of the 
highest ranked species for each location (depending on the specific richness at each 
location). 
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Changes in the composition of species assemblages can also be observed through the results of 

the Principal Component Analysis (PCA; Figure 6). Species are more sparsely distributed in 

the ordination space in the present (Figure 6A) than in the future (Figure 6B), where most 

species cluster along the x-axis. These species in particular will in the future have similar 

probabilities of presence. These shifts in the ordination space attest once again that the climate 

change will affect many factors, influencing the location and composition of medicinal and 

aromatic plant assemblages in the future. 

 

Figure 6. Principal component analysis results: (A) PCA score plot of the first two principal components 
(total explained variance equal to 74.3%) for the current predictions. (B) PCA score plot of the first two 
principal components (total explained variance equal to 73.5%) for the future predictions. The species 
are indicated by their abbreviations (see Table 1). 

 

4. Discussion 
In this study, we mapped the spatial distribution of 27 medicinal and aromatic plant (MAP) 

species and their assemblages across the Alpine region at a 1 km spatial resolution, to identify 

potential sites that would be most optimal for MAP cultivation. We thus also assessed the 

richness and composition of the species assemblages at each site across the study area. Lastly, 

we investigated the impact of climate change on the location, richness, and composition of the 

MAP assemblages. Our results show that the Alpine region has the potential to supports many 

MAP species, with Switzerland hosting the richest species assemblages of our selected MAPs. 

The composition of the MAP assemblages varies from site to site, as the latter do not supply 

the same environmental conditions. Our findings also demonstrated that, in the future, climate 

change will affect the richness and composition of MAP assemblages and, hence, which species 

would be the most suitable to ensure a productive yield. As we hypothesised, MAP diversity 

will decrease with global warming in the short term: in the Swiss Plateau, around half of MAP 
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species will disappear locally in the future. Besides changes in species richness, we also 

observed changes in the way species would assemble with each other in the future. 

Nevertheless, a number of our studied species should still be present in the future and compose 

part of the MAP assemblages of the Alpine area. We could, however, not assess here which 

new MAP species could potentially colonise the Alpine zone in a warmer future, which would 

be an interesting perspective for future studies. 

 

4.1. Comparison of model performance across modelling techniques and 

species 

As we suspected, the ensemble modelling (i.e. combination of the results of the 4 different 

individual modelling techniques) showed greater accuracy than any of its individual 

components. Comparing the predictive power of the 5 different modelling techniques (i.e. 

GLM, GAM, GBM, RF and EM; see section “2.6”), we found that ensemble modelling 

represent overall the best performing approach (Table 3, Figure S3). The TSS values we 

obtained from our EM projections for each species ranged between ~0.7-1 (Table 3). On 

average, about 85-100% of the independent evaluation samples were correctly classified by the 

models, hence making the ensemble modelling technique the one that produced the highest 

rates of correctly classified samples. This result is consistent with those of previous studies 

using this same approach (Engler et al., 2011; Marmion et al., 2009).  

When computing the EMs, as all individual models produced for each species obtained a TSS 

score greater than 0.4 (Figure S3), none of our selected species was removed from the study. 

Moreover, as said above, all species obtained very good to excellent scores, both for TSS and 

AUC values obtained from the EM projections (Table 3).  

Thus, no major variation in accuracy was observed between the studied species (i.e. between 

their relative EM). The precision of the fitted models obtained from the ensemble modelling 

approach therefore indicates that reliable distribution maps of all our studied species can be 

produced and subsequently used for a range of analyses and research questions.  

 

4.2. Accuracy of medicinal and aromatic plant habitat suitability forecasts 

We were able to fairly accurately predict the distribution and assemblages of medicinal and 

aromatic plants (MAPs) across the Alpine region with niche-based environmental suitability 
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models. Furthermore, the five locations studied in Switzerland constitute validation points for 

our forecasts, as they coincide with the location of actual farms cultivating MAPs. 

The present environmental conditions hence largely contribute to explain the distribution of 

MAP species and their assemblages, as well as their response to future climate change. As a 

result, and as indicated by our findings, the predicted MAP assemblages are composed of 

different species and are of varying richness (Figure 3) depending on the environment (and 

sites). Several previous studies suggested that, in extreme regions as alpine environments, 

species distributions are mainly shaped by climate (Araújo & Guisan, 2006; Thuiller et al., 

2004). The accuracy of environmental inputs (i.e. correctness of environmental predictors 

themselves) in species distribution modelling (SDM) is thus essential to fully understand how 

the environment influences some dimensions of biodiversity (here MAPs) and might cause or 

increase bias in the associated spatial predictions (Waltari et al., 2014). Studies carried out in 

mountainous regions, which show low bioclimatic congruence (i.e. degree of agreement in 

temperature and precipitation values between bioclimatic databases) due to lacking or unevenly 

distributed network of weather stations (Hijmans et al., 2005), are particularly prone to errors 

in spatial predictions (Beaumont et al., 2007; Soria-Auza et al., 2010). In regards to bioclimatic 

inputs, it seems that the CHELSA database, used here, is more suited than other global 

bioclimatic databases for terrestrial species (Morales-Barbero & Vega-Álvarez, 2019).  

Likewise, especially in mountain ecosystems with complex topography, edaphic components 

are necessary for a good understanding of the distribution of biodiversity (Buri et al., 2020; 

Cianfrani et al., 2019; Mod et al., 2016). Soil is, like climate, one of the principal drivers of 

plant species distribution in  the European Alps (Buri et al., 2020; Chauvier et al., 2021). This 

is why we chose here to include soil descriptors when predicting MAP species distributions in 

the Alpine region. 

We used species data from two distributional databases: the Global Biodiversity Information 

Facility (GBIF) and Info Flora. Species presence data resulting from citizen science efforts are 

increasingly abundant and consequently, spatial predictions using these data are also 

increasingly used in research on conservation or climate change (Guisan & Thuiller, 2005; 

Guralnick & Hill, 2009; Jetz et al., 2012). Distributional databases, for which GBIF is the 

largest online provider of distribution records (Beck et al., 2013), however, can contain 

considerable biases that compromise the value of predictions (Fithian et al., 2015; Hefley et al., 

2017; Robinson et al., 2018). In GBIF, a spatial bias due to an uneven sampling effort is 

particularly pronounced (Dorazio, 2014; Komori et al., 2020). Differences in funding and data 

sharing at the national scale indeed lead to huge spatial differences in contributions (Beck et 
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al., 2013). SDMs trained on spatially biased data may reflect correlates of spatial 

autocorrelation rather than actual species distributions (Anderson & Gonzalez, 2011; Higa et 

al., 2014; Wisz et al., 2008). It is therefore often necessary to take certain measures to produce 

reliable results. One possible solution is then to spatially thin the data: i.e. filter data in the areas 

where data density is highest and keep data where the density is low (Boria et al., 2014; Steen 

et al., 2021) or try to correct the bias in the model (e.g. El-Gabbas & Dormann, 2018; Hefley 

et al., 2017; Phillips et al., 2009), although the latter can be difficult to implement without 

knowing the exact processes generating the biases. For presence-only data, however, the 

process of spatial thinning is relatively easy. Here, we more specifically chose to: (1) combine 

two databases: GBIF and Info Flora (see Section “2.3”) to have the maximum number of 

observations in the study area and (2) aggregate data so that there was only one observation per 

species per square kilometre. This way, we ensured to avoid the over-representation of well-

sampled locations. The approach of bias correction within the models could, however, be an 

interesting perspective for future studies. 

 

4.3. Uneven impact of climate change on medicinal and aromatic plant 

species 

The extreme scenario chosen in this study allows us to consider the worst-case scenario and to 

cover the other possible and less extreme cases. Our results demonstrated that, in some cases, 

climate warming will favour medicinal and aromatic plant (MAP) distribution for species like 

Alchemilla xanthochlora, Centaurea cyanus or Mentha piperita, which will benefit from higher 

temperatures by colonising new areas in the Alpine region. However, global warming will 

mainly reduce MAP species presence, possibly causing local extinctions at the end. These two 

different types of changes in the MAP distribution were highlighted by our EMs (Table S5). 

Besides, although some species should colonise new terrain, the whole Alpine region will not 

gain species since most species included here were already in the region and are accordingly 

rather expected to decline, as we observed with the 5 specific Swiss cases (Figure 5). Yet, we 

did not account for potential MAP species that could colonise the area in the future (e.g. from 

Southern regions in Europe) and change the MAP assemblages accordingly. 

After accounting for the response of MAP species to climate change, we found strong changes 

in ranking and thus in MAP assemblages’ composition. Our findings indeed emphasised three 

different patterns of change in the probability ranking (Table S7). Even if their overall presence 

probability across the Alpine region will decrease in the future, a few MAP species are predicted 
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to gain in ranking. Two potential reasons can explain this phenomenon which seems 

contradictory: (1) species invade new sites where they are better adapted than other species 

and/or (2) their probabilities decrease, but less than the other species.  

Therefore, global warming would reshuffles MAP species in space and time in species-specific 

ways, and thus make future assemblages not necessarily the same as today’s ones, as already 

shown for entire plant communities (Huntley, 1991; Trivedi et al., 2008). Evidences of an 

uneven impact of climate change on plant species of the European Alps were already observed 

in previous studies (Klanderud, 2008; Losapio et al., 2021). In the near future, different 

combinations of MAP species, never observed before, could thus be observed. Taken together, 

the different types of change (in MAPs distributions and rankings) highlighted throughout this 

study reveal that there is no single factor, pattern or mechanism affecting the species 

distribution and assemblages. Instead, the species-specific impact of climate warming on MAP 

species biodiversity and composition will likely be mediated by complex and potentially novel 

ecological interactions (Alexander et al., 2015).  

 

4.4. Limitations 

This study predicted the spatial distribution of 27 medicinal and aromatic plant (MAP) species 

across the Alpine region in Europe at a 1 km spatial resolution. In mountain areas, however, 

habitats and species distributions can rapidly vary with altitude and across the complex 

topography, creating different exposures and a multitude of different microclimates. A spatial 

resolution of 1 km is therefore often considered low for modelling species distributions in alpine 

areas. However, several reasons contributed to justify our choice. First, many environmental 

variables are nowadays directly available at a resolution of 1 km across large areas, such as the 

entire Alpine region (≈ 441,006 km2 for the EUSALP area). In addition, a 1 km resolution 

represents a good compromise for optimising eco-informatic calculations given this very large 

extent considered. Our results at this resolution could however be re-used in future studies 

involving hierarchical spatial models (Chevalier et al., 2021; Mateo et al., 2019). 

Although our results predict with overall good accuracy the distribution of the studied MAP 

species, our predictions are to be considered with care. Indeed, MAP cultivation involves 

factors other than the natural environment (Liliane & Charles, 2020), as technological (e.g. 

agricultural practices) and biological factors (e.g. diseases, insects, pests), which are not 

considered explicitly – i.e. biotic interactions are implicitly considered - in our models. Our 

findings are, however, providing complementary information on the factors driving the species’ 



 31 

ecology and geography, which can then be used to improve the future planning of MAP 

cultivations while also accounting for local human-related factors. 

Presence-only data were used in this study, mostly coming from wild MAP observations. With 

the ongoing MAPs breeding and domestication effort (Ekiert et al., 2021), it is likely that MAPs 

could thrive under a broader range of biophysical conditions than predicted in this study. As a 

consequence, our results probably underestimate the agronomic potential of MAPs. However, 

this study focused on MAPs as a solution to increase agro-biodiversity through a low-input (i.e. 

that minimises the use of production inputs such as purchased fertilisers and pesticides) and 

organic agricultural production (Alrøe & Kristensen, 2004). Relying on wild species 

distribution is therefore a good proxy of the context in which domesticated (i.e. agricultural) 

MAPs could evolve if they were introduced into sustainable agriculture. 

 

4.5. Conclusion and potential implications for medicinal and aromatic plant 

cultivation 

Here, we showed that the Alpine region was home to numerous medicinal and aromatic plant 

(MAP) species. In addition, we demonstrated that, without measures taken to mitigate global 

warming in the near future, the consequences on MAP diversity will be significant. In view of 

our results, addressing which and how species will distribute in the Alpine ecosystems while 

being impacted by global warming is of paramount importance, from both an ecological and 

economical point of view.  

In terms of agricultural applications, mapping the distribution of MAP species and their 

assemblages may serve for planning of agricultural land. With the information gained from our 

results, sustainable agriculture may thus be promoted by helping policy makers to support the 

emergence of MAPs production where it is most ecologically appropriate.  

In addition to their great economic value, due to their use as raw materials in many areas of 

production, MAPs provide ecosystem services essential to human health, livelihood and 

knowledge (Padulosi et al., 2002). Mapping of spatial distribution of MAPs species and their 

assemblages has, furthermore, already been used in previous studies as a way to estimate 

ecosystem services provided across a region (Cheminal et al., 2020; Vári et al., 2020). The same 

could be replicated in our case, using our results to assess and map the potential of MAP species 

as ecosystem service providers in the Alpine region. Thus, this would also participate in 

demonstrating that MAPs cultivation represents an ecologically and economically sustainable 

opportunity for agricultural areas in the Alpine region. 
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Cultivating MAPs in the Alpine region with climate change will however become more 

challenging, as MAP species suitable today may not be tomorrow. Besides, the combination of 

suitable MAP species is likely to change with global warming. To support the climate-change 

adaptation of farmers who will engage in MAP production in the upcoming years, there is a 

need to investigate how future combinations of MAPs can be integrated into farming systems. 

Therefore, in the face of global climate change, it will be more complex to plan the Alpine 

landscape to provide sufficient agricultural production, ecosystem services as well as conserve 

biodiversity. 
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Appendices 
 

Appendix S1. About the CMIP6 scenario SSP585. 

The CMIP6 scenario SSP585 represents the upper boundary of the range of scenarios described 

in the literature. In contrast to its predecessor, the CMIP5 scenario RCP8.5, it now incorporates 

socio-economic factors. The CMIP6 scenario SSP585 assumes that the world economy is 

growing. However, this social and economic development is based on an intensified 

exploitation of fossil fuel resources and an energy-intensive lifestyle worldwide. 
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Appendix S2. Supporting information for the Section “3.1”. 

 

 
Figure S2. Correlation matrix of the Pearson correlation coefficients (A) between the 
original 29 variables and (B) between the 14 selected variables. In (A) crosses indicate 
values greater than |0.7|. In (B), the value of the correlation coefficient is written for each 
pair of variables. 
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Appendix S3. Comparison of model performance across modelling techniques and species.  
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Figure S3. Visualisation of the predictive accuracy of each algorithm for each species. The 
points represent the mean of evaluation scores, TSS and ROC (= AUC) for a given 
modelling technique and lines represents associated standard deviations.  
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Appendix S4. Current and future maps of the predicted probabilities of the 27 studied species. 

 
Figure S4.1. Maps of predicted probability of presence of A. millefolium in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.2. Maps of predicted probability of presence of A. xanthochlora in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.3. Maps of predicted probability of presence of A. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 
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Figure S4.4. Maps of predicted probability of presence of A. umbelliformis in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.5. Maps of predicted probability of presence of A. vallesiaca in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.6. Maps of predicted probability of presence of C. sativa in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 
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Figure S4.7. Maps of predicted probability of presence of C. cyanus in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 

 

 
Figure S4.8. Maps of predicted probability of presence of G. lutea in the EUSALP area, in 
the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 

 

 
Figure S4.9. Maps of predicted probability of presence of L. alpinum in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 
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Figure S4.10. Maps of predicted probability of presence of M. sylvestris in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.11. Maps of predicted probability of presence of M. vulgare in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.12. Maps of predicted probability of presence of M. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 
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Figure S4.13. Maps of predicted probability of presence of M. piperita in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.14. Maps of predicted probability of presence of O. basilicum in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.15. Maps of predicted probability of presence of O. vulgare in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 
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Figure S4.16. Maps of predicted probability of presence of P. saxifraga in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.17. Maps of predicted probability of presence of P. lanceolata in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.18. Maps of predicted probability of presence of P. veris in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 
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Figure S4.19. Maps of predicted probability of presence of R. rosea in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 

 

 
Figure S4.20. Maps of predicted probability of presence of R. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.21. Maps of predicted probability of presence of S. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 
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Figure S4.22. Maps of predicted probability of presence of S. nigra in the EUSALP area, 
in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the highest 
probability. 

 

 
Figure S4.23. Maps of predicted probability of presence of S. rotundifolia in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.24. Maps of predicted probability of presence of T. vulgaris in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 
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Figure S4.25. Maps of predicted probability of presence of V. vitis idaea in the EUSALP 
area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 being the 
highest probability. 

 

 
Figure S4.26. Maps of predicted probability of presence of Verbena officinalis in the 
EUSALP area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 
being the highest probability. 

 

 
Figure S4.27. Maps of predicted probability of presence of Veronica officinalis in the 
EUSALP area, in the present (left) and by 2040 (right). Probability is range from 0 to 1, 1 
being the highest probability. 
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Appendix S5. Supporting information for the Section “3.3”. 

Table S5. Classification of species according to expected changes in probabilities of 
occurrence in the future 

Expected change 
 

Species 
 

 

Probability of occurrence reduced overall 
 

In the future, these species are predicted to be 
present in the same places as now but with their 
probability of presence reduced. 

 

Achillea millefolium L. 
Artemisia umbelliformis Lam. 
Gentiana lutea L. 
Leontopodium alpinum Cass. 
Marrubium vulgare L. 
Origanum vulgare L. 
Pimpinella saxifraga L. 
Plantago lanceolata L. 
Primula veris L. 
Saxifraga rotundifolia L.  
Veronica officinalis L. 

 

Colonisation of other sites 
 

In the future, these species are also predicted to 
be present in the same places as now, with their 
probability of presence reduced. Moreover, they 
should invade other sites with a low (but 
existing) probability of presence.  

 

Alchemilla xanthochlora Rothm. 
Althaea officinalis L. 
Artemisia vallesiaca All. 
Cannabis sativa L. 
Centaurea cyanus L. 
Malva sylvestris L. 
Melissa officinalis L. 
Mentha ´piperita L. 
Ocimum basilicum L. 
Rhodiola rosea L. 
Rosmarinus officinalis L. 
Salvia officinalis L. 
Sambucus nigra L. 
Thymus vulgaris L. 
Vaccinium vitis-idea L. 
Verbena officinalis L. 
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Appendix S6. Current and future maps of the ranking of occurrence probabilities  

 
Figure S6.1. Maps of ranking of occurrence probabilities of A. millefolium in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.2. Maps of ranking of occurrence probabilities of A. xanthochlora in the 
EUSALP area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 
being the highest rank. 

 

 
Figure S6.3. Maps of ranking of occurrence probabilities of A. umbelliformis in the 
EUSALP area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 
being the highest rank. 
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Figure S6.4. Maps of ranking of occurrence probabilities of A. vallesiaca in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.5. Maps of ranking of occurrence probabilities of C. sativa in the EUSALP area, 
in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the highest 
rank. 

 

 
Figure S6.6. Maps of ranking of occurrence probabilities of C. cyanus in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 
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Figure S6.7. Maps of ranking of occurrence probabilities of L. alpinum in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.8. Maps of ranking of occurrence probabilities of M. sylvestris in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.9. Maps of ranking of occurrence probabilities of M. vulgare in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 
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Figure S6.10. Maps of ranking of occurrence probabilities of M. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.11. Maps of ranking of occurrence probabilities of M. piperita in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.12. Maps of ranking of occurrence probabilities of O. basilicum in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 
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Figure S6.13. Maps of ranking of occurrence probabilities of O. vulgare in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.14. Maps of ranking of occurrence probabilities of P. saxifraga in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.15. Maps of ranking of occurrence probabilities of P. lanceolata in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 
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Figure S6.16. Maps of ranking of occurrence probabilities of P. veris in the EUSALP area, 
in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the highest 
rank. 

 

 
Figure S6.17. Maps of ranking of occurrence probabilities of R. rosea in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.18. Maps of ranking of occurrence probabilities of R. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 
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Figure S6.19. Maps of ranking of occurrence probabilities of S. officinalis in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.20. Maps of ranking of occurrence probabilities of S. nigra in the EUSALP area, 
in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the highest 
rank. 

 

 
Figure S6.21. Maps of ranking of occurrence probabilities of S. rotundifolia in the 
EUSALP area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 
being the highest rank. 
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Figure S6.22. Maps of ranking of occurrence probabilities of V. vitis idaea in the EUSALP 
area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 being the 
highest rank. 

 

 
Figure S6.23. Maps of ranking of occurrence probabilities of Verbena officinalis in the 
EUSALP area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 
being the highest rank. 

 

 
Figure S6.24. Maps of ranking of occurrence probabilities of Veronica officinalis in the 
EUSALP area, in the present (left) and by 2040 (right). Ranking is range from 1 to 27, 1 
being the highest rank. 
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Appendix S6. Supporting information for the Section “3.4”. 

Table S6. Classification of species according to expected changes in the ranking of 
probabilities in the future 

Expected change 
 

Species 
 

 

Ranking decreases overall over the entire area 

 

Achillea millefolium L. 
Artemisia umbelliformis Lam. 
Gentiana lutea L. 
Leontopodium alpinum Cass. 
Marrubium vulgare L. 
Pimpinella saxifraga L. 
Primula veris L. 
Sambucus nigra L. 
Saxifraga rotundifolia L.  
Veronica officinalis L. 
 

 

Ranking increases overall over the entire area 

 

 

Alchemilla xanthochlora Rothm. 
Althaea officinalis L. 
Artemisia vallesiaca All. 
Centaurea cyanus L. 
Ocimum basilicum L. 
Rhodiola rosea L. 
Vaccinium vitis-idea L. 

 

Ranking increases or decreases according to the 
locations of the area 

 

Cannabis sativa L. 
Malva sylvestris L. 
Melissa officinalis L. 
Mentha ´piperita L. 
Origanum vulgare L. 
Plantago lanceolata L. 
Rosmarinus officinalis L. 
Salvia officinalis L. 
Thymus vulgaris L. 
Verbena officinalis L. 
 

 


