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ABSTRACT 

Species distribution models (SDM) use environmental factors to predict the distribution of 

species. Aboveground factors like climatic predictors are often used for plant SDMs, but do not 

always accurately capture the plants’ geographical distribution. Since soil-related abiotic 

factors are considered as important drivers of plant distribution, we tested whether soil fungal 

diversity could be used to improve plant SDMs. Our expectation was that fungi diversity could 

capture some aspect of soil ecology, or a biotic interaction, that is important for plants, but not 

accounted for in SDMs today. We built SDMs of 85 alpine grassland plant species, first with 

only abiotic factors, and then adding the richness of various functional groups of fungi to the 

models. On average, the performance of the Random Forest models was clearly improved by 

the addition of fungal richness as a predictor, but the increase in predictive performance always 

stayed low. The highest increases of performance could be observed by including the richness 

of soil saprotrophs, lichenized fungi, or animal endosymbionts. This low increase in 

performance indicates that fungal richness does not significantly capture the variance of any 

soil-related factor that is not already included in the abiotic predictors.  
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 RÉSUMÉ 

Les modèles de distribution des espèces (SDM) utilisent des facteurs environnementaux pour 

prédire la distribution des espèces. Les facteurs environnementaux tels que les prédicteurs 

climatiques sont souvent utilisés pour modéliser la distribution des plantes, mais ne donnent 

pas toujours un aperçu complet de leur distribution géographique. Comme les facteurs 

abiotiques liés au sol sont considérés comme des éléments importants de la distribution des 

plantes, nous avons testé si la diversité de champignons du sol pouvait améliorer les SDM de 

plantes. Nous nous attendions à ce que la diversité des champignons puisse capturer un aspect 

de l'écologie du sol, ou une interaction biotique, qui est important pour les plantes, mais qui 

n'est pas pris en compte dans les SDM actuels. Nous avons construit des SDM de 85 espèces 

végétales de prairies alpines, d'abord en n’incluant que des facteurs abiotiques, puis en ajoutant 

aux modèles la richesse de divers groupes fonctionnels de champignons. En moyenne, les 

modèles Random Forest performaient mieux en incluant la richesse de champignons comme 

prédicteur, mais l'augmentation de la performance prédictive reste faible. Les augmentations de 

performance les plus élevées ont pu être observées en incluant la richesse en saprotrophes du 

sol, en champignons lichénisés ou en endosymbiontes animaux. Cette faible augmentation de 

la performance indique que la richesse de champignons ne capture pas de manière significative 

la variance d'un facteur lié au sol qui n'est pas déjà inclus dans les prédicteurs abiotiques.  
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INTRODUCTION 

Fungi are a crucial element of soil ecology. Soil fungi are key to the carbon and nitrogen cycles 

through a variety of roles in organic matter decomposition (Frąc et al., 2018), and can thus 

shape the soil’s conditions to their advantage. They also display a wide set of interactions with 

other living organisms, either as pathogens, parasites, or symbionts. One of the most well-

known and investigated relationship between fungi and other organisms is the symbiotic 

mycorrhizal association with plants. Mycorrhizal fungi associate with plants’ roots and 

facilitate access to certain nutrients, which can drive the distribution of those plants (Tedersoo, 

et al., 2020). This association also allows certain plant species to grow in environmental 

conditions that are otherwise not suitable for their survival (Püschel et al., 2020). Fungal 

pathogens can also restrict the habitat and spreading of plants by exploiting their resources. 

Even when excluding known interactions, indirect associations can be found between plants 

and fungi, if they share similar soil condition requirements and ecological needs, or if the fungi 

have a direct effect on another organism that affects some plant species’ fitness. Plant 

distribution can thus be either extended or restricted by the fungal composition of soil. 

Determining plant distribution can be done with species distribution models (SDM). SDMs use 

the relationship between one species and multiple environmental factors to predict the 

suitability of geographical areas for this species presence. With increasing availability of data 

on both the biological and abiotic factors needed for those models (Guisan et al., 2017), the 

importance of species distribution models in plant ecology has been increasing over the years 

(Araújo et al., 2019), for example for the assessment of species’ status and threat level. The 

International Union for Conservation of Nature (IUCN), for example, benefits from species 

distribution modelling results for the threat assessment of their Red list of threatened species 

(Syfert et al., 2014). It plays an important part in the decision-making of numerous 

organizations involved in nature conservation and protection management (e.g. Wetlands 

International, see Breiner et al., 2022). 

The reliance of those decisions on SDMs makes it important to utilize new methods to improve 

their performance, i.e. to make their predictions of the species’ presence more accurate. One 

aspect of SDMs that can be improved is to get more relevant environmental predictors (Austin 

& Van Niel, 2011; Mod et al., 2020; Scherrer et al., 2017). For plant distribution models, the 

main environmental predictors used are usually topoclimatic data. This kind of data can be 

derived from satellite imagery, digital elevation models, and weather station records, and is 

generally measured at a large scale. 
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However, predictors measured at a large scale are not necessarily relevant for plant SDMs. 

Microclimatic changes, which are very localized, create heterogeneity in the environmental 

conditions that is not captured at a larger scale. Mountain ecosystems are a typical example of 

this heterogeneity, with steep changes in wind, temperature, soil moisture etc. that can be 

observed on relatively short distances (Oke & Thompson, 2015). Low-resolution/large-scale 

climatic predictors are thus less effective at predicting plant distribution in mountainous areas 

(Austin & Van Niel, 2011; Randin et al., 2009). Yet, increasing the resolution of those same 

topographical predictors does not considerably improve the models (Pradervand et al., 2014). 

In an attempt to understand how this habitat heterogeneity affects plant distributions, Buri et al. 

(2017) highlights the importance of including edaphic (i.e. soil-related) variables as predictors. 

For example pH, as well as other factors linked to the calcareous content of the soil, often comes 

up as an important variable to account for in order to increase plant SDM prediction capacities 

(Buri et al., 2020; Dubuis et al., 2013). The predicted suitability of habitat in SDMs often 

overlooks those relationships (Mod et al., 2020). 

Another element that can be included in plant SDMs is the effect other organisms have on plant 

distribution, i.e. the biotic predictors. In theory, biotic interactions are already accounted for in 

species distribution modelling, as this method supposedly captured the realized niche of the 

species, but biotic interactions do happen to improve the prediction accuracy of plant SDMs 

(Zimmermann et al., 2010). Furthermore, the predominant type of plant-plant interactions has 

been shown to vary with elevation, with facilitation being more common at high elevation 

where the abiotic conditions are harsher, while competition was more common at lower 

elevation (Callaway et al., 2002). Some plants’ distribution can be linked to those types of 

interactions (D’Amen et al., 2018), although their effect on SDM performance is quite low 

compared to the abiotic factors. Although many studies tackle the effect of plant-plant 

interactions on SDM results, we found little literature looking at what plant-fungi interactions 

bring to the table. In a pioneer study in this regard, Pellissier et al. (2013) investigated the 

potential of including the richness of two taxonomy classes of fungi to predict plant distribution 

in the Alps. They found that some models could be improved when including fungal richness, 

but they could not exclude that this improvement may be due to some other abiotic variable 

correlated with fungal richness. They also mention that a taxonomy-based approach might not 

be the most relevant one since fungi taxonomy does not distinguish clearly between the different 

ecological functions of fungi. Categorizing fungi sequences by ecological guilds (i.e. groups 

that harness the same resources using similar pathways) has become more popular in recent 

years (Nguyen et al., 2016; Zanne et al., 2020). 
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In this study we investigate whether some aspects of fungi diversity could improve the 

predictions on a wide set of alpine grassland plant species. Our hypothesis does not rely on a 

thoroughly investigated relationship between fungal communities and plant distribution. 

Instead, we focus on the information that fungal diversity could offer to explain plant 

distributions. We hypothesize that fungal diversity, used as a predictor for species distribution 

modelling, could capture some aspect of soil ecology that is important for plants, but not 

accounted for in SDMs today, whether it is linked to direct fungi-plant interactions or indirect 

fungi-soil relationships. We do not expect fungi that interact directly with plants to have a 

higher influence than other fungi on SDM performance. Indeed, species distribution models 

capture the realized niche, i.e. the environmental space that the species actually occupies, which 

accounts for both abiotic factors and biotic interactions (Guisan et al., 2017). Thus, SDMs 

include those biotic interactions by design. 

Using 4 modelling methods, we look at the potential improvement of plant distribution models 

when including as predictors (a) the soil’s total fungal richness, (b) the richness of different 

functional groups of fungi, and (c) at the relative abundance of fungal trophic groups. We first 

built models with only the abiotic factors, and then added the fungi predictors one at a time to 

see if the models were improved for most plant species. Investigating this will give us a better 

insight into the potential of including the soil’s biotic aspect into species distribution modelling. 

MATERIAL & METHODS 

Area of study 

The study area is located in the western Swiss Alps and covers an area of ca 700 km2. It is a 

thoroughly studied region (von Däniken et al., 2014), especially in the fields of niche and 

distribution modelling of species and communities, e.g. species distribution models of various 

life forms, the structure of microbial communities in mountain grasslands (Pellissier et al., 

2014; Pinto-Figueroa et al., 2019), the effect of climate change and microclimate on the 

suitability of habitats in a mountain environment (Giaccone et al., 2019), and the interactions 

of species driving the ecological range of organisms (Descombes et al., 2020). 

Plant inventory & soil sampling 

The data used were collected on sites ranging from 400 to 3000 meters above sea level (Figure 

1B). The locations of those plots were selected via random-stratified sampling over all 

grasslands of the study area, covering all possible combinations of elevation, slope, and aspect 
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(Hirzel & Guisan, 2002). The 213 sites where both plant survey and microbial soil sampling 

occurred were kept for the analysis (Figure 1A). 

As described in Pellissier et al (2014), exhaustive inventories of all plant species present in 4m2 

plots were conducted between May and September, for the years 2002-2003 and 2009-2010. 

Only the most common species (present in at least 30 sites) were kept, i.e. 85 plant species from 

20 families (Figure S1). The soil samples were collected between 2012 and 2013, as described 

in (Buri et al., 2017). For each plot, soil from the top 10cm of the ground at 5 points was sampled 

(4 at the corners of the square, and one in the middle). One small sample of soil per site was 

flash-frozen with liquid nitrogen while the rest was refrigerated and analysed within 36h after 

sampling. 

A total of 75 environmental variables were used for the modelling (Table S1). The climatic 

layers were obtained from the CHclim25 dataset, and were calculated from MeteoSwiss maps 

generated from the weather stations close to the study area (Broennimann, 2018). The edaphic 

variables were collected in 2012 and 2013 (Buri et al., 2017). 

 

A B 
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Figure 1. Study region in the Western Swiss Alps. (A) Map of the area with all sample sites 

used for this study. The map is coloured according to elevation. (B) Histogram of distribution 

of sample sites across elevation. 

Soil microbiome DNA extraction, sequencing & processing 

All soil samples were processed as described by Yashiro et al (2016). Briefly, 0.25 g of dry soil 

from each sample was used for DNA extraction using PowerSoil®-htp 96 Well Soil DNA 

Isolation Kit (MoBio Laboratory, Carlsbad, CA, USA). The fungi internal transcriber spacer 1 

(ITS1) region was amplified using the primer ITS1F (5’-GAACCWGCGGARGGATC-3’ and 

5’-GCTGCGTTCTTCATCGATGC-3’) and sequenced using HiSeq Illumina sequencing. 

Sequences with less than 100 reads in total were discarded. The raw reads were filtered to 

remove the short and anomalous ones, and the outer regions of the ITS1 sequences were used 

for the taxonomy. All reads were classified into amplicon sequence variants (ASV) using the 

DADA2 algorithm package in R (Callahan et al., 2016). Amplicon sequence variants, also 

referred to as zero-radius OTUs (zOTUs, i.e. OTUs with a 100% similarity threshold) (Edgar, 

2018), have proven more useful than OTUs with a 97% similarity threshold to capture the actual 

richness of fungal communities (Pauvert et al., 2019), although they tend to overestimate the 

number of strains by splitting some into several groups. All ASVs found in less than 5% of the 

sites were discarded, leaving a total of 51 '863 ASVs. 

Attribution of functional groups to the ASVs 

The functions attributed to each ASV were determined using the FUNGuild algorithm, designed 

by Nguyen et al. (2016) and available on GitHub. FUNGuild allows to classify fungal OTUs 

into three major trophic groups (Saprotrophs, Symbiotrophs and Pathotrophs), and ecological 

guilds, which are sub-categories of the trophic groups. The categorization is based on a database 

of species- and genus-level annotations of fungal OTUs. FUNGuild will define the given 

sequence as part of one or more taxa, with levels of probability of belonging to this group, and 

attribute one or more trophic groups and/or guilds to it. Out of all ASVs kept for the analysis, 

about 52.52% had at least one function attributed to it by FUNGuild. 

The following variables were then computed from the fungi data: 

● Total fungal richness: the sum of fungi ASVs per site 

● Fungal richness of functional groups: the sum of ASVs per functional groups (one of 

the major trophic groups, or one of the guilds) (Figure 2). 
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● Relative abundances of the three major trophic groups (Symbiotrophs, Saprotrophs & 

Pathotrophs). The relative abundances were computed using the counts of each ASVs 

from one of those categories (Figure S2). When FUNGuild attributed multiple functions 

to one ASV, the counts of this ASV were equally split between those functions (so for 

an ASV with 100 counts and attributed to both pathotroph and saprotroph, 50 counts are 

counted as pathotroph, and the other 50 as saprotroph). 

           A                                              B 

 Figure 2. Representation of fungi richness of all functional groups. (A) ASV richness of 

the ecological guilds as defined by FUNGuild, by site. Sites are arranged from left to right 

by increasing total richness. (B) relative richness, i.e. richness divided by the total sum of 

ASVs with a functional group attributed to it. 

Building and evaluating the SDMs 

a) General framework 

To fit model and assess the predictive power of adding a fungi predictor to plant models, we 

built ‘base models’ with only environmental predictors (reduced to synthetic axes) and then 

added different fungi predictors to it, one at a time (Figure 3). We repeated this for all species 

and with four different modelling techniques, two regression approaches (using two 

implementations of Generalized linear models) and two tree-based approaches (Random Forest 

and Gradient Boosting Machine). All model building processes and analyses were carried out 

with the R software (version 4.1.2). 

b) Reducing environmental dimensions 

 Variables were standardized (mean=0, SD=1) and reduced to their principal component axes 

using dudi.pca() (from the ade4 package). Regression-based SDMs usually show the best 
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performances when the number of predictors is limited to a tenth of their occurrences in the 

data, following Harrell’s rule of thumb (Harrell, 2001; Brun et al., 2020). Since the plant species 

considered have an average of ca. 50 occurrences in our data, and only a few are above 100 

(Figure S1), keeping 10 principal component axes was a compromise to have enough variance 

from the abiotic predictors explained, while also saving on modelling time. This resulted in 

73.3% of the total variance explained by the PC axes (Figure S3). The reduction of predictor 

variables into their principal components makes the interpretability of the models more 

difficult, since the effect size of each environmental variable cannot be clearly identified. 

However, it includes the variance of a high number of environmental factors without 

encountering any issues linked to too many predictors and multicollinearity. 

 

Figure 3. Summary of the modelling steps, from preparing the predictors and response 

variable, to evaluating the performance of the models. 
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c) Building SDMs 

Four approaches were used to fit the models. Generalized linear models (GLM) use maximum-

likelihood approach to determine the response variable, which is more powerful than a simple 

least-square linear regression. We used two variable selection procedures. The first one was 

conducted with a classical stepwise regression, which adds and removes variables from the 

model on∙10-by-one, and always selects the option that offers the highest improvement in 

performance. The performance at each step was assessed with the Akaike’s Information criteria 

(AIC). A limit of one variable per 10 presence data points was set for each plant species, so 

only the first variables selected were kept. The second approach used a GLM with the elastic 

net variable selection function from the glmnet package. This algorithm combines ridge 

regression and lasso to select coefficients for the variables such as to minimize the residual 

error of the predicted values, while also adding a penalty (lambda) to this error. We used elastic 

net with k-fold cross-validation and equal weighting to ridge regression and lasso (α=0.5). 

Random forest (RF) and Gradient boosting machines (GBM) are decision tree-based 

algorithms. The main difference between them is that GBM builds its trees sequentially, by 

accounting for the error rate of the previous ones, instead of randomly for Random Forest. RF 

models were built with 1000 trees with the randomForest package, and the GBM models were 

built with the gbm package, using a slow learning rate (shrinkage = 0.01). No prior variable 

selection procedure is required for those two methods, as they proceed by recursive partitioning 

and thus already select the given variables at each node. 

d) Addition of fungal predictors 

For the base models, only the abiotic variables that were reduced to 10 principal component 

axes were used, along with an additional standardized random variable (mean=0, SD=1) since 

model building and variable selection outcome can be affected by the initial number of 

variables. One of the fungi-related variables was then added to the models, replacing the random 

variable. This way, the base models had the same initial number of variables as those with the 

fungi variables. 

The GLMs variable selection step included the fungi variables as options for the model to 

choose from. We assume that if the variable is not kept after variable selection, then its effect 

must be null and the model with the fungi-related variable will not be better than the model 

without it. 
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e) Evaluation of the SDMs 

Each model (one per combination of model type, plant species and fungi variable) was 

evaluated with 200 80-to-20 split-sampling cross-validations (80% of the data for calibration, 

and the 20% left for evaluation). The variable selection processes for the GLMs (AIC stepwise 

selection and elastic net) were included in the evaluation, as recommended by Hornung et al. 

(2014). Performances of models with and without fungi richness values are compared with three 

performance assessments: the area under the ROC curve (AUC), maximum True Skill Statistics 

(maxTSS) and maximum kappa (maxKappa). To see if adding the fungal predictor improved 

the model performance, the difference of performance (dAUC, for the AUC metric) between 

the models with and without fungi diversity was computed (Figure 3). 

RESULTS 

Performance of the base models 

Across the four model types with only the abiotic variables as predictors, RF performed the 

best, followed by GLM (first with elastic net, then with stepwise variable selection) and GBM. 

The GLM with stepwise variable selection performs slightly better on average than the one with 

elastic net when considering the maxTSS and maxKappa values. Otherwise, the differences  
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A  B 

 

 

 

 

Figure 4. Model performances of the base models. (A) Boxplots of performance values 

(AUC, maxTSS and maxKappa) for all plant species by models. Each point represents the mean 

performance value obtained for one plant species model. Points that represent the same plant 

species are connected horizontally. Horizontal black lines of the boxplots indicate the median 

values, and the box delimits the 25th and 75th percentile of the distribution. Whiskers’ range is 

at 1.5 times the IQR (Interquartile Range) from the box. Violins plots in the background show 

the distribution density of the performance values. (B) Correlation (Spearman’s ρ) between the 
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between the models’ performances follow the same trend for AUC, maxTSS and maxKappa 

(Figure 4A). Some species’ GLM models performed poorly, (e.g. Briza media, Campanula 

rotundifolia, Festuca rubra, Helianthemum nummularium s.l. and Thymus pulegioides) with 

AUC values is inferior to 0.6 (AUC = 0.5 being a model with random predictions). All those 

species have a low number of occurrences across the >200 sites, ranging from 33 to 42, except 

for Festuca rubra which has 86 (Figure S1). The performance values across models are highly 

correlated (Figure 4B), so no model type can be said to provide a different performance trend 

from the others. We thus assume the results will be similar regardless of what model is used. 

Since Random Forest models are those with the highest performance in average, the results 

from the other models will not be displayed in the following part but will be present as 

supplementary material. 

Addition of total fungal richness 

The addition of fungal total ASV richness only poorly increases the AUC of the Random Forest 

models, with an average AUC increase of 0.00614 (V = 714, P = 1.45∙10-5) across all plant 

species. The other modelling techniques do not show any significant increase of the median 

AUC (Tables S4, S5, S6). 

Addition of fungal richness of trophic groups, ecological guilds, and 

relative abundance of trophic groups 

The steps done for total fungal ASV richness are applied to richness values of the three major 

trophic groups of fungi (saprotrophs, symbiotrophs and pathotrophs), with similar results 

(Figure S4A). The average change in AUC stays positive, though still low (Figure 5). 

Out of all 23 fungal guild richness variables added to the RF models, 8 of them (4 from 

saprotrophs and 4 symbiotrophs) resulted in a higher mean AUC increase than total fungal 

richness (Figure 6). However, only soil saprotroph and animal endosymbiont richness had a 

higher median value (Table S2), indicating that what causes the higher improvement means are 

usually a few outliers with higher ∆AUC values. When also considering the changes in maxTSS 

and maxKappa, the guilds that improved the random forest models the most were animal 

endosymbionts, lichenized fungi, and soil saprotrophs (Table S2). 

model results. Models are: GBM=Gradient Boosting Machines; GLMnet=Generalized linear 

model with elastic net variable selection; GLMstep=Generalized linear model with stepwise 

variable selection; RF=Random Forest. 
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Figure 5. Change in AUC of Random Forest models with the addition of total fungal 

richness and richness from the main trophic groups. Positive dAUC indicates that the 

models with fungal richness perform better than those without. Bold black lines of the 

boxplots indicate the median values, and the box delimits the 25th and 75th percentile of the 

distribution. Whiskers’ range is at 1.5 times the IQR (Interquartile Range) from the box. 

Violins plots in the background show the distribution density of the performance values. The 

other performance measures (maxTSS & maxKappa) are found in Figure S3. 



16 

 

Figure 6. Change in AUC according to the fungi guild richness added to the Random 

Forest models. Positive dAUC indicates that the models with fungal richness perform better 

than those without. Only the guilds with a higher mean increase than with total ASV richness 

are displayed. Each boxplot contains the average changes in AUC (d AUC) for each species 

and is coloured by trophic group. Bold black lines of the boxplots indicate the median values, 

and the box delimits the 25th and 75th percentile of the distribution. Whiskers’ range is at 1.5 

times the IQR (Interquartile Range) from the box. Violins plots in the background show the 

distribution density of the performance values. 

Adding relative abundance of the major trophic groups to the Random Forest models also 

increases the performance on average, but the mean and median increases are almost constantly 

lower than for the models with the addition of total fungal richness (Table S3). 

Species-specific response to the addition of fungal richness to SDMs 

 We can visually assess different responses of plant models to fungal richness based on the plant 

species’ family (Figure 7), but no relevant analysis of variance could be performed to determine 

 

Figure 7. Change in AUC of random Forest models with the addition of total fungal 

richness, sorted by plant families. Each point represents the mean AUC change for one 

plant species, and is coloured by family. Bold black lines of the boxplots indicate the median 

values, and the box delimits the 25th and 75th percentile of the distribution. Whiskers’ range 

is at 1.5 times the IQR (Interquartile Range) from the box. 
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if any family had a significantly higher change in AUC than the others. This was due to the low 

sample size, the fact that several families only had one plant species, and the uneven distribution 

of the variance. 

DISCUSSION 

The modelling techniques respond differently to the addition of fungal 

predictors 

The four modelling techniques responded differently to the addition of the fungal predictors, 

with the tree-based techniques (RF and GBM) showing at least sometimes a significant increase 

in performance, while the regression-based ones showed none (Tables S4, S5). The variable 

selection procedures for the GLMs are probably the cause. Indeed, even if the fungal predictor 

could have a positive effect on the quality of the prediction, it might rarely be selected during 

the selection procedures, resulting in models that do not use the fungal predictor at all for its 

predictions. 

Fungal richness improves the Random Forest models, but only on a 

small scale 

Fungal total ASV richness did not greatly improve the Random Forest predictions, which was 

somewhat expected. Fungal richness is usually not specific to one or more plant species, but 

linked to a set of other factors like plant biomass (Cline et al., 2018) or soil pH. There is still a 

clear positive effect of integrating total ASV richness to the Random Forest models, as was the 

case for almost all ASV richness of fungal functional groups (Table S4). Fungal communities 

are driven by edaphic factors like pH and soil moisture (Kaisermann et al., 2015), but can also 

be linked to wider climatic variables like mean annual temperature (Shen et al., 2020). Some 

variance of the environmental predictors is lost with the dimensionality reduction of the PCA, 

and this lost variance might be compensated by adding fungal richness, which correlates to 

some predictors that are also important drivers of plant species distribution, like pH (Buri et al., 

2017) and soil moisture-related factors (Fu et al., 2022), like NDMI and precipitation (Table 

S3). 

Using the three main trophic groups’ richness as predictors yield equivalent results, probably 

because they are highly correlated with total richness, as well as with each other. Only 

saprotroph richness improved the models better than total richness on average, suggesting that 

saprotroph richness might be linked to some aspect of soil that drives plant distribution. 

Saprotrophic fungi are a main component of organic matter decomposition processes, and their 
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diversity and community structure can be linked to some plant species presence and plant 

functional groups (Francioli et al., 2021; Semchenko et al., 2018). 

Some symbiotic fungi richness also improves the predictions, in particular animal 

endosymbionts, which shows higher performance values than adding total richness in every 

metric (Table S3). This could be linked to the co-occurrence of some plant species with certain 

animal species, like arthropods that carry those endosymbiotic fungi. But it could also be linked 

to a completely different ecological process that happens to drive both animal endosymbiotic 

fungi richness and plant species distribution. Confirming either of those hypotheses would 

require a physiological study between the plants and fungi that goes beyond the analysis of co-

occurrence patterns done with species distribution modelling. 

Limitations 

This study presents some limitations regarding the modelling process and the links made 

between plants and fungi data. First, we do not account for temporal disconnect between the 

vegetation survey and soil sampling for the fungi data, which were not always sampled on the 

same years. Secondly, we cannot exclude that some variation in fungi richness and abundances 

of can be influenced by seasonal variations (Kaisermann et al., 2015) that might not be the same 

across all sites, such as local droughts (Francioli et al., 2021). Also, the data FUNGuild bases 

itself on to attribute functional groups to fungi sequences is still somewhat incomplete, and 

might be biased towards some taxonomical groups while disregarding others (George et al., 

2019). In our case, about half of the fungi sequence variants were not identified or lacked 

information about their ecological function. This kind of problem has already been mentioned 

in other studies (Cevallos et al., 2022; Monteiro et al., 2023), and highlights the importance of 

having more complete open access data on fungi sequences. 

There is also an issue regarding the usage of fungal richness as a measure that reflects ecological 

factors. Since richness is only the sum of ASVs present after amplifying the wanted sequence, 

this measure is extremely sensitive to the sequencing depth, i.e. the sampling effort (Kleine 

Bardenhorst et al., 2022). With higher sequencing depth comes a higher probability of capturing 

higher richness due a better representation of the rarer sequences. Fungal richness might thus 

not be representative of the actual ecological properties of each site’s soil. Further research on 

this subject should rather focus on diversity measures that accounts for the evenness of the 

microbial community, like the adjusted Shannon-Wiener index. 
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Conclusion 

As we demonstrated here, the improvement of plant species distribution models with fungi-

related variables depends on the modelling method used, and is most often low. The increase 

in performance that we observe here could be due to the dimensionality reduction of the abiotic 

predictors, which results in the loss of variance of some important ones. We hypothesized that 

fungi richness or relative abundance could be used as a proxy for some soil-related process that 

would improve plant SDMs, but our results were not conclusive in this regard. It would thus be 

relevant to test whether other diversity measures of fungi could have a greater effect on the 

prediction of plant distribution. 

Fungi diversity improving plant SDMs because of a biotic interaction with plants is not shown 

here. This might be because biotic interactions are difficult to disentangle from variation in the 

abiotic predictors (D’Amen et al., 2018). For example, although competition between two 

species clearly drives their distribution, the effect of the competition can also be explained by 

the abiotic environment (Godsoe et al., 2017). This means that, in theory, including the biotic 

interaction in the modelling will not considerably improve the predictions, since the realized 

niche of the species is already captured by the abiotic predictors. 

One missing aspect from this study is the effect of fungal richness on plant SDMs depending 

on the elevational range of their distribution. We know that plant-plant interactions vary across 

elevation (Chamberlain et al., 2014), and fungal diversity is also structured differently across 

an elevational gradient (Pellissier et al., 2014). Plant-fungi associations might be more crucial 

to the survival of the plant at higher elevation, where the environmental conditions are harsher, 

as was already suggested by Pellissier et al. (2013). Fungi diversity could thus be more 

important for shaping some specific plant species’ distribution. 
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SUPPLEMENTARY MATERIAL 

 

Figure S1. Barplot of occurrences of plant species across all sites. Colour-coded by taxonomical 

family. 

A                                                                                      

B 

Figure S2. Relative abundance of the 3 major fungal trophic groups in the sampling sites’ 

soil. (A) Relative abundances of fungi from the 3 major trophic groups, as defined by FUNGuild. 
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Environmental variables 

bio1_t Annual Mean Temperature (°C) 

bio10_twarmq Mean Temperature of Warmest Quarter (°C) 

bio11_tcoldq Mean Temperature of Coldest Quarter (°C) 

bio12_p Annual Precipitation (mm) 

bio13_pwet Precipitation of wettest month (mm) 

bio14_pdry Precipitation of driest month (mm) 

bio15_ps Precipitation seasonality 

bio16_pwetq Precipitation of wet est quarter (mm) 

bio17_pdryq Precipitation of driest quarter (mm) 

bio18_pwarmq Precipitation of warmest quarter (mm) 

bio19_pcoldq Precipitation of colder quarter (mm) 

bio2_tdr Mean Diurnal Range (°C) 

bio3_tiso Isothermality 

bio4_ts Temperature seasonality (°C) 

bio5_tmaxw Max temperature of warmest month (°C) 

bio6_tminc Min Temperature of Coldest Month (°C) 

bio7_tar Temperature Annual Range (°C) 

bio8_twetq Mean Temperature of Wettest Quarter (°C) 

bio9_tdryq Mean Temperature of Driest Quarter (°C) 

Sites (the x-axis) are ordered by increasing relative abundance of symbiotrophs. (B) Correlation 

of the relative abundances, with colour indicating the direction (blue = positive, red=negative), 

and size the intensity of the correlation. 

 

Figure S3. Variance explained of all environmental factors, according to the number of 

principal component (PC) axes used. Black line indicates the chosen number of PCs kept 

for the analysis (here 10). 
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GDD0 Sum of growing degree days above 0°C (°C) 

ETP Annual potential evapotranspiration (mm) 

cumday_nofrost Cum. days of the year without frost (T°<0°C) 

sRadY Annual solar radiation (kJ * day-1) 

aspect Aspect 

slope slope (°) 

MarlShale_MarlDeposits Presence of marl deposits (0-1) 

Marlyshale_limestonePhyllite_sandstone Presence of limestone/phyllite/sandstone (0-1) 

MassiveLimestones Presence of massive limestone (0-1) 

Silt_clay_loess_groundmoraine_surfacemoraine Presence of loess (0-1) 

forest_aggr Landuse type: forest (0-1) 

hydro_aggr Landuse type: water bodies (0-1) 

lowVeg_aggr Landuse type: low vegetation (0-1) 

anthropos_aggr Landuse type: urban area (0-1) 

noise Noise 

deciduous Deciduous trees cover (%) 

Altitude Elevation (masl) 

ndmi Normalized Difference Moisutre Index 

ndvi Normalized Difference Vegetation Index 

soilTemp Soil Temperature (°C) 

bulkSoilWaterContent Bulk soil water content (wt %) 

pH Soil pH 

EC_1_5 Electrical conductivity (S∙m-1) 
TotalP Total phosphorus content (mg/g) 

Nitrogen Bulk nitrogen content (wt %) 

Carbon Bulk Carbon content (wt %) 

Hydrogen Bulk Hydrogen content (wt %) 

Phyllosilicates Phyllosilicates (%) 

Quartz Quartz (%) 

Feldspath_K Feldspath-K (%) 

Plagioclase_Na Plagioclas∙10-Na (%) 

Calcite Calcite (%) 

Dolomite Dolomite (%) 

Goethite Goethite (%) 

Ankerite Ankerite (%) 

Indoses Indoses (%) 

SiO2 Silicon oxide (wt %) 

TiO2 Titanium oxide (wt %) 

Al2O3 Aluminium oxide (wt %) 

Fe2O3 Iron oxide (wt %) 

MnO Manganese oxide (wt %) 

MgO Magnesium oxide (wt %) 

CaO Calcium oxide (wt %) 

Na2O Sodium oxide (wt %) 

K2O Potassium oxide (wt %) 

P2O5 Phosphorus pentoxide (wt %) 

OM Organic matter content (%) 

Cr2O3 Chromium oxide (wt %) 
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NiO Nickel oxide (wt %) 

d15N Nitrogen stable isotope ratio (per ml vs air-N2) 

d13C Carbon stable isotope (per ml vs VPDB) 

clay Clay 

ThinSilt Thin silt 

ThickSilt Thick silt 

ThinSand Thin sand 

ThickSand Thick sand 

Table S1. List of environmental variables used for modelling. Some abbreviations: wt % = 

percentage of weight; (0-1) = binary data. 
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A  

B 

Figure S4. Change in model performance with the addition of fungal richness from the main 

trophic groups. Boxplots are made from the mean change in SDM performance per species, when 
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adding fungal richness, and are coloured by trophic group. The boxplots are categorized by 

modelling technique and by performance metric. Horizontal black lines of the boxplots indicate the 

median values, and the box delimits the 25th and 75th percentile of the distribution. Whiskers’ range 

is at 1.5 times the IQR (Interquartile Range) from the box. Violins plots in the background show the 

distribution density of the performance values. (A) Change in model performance when adding 

fungal richness of total richness and trophic groups; (B) Change in model performance when 

adding fungal richness of total richness and relative abundances of trophic groups. 

Variable |Pearson’s R| correlation 

with total fungal richness 

pH pH 0.5661 

NDVI Normalized Difference Vegetation Index  0.5468  

CaO Calcium oxide  0.4464 

NDMI Normalized Difference Moisture Index 0.4257 

bio3_tiso Isothermality  0.4185 

bio13_pwet Precipitation of the wettest month 0.3991 

Na2O Sodium oxide  0.3905 

bio16_pwetq Precipitation of wettest quarter 0.3879 

bio18_pwarmq Precipitation of warmest quarter 0.3878 

SiO2 Silicon dioxide 0.3783 

Table S2. List of the 10 environmental variables that were the most correlated with total 

fungal richness. The correlation metric used is Pearson’s R. 

 

 



 

 

RF Trophic group/guild Median ∆AUC Mean ∆AUC V-statistics Adj. p.-value Median ∆TSS Mean ∆TSS Median ∆Kappa Mean ∆Kappa 

 Total Richness 0.005230 0.006137 714 1.45E-05 0.008660 0.010256 0.007742 0.010001 
R

ic
h

n
es

s 
Pathotroph  0.002535 0.005693 929 0.00112398 0.004500 0.008209 0.004220 0.007545 

Bryophyte Parasite 0.002512 0.003288 1240 0.13646501 0.002969 0.004656 0.002373 0.005009 

Fungal Parasite 0.003547 0.005715 764 4.31E-05 0.004028 0.007178 0.005821 0.006742 

Plant Parasite 0.002115 0.003434 1152 0.04184375 0.001970 0.005006 0.003158 0.004983 

Animal Pathogen 0.002676 0.005222 879 0.00044123 0.004390 0.007179 0.004210 0.006206 

Plant Pathogen 0.003888 0.005317 879 0.00044123 0.004697 0.006679 0.003222 0.005316 

Lichen Parasite 0.002153 0.004776 1015 0.00504497 0.002292 0.004790 0.003734 0.005631 

Saprotroph 0.005069 0.007814 683 7.24E-06 0.008353 0.011125 0.006607 0.009445 

Litter Saprotroph 0.004388 0.007293 644 2.94E-06 0.006667 0.009945 0.006991 0.009122 

Soil Saprotroph 0.007454 0.008395 512 1.12E-07 0.010139 0.012143 0.012166 0.011351 

Plant Saprotroph 0.00317 0.004565 979 0.00273529 0.005571 0.007334 0.004970 0.006062 

Dung Saprotroph 0.005069 0.007814 683 7.24E-06 0.008353 0.011125 0.006607 0.009445 

Leaf Saprotroph 0.002794 0.004714 966 0.00218014 0.005417 0.006266 0.003812 0.006471 

Wood Saprotroph 0.004735 0.006255 684.5 7.50E-06 0.005625 0.007726 0.004023 0.006698 

Symbiotroph 0.003137 0.005452 985 0.00303405 0.005000 0.008450 0.007999 0.008159 

Epiphyte 0.003788 0.005931 750 3.20E-05 0.006581 0.008719 0.006415 0.007894 

Lichenized 0.004714 0.00924 558 3.63E-07 0.011389 0.014448 0.012568 0.015699 

Arbuscular Mycorrhizal 0.002089 0.004165 989 0.00324996 0.005972 0.007113 0.008182 0.006967 

Endomycorrhizal 0.004051 0.006682 733 2.21E-05 0.009000 0.011991 0.004177 0.010700 

Ericoid Mycorrhizal 0.003009 0.005140 925 0.00104471 0.004899 0.007783 0.003694 0.007012 

Orchid Mycorrhizal 0.003143 0.004474 857 0.00028819 0.004259 0.008050 0.004928 0.007647 

Root-Associated Biotroph 0.001608 0.002732 1056 0.00984459 0.002583 0.004817 0.003405 0.005830 

Clavicipitaceous Endophyte 0.001400 0.002203 1364 0.57352218 0.001528 0.002672 0.001307 0.001754 

Ectomycorrhizal 0.003542 0.006138 785 6.72E-05 0.005375 0.009735 0.008807 0.010704 

Animal Endosymbiont 0.005729 0.008147 517 1.28E-07 0.008833 0.011950 0.009187 0.010477 

Endophyte 0.001400 0.002203 1364 0.57352218 0.001528 0.002672 0.001307 0.001754 

Rel. 

Abundance 

Pathotroph 0.00408 0.00616 714 1.62E-06 0.00680555 0.00972786 0.006268 0.00962275 

Saprotroph 0.0037 0.00579 744 3.12E-06 0.00819444 0.00971178 0.00854753 0.01025072 

Symbiotroph 0.0057 0.00586 712 1.55E-06 0.00633333 0.00969627 0.00632547 0.00951332 

Table S3. Average increase in AUC, maxTSS and maxKappa with the addition of fungal richness, or relative abundance, to the Random Forest 

models. P-values from the Wilcoxon test testing whether the median ∆AUC is superior to 0 are adjusted with a Bonferroni correction (p-value multiplied 

by 27), and are in bold when significant. Mean and median performance values superior to those of the random Forest models with total fungal richness 

are also in bold. 
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GLMSTEP Trophic group/guild Median ∆AUC Mean ∆AUC V-statistics Adj. p.-value Median ∆TSS Mean ∆TSS Median ∆Kappa Mean ∆Kappa 

 Total Richness 0.000248 0.002743 1651.5 1 0.000278 0.00226 -6.80E-05 0.002658 

R
ic

h
n

es
s 

Pathotroph  -0.000521 0.001711 1893 1 -0.000417 0.001259 0.000107 0.001554 

Bryophyte Parasite -0.000898 -0.000522 2320.5 1 -0.001667 -0.001286 -0.000177 -0.00084 

Fungal Parasite -0.000074 0.001432 1903 1 -0.000139 0.002193 0.000419 0.001511 

Plant Parasite -0.000294 -0.00026 1982 1 -0.000278 -0.001322 -6.30E-05 0.00015 

Animal Pathogen -0.000370 0.000791 1938.5 1 -0.000441 0.000203 -0.000708 -6.80E-05 

Plant Pathogen 0.000544 0.001577 1736 1 0.000417 0.001289 0.000555 0.000982 

Lichen Parasite 0.000030 0.000739 1821 1 0 9.50E-05 -0.000198 -0.000572 

Saprotroph 0.000041 0.002283 1676.5 1 0.000556 0.000552 0.000136 0.001251 

Litter Saprotroph -0.000375 0.001003 1957 1 -0.000833 0.000671 -0.000860 0.000644 

Soil Saprotroph -0.000202 0.002551 1789.5 1 0 0.002152 0.000107 0.002057 

Plant Saprotroph 0 0.001201 1833.5 1 -0.000417 0.000829 -0.000476 0.00128 

Dung Saprotroph 0.000041 0.002283 1676.5 1 0.000556 0.000552 0.000136 0.001251 

Leaf Saprotroph -0.000857 0.000164 2181 1 -0.000571 -0.000627 6.40E-05 0.000149 

Wood Saprotroph 0.000221 0.000434 1855 1 0.000143 -0.00028 0.000750 0.000269 

Symbiotroph -0.000023 0.001465 1717 1 -0.000441 0.001068 -0.000476 0.001193 

Epiphyte 0.000174 -0.000149 1901 1 -0.000139 -0.000336 3.40E-05 -5.00E-04 

Lichenized 0.000625 0.005303 1428 1 0.000625 0.005083 0.000669 0.005157 

Arbuscular Mycorrhizal 0.000208 0.002368 1569 1 0.000286 0.001967 -0.000176 0.002885 

Endomycorrhizal 0.000324 0.004569 1661.5 1 -0.000556 0.004746 -0.000232 0.004146 

Ericoid Mycorrhizal 0 0.000947 1841 1 0.000188 0.000843 -0.000415 0.00117 

Orchid Mycorrhizal 0.000609 0.002797 1629 1 0.000972 0.002042 0.001068 0.002264 

Root-Associated Biotroph -0.000028 0.002316 1770 1 0.000412 0.001165 0.000774 0.002389 

Clavicipitaceous Endophyte 0.000055 -3.00E-04 1919 1 3.10E-05 -0.000579 0.000450 -0.000782 

Ectomycorrhizal 0.000208 0.000597 1960 1 -0.001 -0.000836 -0.001337 0.00018 

Animal Endosymbiont 0.000067 0.002074 1689 1 -0.000344 0.00203 0 0.00273 

Endophyte 0.000055 -3.00E-04 1919 1 3.10E-05 -0.000579 0.00045 -0.000782 

Rel. 

Abundance 

Pathotroph 0.000257 0.000796 1677 0.95 0 -0.000224 0.000639 0.001144 

Saprotroph -0.000347 -0.000214 2163 1 0 -0.000436 -0.000422 -0.000608 

Symbiotroph -0.001184 -0.001285 2458 1 -0.000694 -0.001749 -0.000923 -0.00207 

Table S4. Average increase in AUC, maxTSS and maxKappa with the addition of fungal richness, or relative abundance, to GLM models with 

stepwise variable selection. P-values from the Wilcoxon test testing whether the median ∆AUC is superior to 0 are adjusted with a Bonferroni 

correction (p-value multiplied by 27). The median and mean performance changes are written as 0 when the absolute value is inferior to 10-5.  
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GLMNET Trophic group/guild Median ∆AUC Mean ∆AUC V-statistics Adj. p.-value Median ∆TSS Mean ∆TSS Median ∆Kappa Mean ∆Kappa 

 Total Richness 0 0.003439 1337 1 0.000571 0.005941 0.00263 0.007632 

R
ic

h
n

es
s 

Pathotroph  0.000129 0.002929 1320 0.74 0.000735 0.005454 0.001705 0.006357 

Bryophyte Parasite 2.00E-05 0.003012 1329 0.82 0.001671 0.005008 0.001136 0.006022 

Fungal Parasite 0.000357 0.00342 1304 0.43 0.002361 0.006154 0.002291 0.007025 

Plant Parasite 0.000408 0.003078 1376 0.92 0.001857 0.005881 0.002144 0.007147 

Animal Pathogen 0.000294 0.003266 1217 0.23 0.001736 0.006286 0.00172 0.00777 

Plant Pathogen 3.50E-05 0.002951 1377 1 0.00175 0.005299 0.001486 0.00597 

Lichen Parasite 0.000184 0.003022 1343 0.66 0.001393 0.005736 0.002756 0.006776 

Saprotroph -4.60E-05 0.002796 1490 1 -0.000139 0.005031 0.000724 0.006419 

Litter Saprotroph 0 0.002983 1520 1 0.000385 0.004705 0.000776 0.006003 

Soil Saprotroph 0.000332 0.003605 1235.5 0.19 0.001389 0.006044 0.002188 0.007112 

Plant Saprotroph 6.90E-05 0.003058 1340 0.91 0.000972 0.004603 0.000788 0.005987 

Dung Saprotroph -4.60E-05 0.002796 1490 1 -0.000139 0.005031 0.000724 0.006419 

Leaf Saprotroph 0.000197 0.003581 1351 0.72 0.000556 0.005333 0.001266 0.006439 

Wood Saprotroph 0 0.002894 1568 1 0.000714 0.004837 8.00E-04 0.005858 

Symbiotroph 0 0.002791 1475 1 -0.000199 0.004678 0 0.005957 

Epiphyte 0 0.002873 1428 1 0.001071 0.005779 0.001377 0.006498 

Lichenized -3.50E-05 0.002933 1448.5 1 0.000286 0.004907 0.001093 0.00569 

Arbuscular Mycorrhizal 0.000423 0.0038 1289 0.25 0.001458 0.006426 0.001796 0.007235 

Endomycorrhizal 0 0.003208 1465 1 0.001525 0.006348 0.00083 0.007103 

Ericoid Mycorrhizal 0 0.002544 1484.5 1 0.00025 0.005228 0.000703 0.006115 

Orchid Mycorrhizal 0.000517 0.003013 1310 0.46 0.000216 0.005051 0.000784 0.006248 

Root-Associated Biotroph 0.000146 0.003473 1260 0.56 0.000597 0.00574 0.000735 0.006526 

Clavicipitaceous Endophyte 0.000491 0.002924 1258 0.25 0.002 0.005104 0.001934 0.005706 

Ectomycorrhizal -0.000143 0.002804 1493 1 0.001389 0.00545 0.000752 0.006087 

Animal Endosymbiont 0.000463 0.002682 1361.5 0.56 0.001286 0.004916 0.001832 0.005615 

Endophyte 0.000491 0.002924 1258 0.25 0.002 0.005104 0.001934 0.005706 

Rel. 

Abundance 

Pathotroph 0.000255 0.003219 1344.5 0.10614854 0.002518 0.006857 0.001004 0.007335 

Saprotroph 0.000191 0.002939 1377.5 0.10425554 0.001429 0.005195 0.001574 0.00679 

Symbiotroph 0.000116 0.002912 1405 0.13583018 0.001875 0.004885 0.001274 0.00564 

Table S5. Average increase in AUC, maxTSS and maxKappa with the addition of fungal richness, or relative abundance, to GLM models with 

elastic net variable selection. P-values from the Wilcoxon test testing whether the median ∆AUC is superior to 0 are adjusted with a Bonferroni 

correction (p-value multiplied by 27). The median and mean performance changes are written as 0 when the absolute value is inferior to 10-5. 
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GBM Trophic group/guild Median ∆AUC Mean ∆AUC V-statistics Adj. p.-value Median ∆TSS Mean ∆TSS Median ∆Kappa Mean ∆Kappa 

 Total Richness 0.000703 0.002610 1448.5 1 0.001207 0.004097 0.001121 0.003693 

R
ic

h
n

es
s 

Pathotroph  0.002315 0.002991 1365 0.58 0.000278 0.003202 0.000317 0.003467 

Bryophyte Parasite 0.001887 0.003164 1354 0.52 0.002778 0.005441 0.001548 0.004947 

Fungal Parasite 0.00149 0.003132 1354 0.52 0.00151 0.004507 -0.001137 0.004015 

Plant Parasite 0.001875 0.002671 1470.5 1 0.001806 0.00432 0.000172 0.003435 

Animal Pathogen 0.002755 0.002393 1375 0.64 0.000906 0.002346 0.00164 0.002272 

Plant Pathogen 0.000247 0.003429 1380 0.96 -0.000278 0.003534 0.002805 0.003421 

Lichen Parasite 0.000972 0.002528 1505 1 -0.001114 0.00297 -0.000728 0.004632 

Saprotroph 0.001364 0.002769 1382 0.98 0.003787 0.005215 0.002521 0.004137 

Litter Saprotroph 0.003289 0.004663 1264 0.18 0.003382 0.003884 0.003806 0.003809 

Soil Saprotroph 0.005245 0.006337 952 0.0017 0.006857 0.010176 0.007725 0.009255 

Plant Saprotroph 0.002972 0.003940 1300 0.28 0.006667 0.00592 0.005007 0.005689 

Dung Saprotroph 0.001364 0.002769 1382 0.98 0.003787 0.005215 0.002521 0.004137 

Leaf Saprotroph 0.001891 0.003089 1376 0.65 -0.000903 0.004334 -0.000125 0.003684 

Wood Saprotroph 0.003009 0.003689 1271 0.20 0.003024 0.004412 0.001894 0.004447 

Symbiotroph 0.001505 0.002381 1488 1 0.002857 0.002972 -5.10E-05 0.003105 

Epiphyte 0.005717 0.005635 983 0.0029 0.004857 0.007785 0.004287 0.007001 

Lichenized 0.003426 0.007787 959 0.0019 0.01 0.01366 0.008202 0.012225 

Arbuscular Mycorrhizal 0.000810 0.002296 1608 1 0.002941 0.002955 0.001821 0.001959 

Endomycorrhizal 0.003918 0.006046 996 0.0036 0.005295 0.009223 0.003621 0.006795 

Ericoid Mycorrhizal 0.004284 0.003948 1162 0.0481 0.004506 0.006973 0.00641 0.006631 

Orchid Mycorrhizal 0.001011 0.003416 1273.5 0.21 0.006875 0.008477 0.006257 0.00763 

Root-Associated Biotroph 0.000735 0.002372 1475 1 0.004306 0.008181 0.005521 0.007348 

Clavicipitaceous Endophyte -0.001743 -0.000907 2204 1 -0.002794 -0.000761 -0.001531 -0.001646 

Ectomycorrhizal 0.002959 0.003256 1278.5 0.22 0.003472 0.00551 0.001563 0.004917 

Animal Endosymbiont 0.003184 0.005845 1029 0.0063 0.005429 0.006965 0.002073 0.005484 

Endophyte -0.001743 -0.000907 2204 1 -0.002794 -0.000761 -0.001531 -0.001646 

Rel. 

Abundance 

Pathotroph 0.003033 0.006095 1098 0.00210252 0.006103 0.011414 0.007561 0.010961 

Saprotroph 6.80E-05 0.001172 1685 0.80070536 -0.000447 0.002689 -0.00095 0.001955 

Symbiotroph 0.000729 0.002228 1627 0.57125758 0.000656 0.001492 -0.001245 0.001954 

Table S6. Average increase in AUC, maxTSS and maxKappa with the addition of fungal richness, or relative abundance, to GLM models with 

elastic net variable selection. P-values from the Wilcoxon test testing whether the median ∆AUC is superior to 0 are adjusted with a Bonferroni 

correction (p-value multiplied by 27), and are in bold when significant (P<0.05).  


