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ABSTRACT 

Since microorganisms dominate soil biodiversity and play key role in ecosystem functions, soil 

microbial biogeography and effect of environmental changes has recently gained attention. 

However, our knowledge about soil bacterial distribution in the Arctic region and how it may 

be affected in the future remains scarce. With the rapid warming of the Arctic and the 

resulting release of organic carbon from thawing soils, greenhouse gases emission is likely to 

increase by enhanced microbial activity. Considering this positive feedback and the region's 

sensitivity to climate change, forecasting the future of Arctic soil bacterial distribution is 

crucial. Here, Species Distribution Models (SDM) were applied to provide spatial distribution 

of soil bacterial community in the Arctic region under current environmental conditions and 

under three different representative concentration pathways (RCP) corresponding to low, 

medium and high greenhouse gas emission scenario, for 2050 and 2070. The results reveal a 

positive relationship between latitude and soil bacterial diversity, and that both soil bacterial 

diversity and community structure are expected to change with combined climate and edaphic 

changes under all scenarios. This predictive insight into how soil bacterial diversity may be 

altered by climate change is essential to improve our understanding of its influence on 

ecosystems worldwide. 

KEYWORDS 

Microbial communities, soil microbiome, biogeography, polar medium, species distribution 

model, spatial pattern predictions, species richness, climate change 
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RÉSUMÉ 

Étant donné que les micro-organismes dominent la biodiversité du sol et jouent un rôle clé 

dans les fonctions de l'écosystème, la biogéographie microbienne du sol et les effets des 

changements environnementaux ont récemment retenu l'attention. Cependant, nos 

connaissances sur la distribution des bactéries du sol dans la région arctique et sur la manière 

dont elle pourrait être affectée à l'avenir restent limitées. Avec le réchauffement rapide de 

l'Arctique et la libération du carbone organique des sols en fonte qui en résulte, les émissions 

de gaz à effet de serre sont susceptibles d'augmenter en raison d'une activité microbienne 

accrue. Au vu de cette rétroaction positive et de la sensibilité de la région au changement 

climatique, il est crucial de prédire l'avenir de la distribution des bactéries du sol arctique. Ici, 

la modélisation de la distribution des espèces (SDM) a été appliquée pour déterminer la 

distribution spatiale de la communauté bactérienne du sol dans la région arctique dans les 

conditions environnementales actuelles et selon trois voies de concentration représentatives 

(RCP) correspondant aux scénarios d'émissions faibles, moyennes et élevées de gaz à effet de 

serre pour 2050 et 2070. Les résultats révèlent une relation positive entre la latitude et la 

diversité bactérienne du sol, et l'on s'attend à ce que la diversité bactérienne du sol et la 

structure de la communauté changent avec les changements climatiques et édaphiques 

combinés dans tous les scénarios. Cet aperçu des effets du changement climatique sur les 

communauté bactériennes est essentiel pour améliorer notre compréhension de l'influence 

des bactéries du sol sur les écosystèmes au niveau global.   
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INTRODUCTION 

Climate change is causing major changes on species distribution and ecosystem function 

worldwide. While these climate change effects have been widely recognized on 

macroorganism for decades (Araújo et al., 2011; Mantyka-pringle et al., 2012), the impact on 

soil bacterial community has recently gained attention (Castro et al., 2010; Chu et al., 2020; 

Jansson & Hofmockel, 2020; Mod et al., 2021). Microorganisms dominate soil biodiversity in 

terms of richness and abundance (Maron et al., 2018) and are involved in a range of ecosystem 

functions such as biogeochemical cycling, primary production and organic matter 

decomposition (Delgado-Baquerizo et al., 2016). Recent advances have been made in soil 

microbial biogeography (Chu et al., 2020), providing for example evidence that soil microbial 

biomes differ from terrestrial biomes that are based on animal and plant distribution (Vasar 

et al., 2022). Dominant taxa, such as Proteobacteria, Actinobacteria and Acidobacteria 

(Delgado-Baquerizo et al., 2018) and ecological drivers of soil microbial distribution, such as 

pH, soil organic carbon and moisture, (Fierer, 2017) were identified. Despite these efforts, 

significant gaps on soil biodiversity study remain in the Arctic region (Cameron et al., 2018; 

Chu et al., 2020). 

Low temperatures, water and nutrient availability combined with high variation of UV 

radiation are common abiotic stresses of the Polar regions (Jani et al., 2022). This 

characteristic extreme climate limits the presence of plant and animal species and, as a result, 

microorganisms dominate these systems. Due to the harsh environmental conditions which 

require specific physiological adaptations, the Arctic region exhibits unique biogeographical 

patterns and taxonomic composition of soil bacterial community compared to non-polar 

regions (Ji et al., 2022). Recently, Malard et al. (2019) have provided the broadest baseline 

database of Arctic soil bacterial diversity, where pH has been identified as the most explicative 

factor of soil bacterial community, among other drivers including soil organic carbon, moisture 

and conductivity. To advance our understanding of the soil bacterial biogeography, the next 

step is to model the spatial distribution across the Arctic region. 

Furthermore, the Arctic region is known to be warming four times faster than the rest of the 

world (Rantanen et al., 2022). The permafrost, defined as a permanently frozen layer in the 

soil, is harbouring a substantial amount of organic carbon (Tarnocai et al., 2009). This ground 

is thawing at an increasing rate (Brown & Romanovsky, 2008) and releasing the stored organic 
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carbon as a food source for microorganism. This provides the potential to enhance bacterial 

activity which, in turn, leads to the release of the greenhouse gases as carbon dioxide and 

methane. This permafrost carbon-climate feedback results in accelerated global warming 

(Koven et al., 2011). Beyond the permafrost thaw, other warming effects such as higher 

precipitation (Bachar et al., 2010; She et al., 2018; Wu et al., 2020) or soil acidification (Mod 

et al., 2021; Zhou et al., 2021) are likely to change soil bacterial diversity and community 

structure. Altogether, the need to forecast the future of soil bacterial distribution is evident.  

This study aims to complete the whole picture of soil bacterial distribution and is a step 

towards understanding the complex effects of climate change on microbial communities, 

especially in a region particularly sensitive to climate change. As soil microorganisms display 

biogeographical distribution patterns, we first hypothesize that soil bacterial diversity is not 

homogeneous across the Arctic region, expecting hotpots of diversity (Malard & Pearce, 2018) 

and a latitudinal gradient (Bahram et al., 2018; Malard et al., 2022). Considering the 

implications of Arctic warming on key factors shaping soil bacterial distribution, the second 

assumption is that changes in diversity and community structure will occur in the future. To 

test these hypotheses, we modelled the distribution of soil bacteria over the Arctic region (i) 

under current, and (ii) under future environmental conditions by applying a Species 

Distribution Modelling (SDM) framework. The community analysis was conducted in two 

parts: alpha-diversity modelling (richness and Shannon diversity) and community structure 

modelling. Future distributions were projected under three representative concentration 

pathways (RCP) corresponding to low, medium and high greenhouse gas emission scenario, 

for 2050 and 2070.  

MATERIALS AND METHODS 

1. Data acquisition and processing 

The dataset comes from a previously published Pan-Arctic survey of soil bacterial communities 

(Malard et al., 2019), where soil was sampled in the Arctic region across 43 sites, between 

April and September 2017 (Figure 1). At each site, three to five soil samples were collected 

within 100 m2 under the most common vegetation for a total of 200 soil samples. Each sample 

was collected at 5-15 cm depth to have a total of 150 g of soil. In addition, conductivity, 

moisture, pH and soil organic carbon (SOC) were measured at the sampling sites. Soil DNA was 
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extracted using the PowerSoil kit (Qiagen, Hilden, Germany) and the V3-V4 region of the 16S 

rRNA gene was amplified by polymerase chain reaction (PCR) and sequenced using Illumina 

Miseq (Illumina, San Diego, Ca, USA).  

 

Figure 1: Map of the 43 sampling sites in the Arctic region at which 200 soil samples in total were 

collected.  

After demultiplexing and removing barcodes, sequenced paired-end data was processed 

following the DADA2 pipeline tutorial (v1.16.0; Callahan et al., 2016) in R (RStudio Team, 2022) 

to produce amplicon sequence variants (ASV) with the number of reads per ASV in each 

sample and the associated taxonomy. In this step, the sequenced data was filtered with a 

maximum of expected errors of two and trimmed at 230 and 200 length for forward and 

reverse reads respectively. Then, the ASVs were inferred using the DADA2 algorithm to finally 

merge paired reads and remove chimeras. Taxonomy was assigned to the output sequences 

using the SILVA reference database (v138.1; Quast et al., 2012) using a naive Bayesian 

classifier method with a minimum bootstrap confidence of 50. Contaminants were removed 

based on negative control samples using a frequency- and prevalence-based contaminant 

identification with a probability threshold of 0.5 using the decontam package (Davis et al., 

2018). From an initial set of 47639 ASVs, those present at <15 sites were filtered out using the 

phyloseq package (McMurdie & Holmes, 2013) to have sufficient prevalence to prevent the 

models from overfitting. In total, 2523 ASVs across the 200 samples were used for the spatial 

distribution analysis.  

2. Environmental data 

An ensemble of climatic, topographic, and edaphic variables was used to model soil bacterial 

distribution. While soil properties and climate conditions are fundamental drivers of their 

distribution (Fierer, 2017), topography also plays a role on nutrient and water accumulation 

in soil and therefore microbial activity (Liu et al., 2020). Distribution in the future was 
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projected according to three representative concentration pathways (RCP) used for 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 

2017): RCP2.6, RCP4.5, RCP8.5, corresponding to minimum, medium and maximum 

greenhouse gas emission scenario, respectively, for 2050 and 2070. Four climate variables and 

one edaphic variable with high reliance on climate change were used to predict under the 

different scenarios: annual precipitation over zero (rain) and under zero (snow), freezing 

degree days, thawing degree days and active layer thickness. Since freezing degree days and 

thawing degree days are related to the permafrost and its associated active layer, they were 

good candidates for forecasting, while variation in annual precipitation over and under zero 

may affects microbial distribution by changing soil water availability. 

From an initial set of 25 variables, the environmental data of 21 variables could be obtained 

for the 200 sampling sites (Table 1), while the nearest value within a perimeter of ten 

kilometres was extracted when no data was available at the sampling site coordinates. Among 

the 21 variables, a preliminary selection based on the correlation was made to avoid 

collinearity. To do so, a dendrogram was built with [1 - Pearson correlation coefficient] as 

distance to perform the hierarchical clustering (Figure 2) using the ggdendro package (Vries & 

D. Ripley, 2022). Two clusters of predictors highly correlated with each other (Pearson 

correlation > 0.7) were identified. The larger cluster included clay, freezing degree days (fdd), 

mean annual ground temperatures (magt), extent, annual precipitation under zero 

(prec_snow), cation exchange capacity (cec), annual precipitation (prec) and annual 

precipitation over zero (prec_rain). Among them, the three predictors available for future 

predictions (fdd, prec_snow, prec_rain) were conserved. In the same way, thawing degree 

days (tdd), which was also available under the future scenarios, was conserved among the 

second cluster including normalized difference vegetation index (ndvi) and growing degree 

days (gdd). In this way, all the predictors used for future predictions were present in this 

selection. In total, 14 predictors were used as initial variables to fit the models: elevation 

(elev), topographic roughness index (tri), soil pH in 5cm depth (pH), annual precipitation under 

zero (prec_snow), soil type (soiltype), annual precipitation over zero (prec_rain), freezing 

degree days (fdd), topographic wetness index (twi), thawing degree days (tdd), annual 

potential incoming direct solar radiation (rad), active layer thickness (active_layer), soil 

organic carbon stock in 5-15 cm depth (soc), land cover classification (esa) and topographic 
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position index (tpi). In order to assess to which extent our models extrapolate the 

environmental conditions outside the range of the observation data, the coverage of sampling 

sites along environmental gradients was evaluated.  

Table 1: Description of the initial set of 21 predictors including climatic, topographic and edaphic 

variables. Variable name is the abbreviation used in the present study. 

Variable Description Source 

active_layer Active layer thickness (2000-2014) Aalto et al., 2018 

cec Cation exchange capacity of soil in centimol positive charge per kg Poggio et al., 2021 

clay Clay content mass fraction in % in 15 cm depth Poggio et al., 2021 

elev Altitude in meters Amatulli et al., 2018 

esa European Space Agency - Land cover classification ESA CCI Land Cover, 

2017 

fdd Freezing degree days (2000-2014), number of days when 

temperatures are below 0 degrees 

Fick & Hijmans, 2017 

gdd Growing degree days (2000-2014), number of days when 

temperatures are above 3 degrees 

Fick & Hijmans, 2017 

magt Mean annual ground temperatures (2000-2014) Aalto et al., 2018 

ndvi Normalized Difference Vegetation Index (2000-2014) Didan, 2015 

soc Soil organic carbon stocks in the upper 200 cm Poggio et al., 2021 

extent Permafrost extent (no permafrost, continuous, discontinuous, 

sporadic, isolated) 

Brown et al., 2002 

ph Soil pH in H2O in 15 cm depth (need to be divided by 10) Poggio et al., 2021 

rad Potential incoming direct solar radiation in millijoule per square 

centimetre per year 

Amatulli et al., 2018 

prec Annual precipitation in millimetre (2000-2014) Fick & Hijmans, 2017 

prec_rain Annual precipitation over zero in millimetre (2000-2014) Fick & Hijmans, 2017 

prec_snow Annual precipitation under zero in millimetre (2000-2014) Fick & Hijmans, 2017 

soiltype Soil type Poggio et al., 2021 

tdd Thawing degree days (2000-2014), number of days when 

temperatures are above 0 degrees 

Fick & Hijmans, 2017 

tpi Topographic position index Amatulli et al., 2018 

tri Topographic roughness index Amatulli et al., 2018 
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Figure 2: Dendrogram based on hierarchical clustering of the 21 environmental variables. Distances 

were calculated as [1 - Pearson correlation coefficient]. Clusters of correlated variables were defined 

using a threshold of a Pearson correlation value of 0.7 (horizontal red line). 

3. Soil bacterial distribution modelling 

To investigate soil bacterial distribution in the Arctic region, different community properties 

were targeted: alpha-diversity (richness and Shannon diversity) and community structure, 

using ASV as taxonomic unit. Each property was modelled independently as a function of 

environmental conditions, based on a common framework used in ecology, Species 

Distribution Model (SDM) (Guisan & Zimmermann, 2000). Two spatial modelling approaches 

were used: alpha-diversity was predicted directly, based on the principle “assemble first, 

predict later” (Ferrier & Guisan, 2006), while community structure was predicted by stacking 
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relative abundance predictions of individual ASVs (Stacked Species Distribution Modelling, S-

SDM) (Guisan & Rahbek, 2011). The predictions were based on an ensemble forecasting 

framework, which aims to average several models to overcome the uncertainty between them 

(Araújo & New, 2007). Here, one regression-based approach (Generalized Linear Models, 

GLM) and one classification tree algorithm (Random Forests, RF) were used in the ensemble 

models, the two methods differing in their performance and bias (Elith et al., 2006). All 

analyses were conducted in R (RStudio Team, 2022) and figures and maps were produced 

using the ggplot2 package (Wickham, 2016).  

3.1. Richness and Shannon diversity  

Alpha-diversity measures (richness and Shannon diversity) were directly modelled as a 

function of environmental variables. Richness data corresponded to the number of ASV per 

sample and Shannon diversity index was calculated using the vegan package (Oksanen et al., 

2022).  

Preliminary analysis intended to identify the best regression-based method between elastic-

net regularized Generalized Linear Models (GLMnet) with 100% lasso, which is able to shrink 

coefficient variables to zero, and Generalized Linear Models with formula defined by stepwise 

regression (GLMsw). The stepwise model selection was performed by Akaike information 

criterion (AIC) with search in both directions, and the most complex formula included all the 

14 variables with quadratic terms and without interactions. Both methods involved automatic 

variable selection procedures. Although elastic-net is recognized to generally perform better 

(Lenters et al., 2018), the stepwise regression method was slightly better evaluated in our 

study when modelling diversity (Figure S1). However, GLMsw predicted ecologically irrelevant 

values of richness (>1018) when projecting over the Arctic region, unlike GLMnet which had 

more shrunk predictions due to its penalization-based method. Therefore, GLMnet was 

chosen over GLMsw for variable selection and as modelling approach. Regarding the RF 

method, there was no actual variable selection since it relies on a multitude of decision trees, 

each node of which providing information on the importance of the variable. 

GLMnet and RF models were fit using the initial set of 14 predictors to build the ensemble 

models. GLMnet with 100% lasso was fit using lambda.1se as the optimal lambda and glmnet 

package (Friedman et al, 2010). RF was fit using 1000 trees (bootstrap samples) with 4 
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variables per tree and randomForest package (Liaw & Wiener, 2002). GLMnet and RF 

predictions were ensembled by weighting according to their respective R2 mean value 

obtained from the evaluation (see below). Predictive models were evaluated using resampling 

procedures to test their predictive power on partially independent data. The data partitioning 

strategy was a repeated split-sample cross-validation (100x), where 75% of the data was 

assigned to the training set and the remaining 25% to the evaluation set. This method is both 

simple to run and powerful (Guisan et al., 2017). The metric used for evaluation was R-Squared 

(R2) and Root Mean Squared Error (RMSE) computed with the package caret (Kuhn et al., 

2022). 

Ensemble model projection over space (Arctic region) and standard deviation between the 

GLMnet and RF predictions were mapped. The relation between diversity and latitude was 

tested using linear and quadratic regression. Then, projection over time (2050 and 2070) for 

the three scenarios and differences between current and future (2070) diversity distribution 

were mapped. 

3.2. Community structure  

Analyses prior to modelling were conducted to have a baseline understanding of how soil 

bacterial community may change under the different climate change scenarios. It included a 

Spearman correlation heatmap based on environmental variables and the community at 

phylum level. The Spearman correlations and their associated P-values were calculated using 

the hmisc package (Harrell Jr, 2022). Based on this, 9 variables that can potentially influence 

community structure in the future were identified. Relationships between each phylum and 

the 9 predictors were tested using linear regression. Significant relationships were then 

illustrated in a scatter plot for each of the 9 environmental gradients. 

To assess changes in soil bacterial community structure, the relative abundance of each ASV 

was modelled individually and predictions across the 200 sampling sites were assembled to 

obtain community structure under each climate-change scenario. Since the ASV distribution 

model predictions were restricted to the sampling sites, edaphic variables measured in the 

field were used for modelling. Conductivity and moisture data were added to the set of 

variables used while pH and soil organic carbon data replaced and were compared to those 

provided by global databases (Figure S2). The field-measured variables showed a greater 
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variation than online data and thus have the potential to be better predictors for bacterial 

distribution.  

Following the same method as for diversity distribution modelling, GLMnet and RF models 

were fit using the initial set of 14 predictors to build the ensemble model. The frequency of 

variable selection by GLMnet among the pool of modelled ASVs was calculated for each 

predictor used. Model performances were estimated by repeated split-sample cross-

validation (100x). Considering the poor model qualities suggested by the R2 and RMSE values 

(Figure S3) and to avoid not removing a significant number of ASVs, Spearman correlation was 

used instead as metric for evaluation and for weighting ensembled predictions, and models 

with Spearman correlation <0.2 were removed from the analysis. 

For each ASV, relative abundances were predicted and summed across the 200 sampling sites, 

to be assembled into a community under each scenario. Scenario-based community 

compositions were visualized in a phylum-level barplot. To evaluate the change in the 

community structure, a distance matrix was computed with Bray-Curtis as a dissimilarity 

metric using the vegan package (Oksanen et al., 2022), which has the advantage of quantifying 

differences between communities at the ASV level. Bray-Curtis dissimilarity is a measure of 

beta-diversity that indicates the degree of difference between communities in term of species 

abundance (Bray & Curtis, 1957). To represent the dissimilarity in a two dimensional plot, a 

Principal Coordinate Analysis (PCoA) scatter plot was computed using the ape package 

(Paradis & Schliep, 2019). 

RESULTS 

1. Environment variables 

The coverage of sampling sites along environmental gradients showed in which extent our 

models extrapolate the environmental conditions outside the range of the observation data 

(Figure S4). Overall, environmental variation over the Arctic region was relatively well 

represented for the sample size and sampling sites, although the conditions sampled for some 

variables only partially covered the full range of values (e.g., active layer thickness, freezing 

degree days). 
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2. Richness and Shannon diversity distribution 

2.1 Modelling 

Soil bacterial diversity ranged from 97 to 912 ASV per sample for richness and from 3.53 to 

6.14 for Shannon diversity across the 200 samples. GLMnet and RF models were fit using the 

initial set of 14 predictors. Environmental variables used in GLMnet with 100% lasso were 

determined by shrinking variable coefficients to zero. For richness modelling, 18 terms were 

present in the output formula including all variables in linear or quadratic form or both. The 

formula was implemented as follows: 

Richness ~ elev2 + tri2+ ph2 + prec_snow + prec_snow2 + soiltype2 + prec_rain2 + fdd2 + 

twi2 + tdd + rad + active_layer + active_layer2 + soc + esa + esa2 + tpi + tpi2 

Unlike for richness modelling, GLMnet for Shannon diversity modelling has not selected all the 

variables. The formula was composed of 17 terms and has not included prec_rain as predictor: 

Shannon diversity ~ elev + elev2 + tri2 + ph2 + prec_snow + soiltype + fdd2 + twi2 + tdd + 

rad2 + active_layer + active_layer2 + soc + esa + esa2 + tpi + tpi2  

The five variables used for future predictions (active_layer, fdd, prec_rain, prec_snow, tdd) 

were chosen as richness predictors whereas one of them (prec_rain) was not present in the 

Shannon diversity model.  

2.2 Evaluation 

When evaluating the transferability of the fitted models, the repeated split-sample cross-

validation (100x) on richness data indicated a R2 mean value of 0.59 and 0.68 and a RMSE 

mean value of 128.48 and 122.91 for GLMnet and RF algorithm, respectively, between the 

observed and predicted values (Figure 3.A). Although there was no substantial difference in 

quality between GLMnet and RF models, RF had slightly higher R2 and lower RMSE, indicative 

of a better model, and GLMnet showed greater variation through cross-validations. The same 

procedure on Shannon diversity data indicated a R2 mean value of 0.36 and 0.50 and a RMSE 

mean value of 0.37 and 0.33 for GLMnet and RF algorithm, respectively (Figure 3.B). The two 

models presented a greater difference in predictive performance and justified the R2-

weighted ensembling method. More generally, the RF model consistently performed better. 
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Figure 3: Model evaluation by repeated split-sample cross-validation (100x), where 75% of the data 

was assigned to calibration and the remaining 25% to evaluation. The two algorithms GLMnet and RF 

were evaluated with R2 and RMSE. Mean point and its associated value is indicated. R2 mean was used 

to weight predictions for ensembling (A) Evaluation for soil bacterial richness model. (B) Evaluation for 

Shannon diversity model.  

A) 

B) 
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2.3 Projection over space 

Diversity distribution was projected over space as a function of environmental conditions 

throughout the Arctic region. Richness predictions ranged from 123 to 782 ASVs with a median 

of 344 ASVs, the higher richness located in the upper part of Russia and lower richness in 

Northern Quebec (Figure 4). Shannon diversity predictions ranged from 2.6 to 5.7 (Figure 5). 

Overall, higher richness was identified in higher latitude, whereas lower richness was 

associated with lower latitude relative to the Arctic region, especially in north America (Figure 

4.A). The same gradient was observed for Shannon diversity (Figure 5.A). Linear and quadratic 

regression confirmed the positive effect of latitude on diversity (Figure 6), both on richness 

(P<0.001, linear model R2=0.23, quadratic model R2=0.31) and Shannon diversity (P<0.001, 

linear model R2=0.17, quadratic model R2=0.24). 

Richness and Shannon diversity distribution had mostly the same pattern, only a few isolated 

areas showed opposite trend. For example, the southwestern part of Russia displayed high 

richness and low Shannon diversity. On the other hand, Iceland and the most southern part of 

Russia harbored low richness and high Shannon diversity. Standard deviation maps showed 

higher variation between GLMsw and RF models when low diversity was predicted (Figure 4.B, 

5.B). This inconsistency occurred differentially across space. Predictions ranged from 0 to 1148 

ASVs for GLM and from 150 to 801 ASVs for RF, whereas Shannon diversity predictions ranged 

from 0 to 6.2 for GLM and from 4.2 to 5.9 for RF. This implies that GLM predictions 

extrapolated beyond the range of observed diversity values (97 to 912 for richness and 3.5 to 

6.1 for Shannon diversity), whereas RF predicted within the observed range.  
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Figure 4: Soil bacterial richness in Arctic region under current environmental conditions. (A) Ensemble 

model projection calculated as the R2-weighted mean of GLM and RF predictions at 1km of resolution. 

(B) Standard deviation of the two model predictions. 

 

 

Figure 5: Shannon diversity in Arctic region under current environmental conditions. (A) Ensemble 

model projection calculated as the R2-weighted mean of GLM and RF predictions at 1km of resolution. 

(B) Standard deviation of the two model predictions. 

A) 

B) 

A) 

B) 
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Figure 6: (A) Soil bacterial richness and (B) Shannon diversity at sampling sites along latitudinal 

gradient. Linear (red line) and quadratic (blue line) regression were performed and their respective P 

and R2 values were calculated. 

  

A) 

B) 
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2.4 Projection over time 

Diversity was then projected over time under the three RCP scenarios, in 2050 and 2070. 

Richness predictions generally increased, both through the RCP scenarios with increasing 

greenhouse gases emission and through time, gradually (Figure 7). The richness median 

shifted from 344 to 388 ASVs and the maximum richness from 782 to 1063 ASVs. Shannon 

diversity predictions however did not change its range between the different scenarios, with 

values between 2.6 and 5.7 and a median of 4.9 (Figure 8). 

To visualize the spatial changes between current and future scenarios, diversity differences 

were mapped (Figure 7.D, 8.D). Under the RCP2.6 scenario (best emission-based scenario), 

richness differences were relatively small (yellow), highlighting some wide region with 

differences up to 271 ASV (orange) and negative differences (blue). Jumping to the RCP 4.5 

and 8.5 scenarios (medium and worst emission-based scenarios), the same clusters subjected 

to diversity changes increased in size and intensity. Although Shannon diversity showed 

mostly no changes (yellow), more localized changes gained in size and intensity with scenario 

severity but in a smaller extent, with a maximum difference of 2.5.  

Regions of positive, neutral and negative changes differed between richness and Shannon 

diversity map. In summary, soil bacterial diversity generally increased across the Arctic under 

all scenarios of climate change considered although some clusters of loss of diversity were 

identified for both, richness and Shannon diversity. 
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Figure 7: Soil bacterial richness in Arctic region under RCP 2.6, 4.5 and 8.5 scenarios. (A, B, C) Forecasts 

for 2050 and 2070 have been computed for each scenario at 1km of resolution. Ensemble model 

projection was calculated as the R2-weighted mean of GLM and RF predictions. (D) Soil bacterial 

richness differences between current and future conditions in 2070 for each scenario. 

 

A) 

D) 

B) 

C) 
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Figure 8: Shannon diversity in Arctic region under RCP 2.6, 4.5 and 8.5 scenarios. (A, B, C) Forecasts for 

2050 and 2070 have been computed for each scenario at 1km of resolution. Ensemble model 

projection was calculated as the R2-weighted mean of GLM and RF predictions. (D) Shannon diversity 

differences between current and future conditions in 2070 for each scenario.  

  

A) 

D) 

B) 

C) 
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3 Community structure 

3.1 Environment-phyla correlation 

To have indication of how soil bacterial community may change in the future, we first 

computed a Spearman correlation heatmap based on environmental variables and bacterial 

communities to determine how bacterial phyla correlate with current environmental 

conditions (Figure 9). It revealed that phyla responded differently to the 14 environment 

gradients. For example, pH was correlated with a total of 20 phyla, where 12 phyla had strong 

positive correlation (red) and 4 phyla had strong negative (blue) correlation (*** indicates 

P ≤ 0.001).  

Figure 10 focused on 9 environmental variables expected to be affected in the future, 

including those used for future predictions: active layer thickness, freezing degree days, 

moisture, pH, precipitation over and under zero, radiation, soil organic carbon and thawing 

degree days. They were tested as predictor of relative abundance of each phylum and 

significant relations were shown in Figure 10 showing differential sensitivity within soil 

bacterial community to environmental gradient. Most of the relationships were negative for 

these 9 variables, except pH. Variables affecting the highest and lowest number phyla were 

pH and active layer thickness, respectively. Overall, these results highlight some high 

correlations between phyla and their environment and therefore, the likely strong impacts of 

changing environmental conditions on soil bacterial community structure. 
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Figure 9: Spearman correlation heatmap based on environmental variables (X axis) and the bacterial 

community at phylum level (Y axis). The colour gradient indicates the correlation value, blue and red 

for positive and negative correlation, respectively. The stars indicate the significance level (* when 

0.01<P≤ 0.05, ** when 0.001<P≤0.01, *** when P≤0.001). 
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Figure 10: Soil bacterial communities along environmental gradients. Phylum relative abundance were 

plotted as a function of 9 predictors: active layer thickness (active_layer), freezing degree days (fdd), 

moisture, pH, annual precipitation over zero (prec_rain) and under zero (prec_snow), radiation (rad), 

soil organic carbon (soc) and thawing degree days (tdd). The relationships were tested using linear 

regression and only significant relations (P≤0.05) are shown in this figure.  

3.2 Modelling 

From the initial set of 2523 ASV, the distribution of 90 ASVs could not be modelled using 

GLMnet. Distribution models of the remaining 2433 ASVs were fit using GLMnet and 2523 

models were fit using RF, using the initial set of 14 predictors. The variable selection by 

GLMnet when modelling the distribution of the 2337 ASVs was reported (Figure 11). Each 

variable was selected and included in a minimum of 20% of the 2433 ASV distribution models. 

With the most frequent selection, pH was chosen by GLMnet as a predictor to explain the 
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distribution of 59% of the ASVs. The ranking was followed by freezing degree days, moisture, 

conductivity, esa (land cover classification) and radiation which have been selected between 

40% and 55% of the times. Some predictors used for future predictions were selected less 

frequently, as precipitation over zero (20%) and active layer thickness (30%).  

 

 

Figure 11: Environmental variables selection by GLMnet. The frequency is the number of times the 

variable was selected out of the 2337 ASVs.  

3.3 Evaluation 

Distribution model of the 2433 ASVs for GLM and 2523 ASVs for RF were evaluated by 

repeated split-sample cross-validation (100x), using Spearman correlation (Figure 12). Based 

on this metric, models with a mean correlation <0.2 were filtered out, corresponding to 96 

models for GLM and 126 models for RF removed from the set of evaluated models. A total of 

80 ASVs were filtered for both algorithms. The remaining 2443 ASVs were used for community 

analysis, of which 106 were modelled only with RF and 46 only with GLM. The mean Spearman 

correlation was also used as weight for ensembling GLM and RF predictions. In general, there 

was a high variation in model performance. 
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Figure 12: Model evaluation by repeated split-sample cross-validation (100x), where 80% of the data 

was assigned to calibration and the remaining 20% to evaluation. Each ASV distribution model was 

individually evaluated with Spearman correlation for both GLMnet and RF algorithms and their 

associated mean Spearman correlation values were plotted in this violin plot. The horizontal blue line 

indicates a correlation of 0.2 which was used as a threshold to filter out models with poor performance. 

3.4 Community structure changes 

Distribution of each ASV were projected under current and future conditions across the 200 

sampling sites and assembled to build the community at phylum level. The relative abundance 

of the 25 phyla was calculated for each climate scenarios. One ASV (ASV1584) was identified 

as having considerable changes across future scenarios, becoming largely dominant in each 

future community (Figure S5). Its assigned taxonomy corresponded to the genus 

Steroidobacter from the phyla of Proteobacteria. Its dominance made the visualization of 

community composition difficult and was therefore removed from the community analysis. 

The resulting community revealed no major changes between the different scenarios at 

phylum level (Figure 13). Low abundance phyla (less than 1%) were grouped into one category 

(Phylum <1%), which allows the visualization of the 10 most abundant phyla (from the most 

to the less abundant under current conditions): Verrucomicrobiota (22.1%), Proteobacteria 

(21.5%), Acidobacteriota (16.1%), Planctomycetota (10.5%), Actinobacteriota (9.5%), 

Bacteroidota (8.1%), Chloroflexi (3.2%), Gemmatimonadota (2.9%), Myxococcota (2.1%) and 
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Desulfobacterota (1.3%). The less abundant phyla accounted for 2.6% of total abundance 

under current conditions and decreased to 2.3% under future conditions (RCP 8.5 in 2070). 

Except for Myxococcota, the relative abundance of other phyla did not vary by more than 1.5% 

between scenarios. Indeed, Myxococcota was the only phylum showing progressive changes, 

tending to increase over the scenarios (relative abundance from 2.1% to 7.3%), at the expense 

of all other phyla.  

 

Figure 13: Structure of the soil bacterial communities at phylum level under current and future 

scenarios. The ASV1584 was omitted in the analysis. 

To investigate community changes at a finer resolution, Bray-Curtis dissimilarity index was 

calculated between the scenario-based communities, where a high value indicates high 

dissimilarity (Table 2). Given that this index is bounded between 0 and 1, the values obtained 

were relatively small (<0.11). The dissimilarity between the current and the different future 

scenarios tended however to increase with the severity of the scenario and the time step. 

Principal coordinate analysis (PCoA), which spatially reflects these dissimilarities, highlighted 



27 

the community changes between the current and all other future predictions (Figure 14). 

Among the RCP scenarios, RCP 8.5 (2070) was the most differentiated from the others in term 

of community composition. The remaining scenarios, RCP 2.6 (2050 and 2070), RCP 4.5 (2050 

and 2070) and RCP 8.5 (2050) were more closely related. 

Table 2: Distance matrix based on Bray-Curtis dissimilarity metric. High value indicates a high 

dissimilarity. 

 Current 
predictions 

RCP26_2050 RCP26_2070 RCP45_2050 RCP45_2070 RCP85_2050 

RCP26_2050 0.043      

RCP26_2070 0.045 0.003     

RCP45_2050 0.047 0.007 0.006    

RCP45_2070 0.051 0.015 0.015 0.014   

RCP85_2050 0.052 0.015 0.014 0.011 0.008  

RCP85_2070 0.109 0.075 0.074 0.071 0.070 0.066 

 

Figure 14 Principal Coordinate Analysis (PCoA) scatter plot based on the Bray-Curtis distance matrix, 

illustrating dissimilarity in ASV-level structure between the predicted community under current 

conditions and the different scenario-based communities. 
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DISCUSSION 

To fill gaps in soil bacterial biogeography, SDM-based models were developed to provide 

spatial distribution of soil bacterial diversity and community in the Arctic region under current 

and future environmental conditions. 

1. Richness and Shannon diversity distribution 

All or most of the 14 environmental variables used were able to partially explain the 

distribution of soil bacterial richness and Shannon diversity and were integrated in the models. 

This confirmed previous studies that climate, edaphic and topographic factors influence soil 

microbial diversity (Delgado-Baquerizo & Eldridge, 2019; Fierer, 2017), including in the Arctic 

(Dimitriu & Grayston, 2010; Malard & Pearce, 2018; Siciliano et al., 2014). 

Model evaluation identified Random Forests (RF) as the most powerful algorithm, supporting 

its wide use in microbial distribution studies (Delgado-Baquerizo & Eldridge, 2019; Pajunen et 

al., 2016; Větrovský et al., 2019). The poorest performance of the Shannon diversity model 

could be explained by the narrower range of the index or, more probably, by the complexity 

of the metric, accounting for both ASV richness and evenness of their abundance. This implies 

that a lower Shannon diversity could be the result of fewer ASV or the dominance of certain 

ASV, leading to less predictable values. Compared to individual ASV models, community-level 

models measured by richness and Shannon diversity performed better. This difference may 

be due to the fact that the weak information given by rarer ASVs were pooled into more 

general information and it is thus more efficient to link predictors with the whole community. 

Model projections suggested that the Arctic region harbors some hotspots of diversity, as 

expected by Malard & Pearce (2018). Surprisingly, the highest diversity was concentrated in 

the northern part of the region. This observation, supported by the significant positive 

relationship between diversity and latitude, were in contradiction with the latitudinal diversity 

gradient hypothesis and previous studies (Bahram et al., 2018; Malard et al., 2022). However, 

the same findings were demonstrated for fungal diversity (Větrovský et al., 2019). This 

inconsistency may be caused by the underrepresentation of high latitudinal regions which 

introduces bias at the global scale. Indeed, the present analysis focused on a truncated 

latitudinal gradient with the potential to reveal different trends, unlike global studies. As 

microbial distribution can change rapidly under warming (Cavicchioli et al., 2019), another 
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possible explanation was that their suitable habitat has recently shifted under climate change 

and soil bacteria had already migrated when sampled, resulting in a temporal shift between 

the climatic conditions used and the actual conditions when sampling the communities.  

Some regions appeared to harbour high richness but were characterized by high to low 

Shannon diversity. This indicated that for the same ASV richness, the evenness can vary. A 

lower Shannon diversity with fixed richness suggested the dominance of a few ASVs among 

the community. In contrary, fixed richness with higher Shannon diversity indicated a good 

evenness in ASV relative abundance. 

The prediction differences between GLM and RF algorithms illustrated by the standard 

deviation maps reflected the uncertainty among the ensemble predictions. Some deviations 

were expected as the two models translated different information and GLM predicted more 

extreme values than RF. Since GLM was a regression-based method and the environmental 

gradient was not fully covered, extrapolation outside the range of observed diversity was 

difficult to avoid. 

Assuming the stability of the ecological niche through time, soil bacterial diversity was 

expected to change under all the considered scenarios. Although some areas experienced a 

loss of diversity, the changes were mostly positive, suggesting an increased in bacterial activity 

and thus possible interference in ecosystem functioning. These results were in line with the 

hypothesis that permafrost thaw releases more organic carbon for microbial activity (Koven 

et al., 2011; Tarnocai et al., 2009). Moreover, the bidirectionality of diversity changes were in 

good agreement with previous studies showing that microbial diversity responds differently 

to warming depending on the habitat types (Lladó et al., 2017; Větrovský et al., 2019). While 

Yang et al. (2021) found negative effects of global change on soil microbial diversity, 

abundance is expected to be enhanced in cold regions, stronger than in temperate regions 

(Chen et al., 2015). These inconstancies highlighted the need to consider the direction of the 

impact of climate change specific to the ecosystem types. 

Shannon diversity changes occurred at little amplitude. This could be due to the Shannon 

diversity distribution model which did not include all the variables used for future scenarios, 

compared to the richness distribution model. This implies that richness distribution changes 

were the result of all the environmental future variations compared to Shannon diversity 
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changes which did not depend on changes in annual precipitation over zero. Another reason 

was that the different component of the metric had reverse effect on the index. For example, 

gain in richness would result in higher Shannon diversity which can be lowered if some ASV 

become dominant, the information would be therefore blurred.  

2. Community structure 

The direction and intensity of the relationship between environmental variables and phyla 

were identified using heatmap and linear regressions and could be used as an indicator of how 

community may vary with changing environments. The differential responses to the 

environmental gradient among the phylum-level community points to potential changes in 

community structure under future climate. Note that impacts on bacterial communities can 

be species specific and the signal can thus be weakened if opposite relationships occurred 

within a phylum. First of all, pH positively correlated with most of the phyla but decreased 

with some of the most abundant phyla (Verrucomicrobiota, Actinobacteriota and 

Planctomycetota). Soil acidification caused by higher precipitation would therefore alter soil 

bacterial community as reported previously (Mod et al., 2021; Zhou et al., 2021) and benefit 

the few most abundant at the expense of most phyla. Nevertheless, the association between 

precipitation and pH has been found to be weaker in high latitudes since pH is expected to be 

more dependent on the mineralogy of the bedrock than precipitation (Vasar et al., 2022). 

Then, soil organic carbon, which is a main driver of soil bacterial community (Fierer, 2017), 

had negative correlations with most phyla. Its availability is expected to increase in the future, 

and presumably may lead to a decreased abundance of most phyla for the benefit of 

Verrucomicrobiota, Actinobacteriota and Planctomycetota, again. Increasing radiation, 

associated to the increasing temperature, had negative correlations with most phyla and 

positive for Planctomycetota, Methylomirabilota (less abundant phyla) and Actinobacteriota. 

Moisture and annual precipitation over and under zero, all together relate to soil water 

availability, can alter soil nutrient availability indirectly for bacterial growth (Wu et al., 2020). 

The directions of their relationship with community were more diverse, some corroborated 

and some did not with previous studies (Bachar et al., 2010; She et al., 2018). However, the 

inconsistent responses were not particularly surprising given the fact that they may be specific 

to the considered ecosystem. Finally, thawing degree day and active layer thickness are likely 

to increase with warming and inversely for freezing degree days. As anticipated, most phyla 
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were significantly affected by thawing and freezing degree days. On the other hand, active 

layer thickness was surprisingly correlated with less phyla. Based on these hypothetical 

sensitivities, climate change effects would mostly enhance the abundance of the most 

abundant phyla and rarely advantage the less abundant phyla. 

All the 14 environmental variables were selected and integrated in at least 20% of the models 

to explain individual ASV distribution. The more frequently selected variables concurred well 

with those identified as highly correlated with the soil bacterial community discussed in the 

previous analysis (e.g., pH, freezing degree days, moisture and radiation). This result 

confirmed that pH was the most important factor found in the literature (Chu et al., 2020; 

Fierer, 2017; Malard et al., 2019; Yashiro et al., 2016). The different choices of predictors 

between the ASVs implied that future changes were driven by different set of predictors, and 

possible including no or a few of the future variable available for our analyses. 

Although some ASV distribution model were removed from the community analysis due to 

bad performance, model evaluations indicated Spearman correlation of up to 0.8. Inevitably, 

there was high variation in model performance due to the variation in information given by 

ASV distribution to fit the models. Linking environmental variables with rare or little abundant 

ASVs resulted in underpowered models. 

Individual ASV distribution predictions were stacked to provide an overall community 

structure across the sampling sites under current and future environmental conditions. It was 

probable that the considerable changes of ASV1584 was an artefact, due to the poor model 

qualities, and was not considered in the community analysis. Contrary to expectations, 

stacked ASV distribution models suggested no noteworthy changes in community structure at 

phylum level, although a slight increase in relative abundance of Myxococcota. This change 

was also not expected since this phylum was poorly correlated with a few environmental 

variables. Based on the PCoA and Bray-Curtis dissimilarity index, all communities under future 

scenarios appeared to be different from the current community at ASV level. Among the 

future scenarios, the worst-case scenario in 2070 is likely to induce stronger changes in 

community structure compared to other scenarios, which is consistent with the characteristics 

of this scenario. 
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While modelling microbial communities in the future is essential to provide a better 

understanding of the impacts of climate change and the associated consequences on 

ecosystems (Chu et al., 2020; Malard & Pearce, 2018), we should note that model 

performances were relatively poor. Therefore, the results from such analyses should be 

treated with caution. There are several possible explanations impacting model performance. 

To begin with, the sample size, unevenly distributed across the region, was not able to capture 

all variable gradients. This understandable limitation underlined the difficulty of collecting 

data in such an inaccessible region. Another possible reason why the models may fail to 

explain soil bacterial distribution would be a lack of precision in spatial or temporal scale. 

Indeed, soil bacterial community may respond to smaller-scale changes. For example, 

abundance can be affected by micro-climate, micro-topography or micro-edaphic factors (Hill 

et al., 2016), whereas cell grid resolution in the present study is one kilometre. In terms of 

temporal scale, some climate data were averaged over a large period (2000-2014). However, 

bacterial diversity and community structure may be sensitive to meteorological data (Malard 

et al., 2022) or seasonal conditions (Hill et al., 2016), which suggests that much smaller 

temporal scale would be required to improve prediction accuracy. 

CONCLUSION 

Taken together, these results showed that hotspots of soil bacterial diversity are present and 

mainly located in the highest latitude of the Arctic region, and that both soil bacterial diversity 

and community structure were likely to change with combined climate and edaphic changes 

under the three different RCP scenarios. This study contributed to improve our knowledge 

about global biogeography of soil microbial community and points towards the idea that 

climate change affects the different part of the globe in different ways. It demonstrated that 

species distribution modelling approaches can be used to provide predictive insight into how 

soil bacterial diversity may vary across spatio-temporal scales but predicting changes in 

community structure remains challenging. Moreover, identifying environmental drivers 

specific to the region is crucial to accurately anticipate consequences of environmental 

changes. The natural next step for future research is to determine how bacterial communities 

are linked to their ecosystem functions and what their changes therefore imply by including 

soil bacterial data in climate models. Although the relationship between bacterial distribution 

and ecological function is well supported by observational studies, very little is known to 
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assign functions to taxa (Chu et al., 2020). Therefore, metagenomic and metatranscriptomic 

analyses associated to greenhouse gas flux measurement would be critical to improve our 

understanding of soil bacterial influence on ecosystems worldwide. 
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SUPPLEMENTARY 

 

Figure S1: Model evaluation by repeated split-sample cross-validation (100x), where 75% of the data 

was assigned to calibration and the remaining 25% to evaluation. The three algorithms GLMnet, 

GLMsw and RF were evaluated with R2 and RMSE. Mean point and its associated value is displayed. (A) 

Evaluation for soil bacterial richness model. (B) Evaluation for Shannon diversity model. 

 

A) 

B) 
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Figure S2: Comparison of data measured in the field and data from Soilgrids 2.0 for pH (left panel) and 

soil organic carbon (right panel). The red line corresponds to a slope of one.  

 

Figure S3: ASV distribution model evaluations by repeated split-sample cross-validation (100x), where 

75% of the data was assigned to calibration and the remaining 25% to evaluation. Mean R2 (right panel) 

and mean RMSE (left panel) values of all ASV distribution model evaluations. The two metrics used (R2 

and RMSE) indicate bad model qualities. 
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Figure S4: Coverage of sampling sites on Arctic environmental gradients for the 14 variables. Each plot 

illustrates the coverage for two predictors arbitrarily paired. The orange dots are the 200 sampling 

sites, and the grey dots are 1000 randomly selected values in the Arctic region.  

 

Figure S5: ASV1584 relative abundance under current conditions and the different RCP scenarios.  


