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ABSTRACT 

To obtain data at large spatial and temporal scales, scientists are increasingly taking advantage 

of citizen-science projects, where data collection is done by volunteers. However, the potential 

presence of bias due to differences in species detectability and sampling effort in space could 

affect the interpretation of scientific results. Quantifying such bias for different taxonomic 

groups is therefore key to using the full potential of citizen-science datasets. Here, we compare 

the environmental niches and predicted distributions of ant species distribution models 

calibrated using scientific data or opportunistic citizen-science data. We find significant overlap 

between the quantified environmental niches and high correlation between model predictions 

for the majority of species. Divergence in model predictions was observed mostly for species 

with low detectability or which occurred in both natural and urban habitats. Based on these 

findings we developed a method to correct for the spatial sampling bias of the citizen-science 

dataset. Applying this bias correction increased the niche overlap and prediction correlations. 

Our findings indicate that citizen-science data can reliably be used for species distribution 

modelling, as long as the characteristics of the species studied are considered. Integrating 

scientific and corrected citizen-science data is recommended to minimize the risk of biased 

predictions. 

Keywords: Citizen-science, Spatial bias, Niche overlap, Formicidae, Species distribution 

models 

 

RESUME 

Pour obtenir des données à larges échelles spatiales et temporelles, les chercheurs profitent de 

plus en plus des sciences participatives, qui permettent d’impliquer des volontaires dans la 

collection de données. Cependant, la présence potentielle de biais à cause de différences dans 

la détectabilité des espèces et l’effort d’échantillonnage dans l’espace pourrait influencer 

l’interprétation des résultats scientifiques. La quantification de ces biais pour différents groupes 

taxonomiques est donc essentielle afin d’utiliser pleinement le potentiel des données de 

sciences participatives. Dans ce rapport nous comparons les niches environnementales et les 

distributions de fourmis prédites par des modèles de distributions d’espèces calibrés avec des 

données scientifiques ou de sciences participatives. Nous observons qu’il existe un 

chevauchement significatif entre les niches environnementales quantifiées, et les prédictions 

des modèles étaient hautement corrélées pour la majorité des espèces. Des divergences entre 

les prédictions des modèles ont été observées principalement pour des espèces avec une 

détectabilité réduite ou vivant à la fois dans des habitats naturels et urbains. En se basant sur 

ces résultats, nous avons développé une méthode pour corriger le biais spatial d’échantillonnage 

dans le jeu de données de sciences participatives. Cette correction du biais a augmenté le 

chevauchement des niches écologiques et la corrélation entre les prédictions des modèles. Nos 

résultats indiquent que les données des sciences participatives peuvent être utilisées de façon 

fiable pour créer des modèles de distribution d’espèces tant que les caractéristiques des espèces 

étudiées sont considérées. Une intégration des données scientifiques et de sciences 

participatives est recommandée pour minimiser le risque de prédictions biaisées. 
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INTRODUCTION 

Current research in biodiversity and conservation often requires ecological data at such spatial 

and temporal scales that cannot feasibly be collected by professional scientists alone. To fill 

these gaps, researchers are increasingly taking advantage of scientific projects which involve 

citizens collecting large quantities of data in a cost-effective way (Amano et al., 2016; 

Hochachka et al., 2012). The last decades have seen a huge growth in environmental citizen-

science projects globally; in 2015 more than 1.3 million volunteers contributed in-kind as much 

as 2.5 billion dollars (Theobald et al., 2015). Data collected by citizens have already been used 

to detect the spread of invasive species, monitor biodiversity at international scales and 

investigate the impact of climate change on species phenology and range shifts (Chandler et al., 

2017; Cooper et al., 2014; Dickinson et al., 2010; Larson et al., 2020). Citizen-science has the 

potential to increase the information available for under-studied areas and taxonomic groups, 

such as invertebrates (Callaghan et al., 2021). Apart from its contribution in increasing 

ecological knowledge, citizen-science can also promote public engagement in conservation and 

inform management planning (McKinley et al., 2017; Tulloch, Possingham, et al., 2013). 

Citizen-science data are also increasingly being used for Species Distribution Modelling to 

study species distributions at local or global scales (Feldman et al., 2021). Species Distribution 

Models (SDMs) relate information on species occurrences to environmental predictors to 

predict habitat suitability (Guisan & Thuiller, 2005; Guisan & Zimmermann, 2000). They can 

be used to address a large variety of ecological problems, including systematic conservation 

planning, modelling the impact of land-use change or predicting the expansion of invasive 

species (Elith & Leathwick, 2009). Species data used in SDMs can involve information about 

the presence-absence of a species, presence-only or abundance. Presence-absence data follow 

a more robust sampling design and provide information on sampling effort and bias, but their 

availability is often limited (Phillips et al., 2009). On the other hand, resources such as the 

Global Biodiversity Information Facility (GBIF) have made available millions of species 

presence records, with citizen-science projects such as eBird and iNaturalist being among the 

most important contributors (Gaiji et al., 2013; GBIF: The Global Biodiversity Information 

Facility, 2022). It is therefore not surprising that the rate of growth in the number of publications 

using citizen-science data for species distribution modelling is two times larger than the studies 

using SDMs in general (Feldman et al., 2021). Additionally, there has been great interest 

recently in developing models that integrate citizen-science and scientific datasets while 

considering the advantages and disadvantages of each approach (Fletcher Jr. et al., 2019; Isaac 

et al., 2020; Miller et al., 2019). 

One weakness of citizen-science data that needs to be accounted for is the frequent presence of 

different forms of bias and errors that lead to lower use by traditional science in publications 

(Anderson et al., 2020; Gardiner et al., 2012; Graham et al., 2004; Theobald et al., 2015). 

Compared to professional scientists, volunteers may be able to detect fewer species and 

underestimate the abundance of certain taxa (Kremen et al., 2011). Identification errors may 

also be more common in citizen-science data for specific taxonomic groups such as insects 

(Hochmair et al., 2020). Many popular citizen-science projects that rely on massive 

participation do not have well-defined sampling protocols, promoting the opportunistic 
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collection of data by volunteers (Pocock et al., 2017). These datasets are often characterized by 

the presence of temporal or spatial bias in sampling. For example, volunteers may visit more 

frequently sites close to highly populated areas or regions known for their biodiversity and the 

presence of rare species (Botts et al., 2011; Mair & Ruete, 2016; Tulloch, Mustin, et al., 2013). 

These biases are a challenge to the future potential use of citizen-science data in SDMs as their 

impact on ecological inferences remains still unclear (Johnston et al., 2022). 

To better understand the sources of bias and assess the reliability of citizen-science data for 

species distribution modelling, scientists have been comparing the performance and predictions 

of SDMs calibrated with citizen-science or scientific datasets, such as survey, satellite telemetry 

or camera trap data, with contrasting results. Although some studies have shown that model 

performance and predictions are comparable between scientific and citizen-science data (Coxen 

et al., 2017; Tanner et al., 2020; Tye et al., 2017), in other cases models calibrated using citizen-

science datasets tended to overestimate the habitat suitability of highly populated areas and 

neglect sites of interest for a given species (Planillo et al., 2021). Tiago et al. (2017) compared 

ecological niches and species distributions of reptiles and amphibians modelled using citizen-

science and scientific data. They found that the simulated niche overlap and model performance 

presented great variability depending on the species. These results highlight the need to 

investigate more broadly the impact of citizen-science sampling biases in other taxonomic 

groups, especially as previous work has only focused on vertebrates. They also emphasize the 

importance of improving methods to cope with bias in citizen-science data. 

In this study, we assess whether citizen-science data can reliably be used for ant species 

environmental niche modelling. For this purpose, we compare the environmental niches and 

predicted distributions of 15 selected ant species calibrated using either opportunistic citizen-

science data or structured scientific data. Moreover, we propose a method to correct for the 

environmental bias present in citizen-science data and apply it to generate maps of ant habitat 

suitability in the canton of Vaud, Switzerland, by pooling the scientific and the corrected 

citizen-science dataset. Our results confirm the presence of species-specific differences with 

regards to the impact of sampling bias in citizen-science data and indicate the potential of the 

proposed method to mitigate them. 

 

 

MATERIALS AND METHODS 

Study Area 

Ant species data were collected in the canton of Vaud, located in western Switzerland (46.2–

47.0oN, 72 6.1–7.2oE) and covering a surface of 3,211.94 km2. The area is topographically 

heterogeneous with an altitude ranging from 372 m to 3,210 m. The hilly central plateau is 

flanked in the west and the east by the mountainous regions of Jura and the Alps, respectively. 

Located in the south of the canton, on the shore of Lake Geneva, Lausanne is the largest city 

with a population of 140,000. 
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Species Data 

Citizen-science data of ant diversity in the canton of Vaud were retrieved from the “Opération 

Fourmis” citizen-science project (https://wp.unil.ch/fourmisvaud/), which took place between 

spring and autumn 2019. Sampling kits were distributed to interested volunteers and ants were 

collected opportunistically without a structured sampling protocol. Volunteers were encouraged  

to collect 10 ant workers from the same colony, preferably from a nest and place them in vials 

filled with ethanol. The vials with the sampled ants, along with information on the date and 

location of the sampling, were sent to the University of Lausanne, where ants were identified at 

the species level morphologically and genetically by experts (see Avril et al., 2019).  

During the same period, ant diversity inventories were carried out by researchers from the 

University of Lausanne following a random stratified approach (Table 1, Freitag et al., 2020). 

Sampling took place in 44 pre-established monitoring sites of 1 km2 across the canton of Vaud. 

In each site, 25 plots were randomly chosen proportionally to the surface covered by every 

habitat type within the site, with at least one plot for each habitat. In case part of the site was not 

accessible (for example if covered by water), the number of selected plots was reduced 

proportionally to the inaccessible surface. For each plot, ants were sampled at 6 points located 

evenly around the circumference of a 2 m circle with the center of the plot as its center. The 

presence of ant nests under rocks, downed wood and 2 L of litter, soil and small rocks was 

investigated at each of these 6 points. Moreover, ant workers were also collected from all trees 

in the circle with a diameter larger than 3 cm at breast height. Finally, in each sampling site 2 

km of transects were surveyed and ants were sampled from mounds within 2 m of the transect 

line. Transects were mapped in a way so that all habitats within the sampling site were 

proportionally represented. By combining these 3 sampling strategies the collection of ants with 

different nest construction methods was possible. Soil samples and tree samples targeted ant 

species excavating nests underground or on trees respectively, while transects were more 

adapted to species creating aboveground nests such as the colonies of Formica wood ants. From 

each ant colony, 10 workers were placed in ethanol vials and ants were identified to the species 

level as described above (Szewczyk et al., 2022, Preprint). 

 

Table 1. Habitat types used to define the random stratified sampling strategy. The percentage 

of the total area of the canton of Vaud, and of the total area surveyed during sampling, covered 

by each habitat is given. 

Habitat type Proportion of total surface 

in the canton of Vaud (%) 

Proportion of total surface 

in the sampled 1 km2 sites 

(%) 

Coniferous forest 13.39 11.31 

Deciduous forest 8.07 9.44 

Urban areas 7.84 5.30 

Mixed forest 7.10 5.88 

Edge 6.29 7.08 

Transportation 4.66 3.96 

https://wp.unil.ch/fourmisvaud/
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Permanent 

agriculture 

2.14 1.87 

Scree 1.00 2.04 

Dry meadow 0.87 3.47 

Alluvial zone 0.55 0.55 

Swamp 0.52 0.67 

Humid zone 0.09 0.14 

Gravel pit 0.08 0.13 

Quarry 0.02 0.06 

Clay pit 0.01 0 

Other open 

habitats* 

47.37 48.10 

* Including pastures, meadows, lawns, and crops (not in the permanent agriculture category) 

 

Overall, 6,632 samples from 76 species were collected during the citizen-science campaign by 

606 collectors (Freitag et al., 2020). After removing samples with low accuracy of geographic 

coordinates, 6,384 observations were retained. The scientific inventories yielded a total of 1,453 

observations from 51 species, of which 1,090 were found in the soil, 343 along transects and 20 

on trees. In order to have sufficient data for the implementation of the species distribution 

models, only species with 20 or more occurrences in each of the two datasets were kept for the 

remainder of the study. Below this sample size, model performance declines and models become 

prone to over-fitting with reduced reliability when predicting in new areas or environmental 

conditions. (Guisan et al., 2017). This resulted in a list of 15 species: Formica cunicularia, F. 

fusca, F. lemani, F. lugubris/paralugubris, F. pressilabris, Lasius flavus, L. niger, Myrmica 

rubra, M. ruginodis, M. sabuleti, M. scabrinodis, Solenopsis fugax, Temnothorax nylanderi, 

Tetramorium caespitum and T. impurum. It should be noted that Formica lugubris and Formica 

paralugubris are two distinct species, but because it was not possible to distinguish them 

morphologically during identification, and their habitat preferences are very similar, they were 

considered together in this and previous studies (Szewczyk et al., 2022, Preprint). As the number 

of occurrences for some of the chosen species was low in the scientific dataset (24 for F. 

cunicularia, 25 for M. rubra), additional sampling was carried out in spring-summer 2022 in 

the context of the current study at 4 sampling sites following the protocol described above. The 

additional sampling sites were chosen to focus on habitats that were proportionally under-

sampled in the original scientific inventories, such as urban areas, permanent agriculture, and 

coniferous forests. 131 samples were collected and identified morphologically for the Formica, 

Lasius, Solenopsis species, as well as M. rubra and M. ruginodis and genetically for 

Temnothorax and Tetramorium species, M. sabuleti and M. scabrinodis (see Supplementary 

Materials and Methods). 

 

Environmental data 

Environmental predictors for modelling were chosen based on expert knowledge of 

environmental factors influencing ant distribution and diversity (Seifert, 2018), as well as 
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previous research on ant species distribution models (Chen, 2008; Fitzpatrick et al., 2013; 

Hartley et al., 2006; Ward, 2007). Climatic variables at 25 m x 25 m  resolution were extracted 

from the CHClim25 dataset, including precipitation, temperature, growing season and 

Worldclim bioclimatic variables (Broennimann, 2018). The aspect and slope were calculated 

from a Digital Elevation Model using the terrain function from the raster package in R (Hijmans 

et al., 2022). Land-use variables included the proportion of each pixel covered by crops, forests, 

edges, or urban habitat. To take into account the mobility of ants (Seifert, 2018), the proportion 

of each land-use category  was also calculated in a 25 m and 200 m neighborhood around each 

pixel using the function focal from the raster package. Anthropogenic pressures were 

represented by the length of roads and the perimeter of buildings in each pixel using information 

derived from OpenStreetMaps. Information about soil conditions was captured using plant 

Ecological Indicator Values in each pixel (Descombes et al., 2020). As a measure of vegetation 

productivity, the average canopy height by pixel and the mean NDVI during the period 2010-

2020 were used. The average NDVI over the study area was calculated from 206 images 

captured by LANDSAT 5 and LANDSAT 8 using Google Earth Engine. Overall, an initial set 

of 59 predictors with a resolution of 25 m x 25 m over the study area was assembled. Variable 

pre-processing was performed in R 4.1.1 (R Core Team, 2021) and QGIS 3.16.13. 

 

Ecological Niche Quantifications 

To quantify the ecological niche of ant species using each dataset separately, the approach of 

Broennimann et al., 2012 was followed using the ecospat package v3.4 (Broennimann et al., 

2022; Di Cola et al., 2017). In short, an environmental Principal Component Analysis (PCA) 

was calibrated over all the pixels of the study area using the 59 predictor variables, and the first 

two principal components were used to define the environmental space over the canton of Vaud, 

which was divided into a 100 x 100 cell grid. The density of species occurrences in each grid 

cell was calculated by applying a kernel density function to the number of occurrences across 

the environmental space separately for the two datasets, without excluding marginal sites with 

regards to species observations or environmental conditions (threshold = 0). The overlap 

between the species niches as inferred by each dataset was measured using Schoener’s D 

statistic, where 0 indicates no overlap and 1 complete overlap. To assess whether the ecological 

niche modelled with the citizen-science dataset is more similar to the niche modelled with the 

scientific dataset than expected by chance, the similarity tests were performed with 1000 

repetitions. For each repetition, the observed density of species occurrences in the environmental 

space was randomly shifted for one of the two datasets, and the overlap between this simulated 

niche, and the observed niche modeled with the other dataset was calculated. The result of the 

test is significant if the true overlap of the niches modeled with the two datasets is greater than 

95% of the simulated overlap values. The overall size of the ecological niche of each species 

was measured based on the number of grid cells in the environmental space occupied by the 

niche of each species. The proportion of the ecological niche covered by each dataset was 

quantified by calculating the niche stability (i.e.,  proportion of the environmental niche covered 

by both datasets), unfilling (i.e., proportion of the niche covered by the scientific dataset only) 
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and expansion (i.e., proportion covered by the citizen-science dataset only) metrics (see Guisan 

et al., 2014) with the ecospat package. 

 

Species Distribution Models  

As a trade-off between the need to accurately represent the ecological niche of each species on 

the one hand, and the limits imposed by the computation time and the low number of occurrences 

for some species on the other hand (90 observations by species on average in the scientific 

dataset, see Table S1, Supplementary Materials and Methods), it was decided that for each 

species 8 predictors would be chosen to fit the Species Distribution Models (SDM). The nsdm 

package (Adde et al., In review) was used to carry out predictor selection after comparison 

against two other alternative approaches (Elastic Net Generalized Linear Models (GLM) and 

PCA, Table S3, Supplementary Materials and Methods). The nsdm method is based on an 

ensemble approach, which consists of excluding colinear variables with a correlation higher 

than 0.7 and then combining Generalized Additive Models, Random Forest, and Elastic Net 

GLM algorithms to rank the remaining variables based on their importance. Following Barbet-

Massin et al. (2012), 10,000 background points, which were randomly selected in the canton of 

Vaud, were added to the occurrences of both datasets for each species and the two classes, 

presences and background points, were weighted equally. The 8 predictors with the highest 

ranking for each species were retained (Table S4, Supplementary Materials and Methods). 

The distribution of each ant species in the canton of Vaud was modelled using the citizen-science 

and the scientific dataset independently along with the set of 10,000 randomly selected 

background points that was also used for predictor selection. Because of the small amount of 

data for some of the ant species selected for modelling, the Ensemble of Small Models (ESM) 

approach from the ecospat R package was used to predict the distribution of ant species over the 

canton of Vaud, as it has been shown to perform better than conventional SDMs for rare species 

(Breiner et al., 2015; Lomba et al., 2010). This method consists in calibrating multiple small 

models with two predictor variables and averaging their predictions based on the performance 

of each model during evaluation. To fit the bivariate models, the Generalized Boosted Models 

(GBM) algorithm was used, which is recommended to produce ESMs with high predictive 

performance (Breiner et al., 2018). The parameters of the GBM models were fixed according to 

the default biomod2 settings of 2500 trees, a shrinkage of 0.001, a bag fraction of 0.5 and 3 

cross-validation folds, which is within the recommendations of Guisan et al. (2017). The 

interaction depth was set to 2, following the instructions of the ecospat package. To evaluate the 

performance of the models, 19 split-sample evaluation runs were carried out using 70% of the 

data for model training. Models were evaluated based on the Area Under Curve (AUC), the 

maximum value of the True Skill Statistic (MaxTSS), and the Boyce index. The AUC was used 

to weight the bivariate models and create the ensemble predictions. Models with an AUC lower 

than 0.5 were completely excluded from the ensemble predictions as SDMs with a performance 

bellow this threshold were counter-predicting species’ habitat suitability.  

 

 



8 

 

Post-hoc Statistical Analyses 

To compare the predictions of the SDMs using the two datasets, the difference in the occurrence 

probability of each pixel as predicted by the models created either with the citizen-science 

dataset or the scientific dataset was measured. Moreover, the correlation between the habitat 

suitability predicted by each dataset at each pixel over the study area was also calculated using 

Spearman’s correlation index. The proportional contribution of each predictor in the final 

ensemble ESM species distribution models for each species was obtained using the function 

ecospat.ESM.VarContrib from the ecospat package. For each variable, the ratio of the sum of 

AUC of each bivariate model containing the predictor against the sum of AUC of all bivariate 

models without the predictor was calculated and the result was corrected based on the number 

of bivariate models of each ESM with or without this predictor. A ratio higher than 1 indicates 

that a given predictor improves the performance of the model when added compared to the 

average. 

To investigate potential interspecific differences in the performance of the SDMs and the 

correlation between the predictions of the models using the scientific or the citizen-science 

dataset, the relationship between these variables and the species’ niche size was assessed using 

the lme4 package in R (Bates et al., 2015). After controlling for the distribution of the response 

variable and the residuals, a gaussian distribution was assumed. Therefore, linear mixed-effects 

models were used with the niche breadth as the predictor variable, and as response variables for 

each species Spearman’s rho between the two dataset predictions, the AUC of the ensemble 

model for the scientific dataset, or the AUC of the ensemble model for the citizen-science 

dataset. This approach was chosen following Tiago et al. (2017) to account for the potential 

confounding effect of phylogenetic non-independence between the species, by adding the ant 

subfamily (Formicinae or Myrmicinae) as a random effect.  

 

Correction of citizen-science data environmental bias 

To characterize the sampling bias of the citizen-science dataset with regards to the 

environmental conditions in the study area, the environmental bias correction approach of 

Chauvier et al. (2021) was followed. First, a PCA was carried out using the 59 environmental 

predictors as described above, and the first 17 principal components, which explain 95% of the 

variance, were retained. A clustering analysis was carried out using the clara algorithm from 

the cluster package in R (Maechler et al., 2022) with the 17 principal components as predictors 

to separate the study area into 8 environmental clusters. The number of environmental clusters 

was chosen based on the optimal silhouette score (Rousseeuw, 1987) and the number of 

observations available for each species and dataset. The proportion of observations in the 

scientific dataset located in each environmental cluster was quantified and used to subsample 

the citizen-science dataset. The frequency of scientific observations in each environmental 

cluster was used to define the number of citizen-science observations to be sampled, so that, in 

the end, the proportion of observations by cluster would be the same between the scientific and 

the corrected citizen-science dataset. Eleven corrected subsets of the citizen-science dataset 

were created by randomly sampling the appropriate number of observations of the citizen-

science dataset within each environmental cluster. 
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Previous modelling analyses were repeated using these corrected subsets of the citizen-science 

datasets to assess how the random choice of observations by cluster could influence the 

variability of model results. Environmental niche quantifications were performed using 10 

corrected subsets and the niche overlap was quantified. Predictor selection with nsdm was done 

using only one corrected citizen-science subset along with the scientific dataset and the 

previously selected background points. The same set of variables was retained for all subsequent 

modelling to restrain additional model variability that could be due to randomness in the choice 

of predictors. Species distribution models were created for 10 different corrected citizen-science 

data subsets for each species except F. cunicularia, M. scabrinodis and T. impurum, as the 

number of observations in the sub-samples were not sufficient for modelling (see Supplementary 

Materials and Methods, Table S1). The last corrected subset was pooled with the scientific 

dataset to create integrated SDMs for all 15 species. The parameters of the SDMs were identical 

to those in the previous section, however for the models using only the corrected subsets, the 

number of cross-validation folds was reduced to 9 to limit computation time. 

 

 

RESULTS 

Ecological Niche Quantifications 

Broadly speaking, we found high values of overlap between environmental niches modelled 

using either scientific or citizen-science data. The average overlap was of 0.64, with ecological 

niches simulated using the two datasets being significantly more similar than expected by 

chance for all 15 species (Supplementary Materials and Methods, Table S2). Seven ant species 

had a niche overlap equal or higher than 0.7 and only three, Formica cunicularia, F. fusca and 

Temnothorax nylanderi had values of overlap lower than 0.5 (0.344, 0.380 and 0.473 

respectively). 

The proportion of the environmental space covered by the niche simulated with the citizen-

science dataset but not the scientific dataset was for all species higher than the proportion 

covered by the scientific dataset only (Figure 1). In fact, the percentage of the niche covered by 

the scientific dataset exclusively never surpassed 25% (mean: 0.065  ±  0.077), whereas as much 

as 48% of the niche of the species F. fusca was represented only by the citizen-science dataset 

(mean: 0.184 ± 0.116). After examining the coverage of the ecological niches in the 

environmental space, we observed that niches modelled with the citizen-science dataset tended 

to be located towards more positive values along the first PCA axis, associated with higher 

temperatures and lower precipitation (Supplementary Materials and Methods, Figure S1). 

 

Figure 1 (next page). Results of ant species environmental niche quantifications. The axes 

represent the first two principal components of the environmental PCA. Red lines delimit the 

extent of the environmental space of the study area. The zones of the environmental space 

covered only by the ecological niche of each species simulated with the scientific or the citizen-

science dataset are given in green and pink respectively. Areas covered by both datasets are in 

purple. 
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Species Distribution Models 

The performance of SDMs varied between species and depending on the dataset chosen for 

modelling, however, no model was poorly evaluated (mean AUC: 0.873 ± 0.061, 

Supplementary Materials and Methods, Table S5). Seven species had excellent model 

performance based on the AUC (values larger than 0.9) when using occurrences from the 

scientific dataset compared to 4 species when using the citizen-science dataset. Model 

performance was good (AUC between 0.8 and 0.9) for 4 species with the scientific and 10 

species with the citizen-science dataset. Finally, the remaining 4 ant species using the scientific 

dataset and 1 species using the citizen-science dataset had a fair model performance (AUC 

between 0.7 and 0.8). 

Ensemble model predictions of habitat suitability over the study area highlighted differences in 

environmental preferences between ant species in the canton of Vaud. For the sake of 

conciseness, the predictions of the models are presented for 4 selected species representing 

different challenges for data sampling by volunteers in Figure 2. Formica pressilabris and 

Lasius niger show more specific habitat preferences, the former occurring mainly in 

mountainous and alpine grasslands and the later in rural and urban areas (Seifert, 2018). 

Formica fusca occupies a wider range of land-use types including both natural and urban areas. 

Finally, Temnothorax nylanderi prefers broadleaved forests and can be difficult to detect due 

to its small size and nesting habits.  The maps of habitat suitability predictions for the remaining 

species are given in the Supplementary Materials and Methods (Figures S2-S4).  

The distributions predicted by models based on either the scientific or the citizen-science 

dataset were more consistent for species occurring preferentially in specific habitat types. For 

example, both predicted higher occurrence probabilities in the Jura mountains and western Alps 

for species F. lemani, F. pressilabris and F. lugubris/paralugubris that are known to occur in 

montane and alpine grasslands or forests. On the other hand, we found higher divergence 

between model predictions for more generalist species establishing in both natural and rural or 

urban areas. This can be observed for species F. cunicularia and F. fusca which occur in natural 

grasslands as well as rural or disturbed habitat in peri-urban areas. The scientific dataset 

predicted higher habitat suitability in hilly and mountainous areas while the citizen-science 

dataset predicted higher habitat suitability across the central plateau and in urban areas in the 

south. 

Overall, maps of the difference between the predictions of the citizen-science and the scientific 

models revealed that the citizen-science dataset tended to over-predict the suitability of urban 

areas compared to the scientific dataset for many ant species, such as L. niger (Figure 2, right 

panels). We also detected this divergence in habitat suitability predictions when comparing the 

response curves produced by the models using the two datasets. Citizen-science models in 

which the percentage of urban habitat within or in the neighborhood of each pixel was chosen 

as a predictor indicated a rise in probability of occurrence when the percentage of urban area 

increased for the majority of species. On the other hand, models based on scientific data showed 

only moderate or no change in the probability of occurrence as a function of predictors related 

to urban habitat.  
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Figure 2. Results of ant species distribution models for 4 selected species: i) Predicted habitat suitability 

using the scientific dataset, ii) predicted habitat suitability using the citizen-science dataset, iii) 

difference between the predictions of the citizen-science models and the scientific models. Red color 

indicates that the predictions of the citizen-science models are higher than the scientific models. 
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Generally speaking, the response curves for the other environmental predictors chosen in this 

study showed comparable relationships between the models based on the scientific or the 

citizen-science dataset. The relative importance of model environmental predictors was also 

similar between datasets for the majority of the variables selected in the models (Figure 3). The 

predictors with the greatest relative importance for both datasets and across all species were the 

aspect, evapotranspiration and soil pH, however, the last two variables were only selected in 

the models for one species (F. lemani and T. nylanderi respectively). The importance of urban 

habitat as a predictor was higher for models using the scientific dataset compared to the citizen-

science dataset, the performance of the majority of the bivariate citizen-science models 

including these predictors performed slightly worse than the average bivariate model within a 

given ESM.  

 

Comparison of SDMs predictions between datasets and species 

The correlations between the predictions of the SDMs using the scientific or the citizen-science 

data further confirmed the results obtained through the environmental niche quantifications. 

The habitat suitability in a given grid cell of the study area as predicted by the scientific dataset 

was positively correlated to the corresponding citizen-science prediction for all species  with 

an average Spearman’s rho of 0.74 (p-value < 0.05). Nevertheless, we identified large 

interspecific differences in the strength of the relationship (Figure 4). The correlation was 

higher than 0.75 for 11 out of the 15 ant species, with 5 species having a value higher than 0.9. 

Interestingly, species with the lowest niche overlap also showed the lowest values of 

correlation. Among those F. fusca, M. sabuleti and T. nylanderi had a correlation around 0.5. 

F. cunicularia had the lowest correlation value at 0.004. For these 4 species, cells where the 

scientific dataset predicted low habitat suitability tended to have low suitability in the citizen-

science predictions as well, however areas with higher habitat suitability as predicted by the 

scientific dataset could correspond to a wide range of suitability values in the citizen-science 

predictions. 

Interspecific differences in the correlation between dataset model predictions could not be 

explained based on the species’ environmental niche breadth, but a strong relationship was 

detected with regards to model performance (Supplementary Materials and Methods, Figure 

S7). We found that Spearman’s rho between model predictions of the scientific and citizen-

science dataset was not significantly correlated to niche breadth quantified through 

environmental niche quantifications, although a slightly negative relationship was found 

(adjusted R2 = -0.003488, p-value = 0.35). On the other hand, model performance measured by 

the AUC was negatively correlated to niche breath for both models created using the scientific 

or the citizen-science dataset (adjusted R2 = 0.5579, p-value < 0.05 and adjusted R2 = 0.8432, 

p-value < 0.05 respectively). SDMs performed therefore comparatively worse when modelling 

the distribution of species whose inferred environmental niche breadth was larger. Adding 

phylogeny as a random effect did not improve model fit. For all three models, variance between 

subfamilies was very low and simple linear models using only niche breadth as a predictor 

yielded a slightly better AIC. 
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Figure 3. Relative importance of variables in the ant SDMs using i) the scientific dataset, ii) 

the citizen-science dataset. Each point represents the importance of the variable for one 

species. Variables related to temperature, precipitation and habitat types were combined to 

facilitate visualization. 

 

i) 

ii) 
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Figure 4. Relationship between the predictions of habitat suitability from the models created 

with the scientific (x axis) or the citizen-science dataset (y axis). Kernel density plots were built 

using the predictions at 10,000 random grid cells over the study area. Spearman’s rho is given 

in white. 

 

Correction of citizen-science dataset 

Producing subsets of the citizen-science dataset corrected for environmental bias improved 

largely the overlap between the environmental niche quantified with the scientific dataset and 

the niche simulated with the corrected citizen-science dataset for all 15 species (mean: 0.740 ± 

0.082, Figure 5). We found that the species with the lowest overlap when using the citizen-

science dataset before correction were those that presented the highest increases in niche 

overlap after correction. As a result, 10 ant species had an average niche overlap larger than 0.7 

and the remaining 5 species had an overlap higher than 0.5. Overall, the mean niche overlap 

increased by 0.1, from 0.64 to 0.74. Niche similarity between the scientific data and the 

corrected citizen-science subsets was statistically significant for the majority of species with 

the exception of M. rubra. Most quantified niches of this species using the corrected citizen-

science subsets were not significantly similar to the niche based on the scientific dataset. 

Species Distribution Models created using the corrected subsets of the citizen-science dataset 

were evaluated as “fair” or above (all AUC values > 0.7, mean: 0.895 ± 0.053). The consistency 

in the predictions of habitat suitability over the study area across corrected subsets varied 

between species (Supplementary Materials and Methods, Figure S5). Predictions were highly 

consistent for F. lugubris/paralugubris, F. pressilabris and L. niger as the standard deviation 

in the values of habitat suitability by grid cell in the canton of Vaud was overall low. For the 

other species, the highest values of standard deviation were located in areas with the highest 



16 

 

predicted probability of occurrence. For example, areas of high elevation presented increased 

variation in habitat suitability for F. lemani, while for S. fugax the most variable areas were 

located along the central plateau and around urban habitats. 

 

 

Figure 5. Overlap between ant environmental niches quantified using i) the scientific dataset 

and the citizen-science dataset (points), ii) the scientific dataset and 10 different randomly 

selected subsets of the citizen-science dataset corrected for environmental bias (boxplots). 

 

Similarly to niche overlap, we also observed an improvement in the value of Spearman’s 

correlation between scientific and citizen-science predictions for the majority of the species 

studied (Supplementary materials and Methods, Figure S8). Species for which the correlation 

between the predictions of the scientific and the uncorrected citizen-science dataset were low 

had the greatest increase (from 0.52 to 0.72 for F. fusca and 0.46 to 0.64 for M. sabuleti). 

However, we also recorded slight reductions in the values of the correlation between predictions 

for 4 of the 15 species. These included 3 species with a high correlation between scientific and 

uncorrected citizen science predictions (F. pressilabris, M. ruginodis, S. fugax), as well as L. 

flavus which witnessed the largest decline in Spearman’s value of rho (from 0.84 to 0.79). L. 

flavus along with T. nylanderi also presented a larger variability in the value of correlation by 

corrected citizen-science subset compared to the other species. 

 

Integrated Species Distribution Models 

The predictions of habitat suitability across the canton of Vaud for the 15 ant species produced 

by pooling the scientific and the corrected citizen-science data are intermediate between those 

made by using each dataset individually (Figure 6, Supplementary Materials and Methods, 

Figures S2-S4). Although the predictions tended to be visually closer to the models based on 



17 

 

the scientific dataset than on the uncorrected citizen-science dataset, they also highlighted areas 

that were identified by the citizen-science models as important for each species. For example, 

the probability of occurrence in peri-urban areas was comparatively larger in the predictions of 

the pooled dataset for species F. fusca and S. fugax. Similarly to models created using only one 

of two datasets, SDM performance was satisfactory for all 15 species with 5 species having an 

excellent performance, 8 species with a good AUC, and the remaining 2 species being evaluated 

as fair. 

 

 

Figure 6. Results of ant species distribution models for 4 selected species using the scientific 

and the corrected citizen-science dataset 

 

The relative importance of environmental predictors in the integrated models of ant species 

distributions was different from the models using either the scientific or the citizen-science 

dataset (Supplementary Materials and Methods, Figure S6). Although aspect remained the 

predictor with the highest relative importance on average, variables related to precipitation and 
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soil properties such as nutrients and moisture variation played a larger role. The importance of 

land-use predictors declined when both the scientific and the corrected citizen-science data were 

considered. Variables related to the proportion of urban habitat were less often selected as 

predictors in the models and the response curves showed a more moderate relationship to the 

probability of occurrence compared to models using the citizen-science dataset before 

correction. Nevertheless, habitat suitability tended in general to increase along with the 

percentage of urban habitat for species F. fusca, L. niger, S. fugax and T. caespitum. 

 

 

DISCUSSION 

In this study, we assessed the reliability of using citizen-science data for species distribution 

modelling and showed that environmental niche quantifications and species distribution models 

based either on scientific or citizen-science data yielded comparable results for the majority of 

the 15 selected ant species. Despite the high values of niche overlap and correlation between 

model predictions, we found large species-specific differences in the consistency of analysis 

results between the two datasets. These differences are attenuated when applying the correction 

method, as there is a large improvement in both overlap and correlation values.  

 

Comparison of scientific and citizen science model results 

The high values of niche overlap and Spearman’s correlation between the predictions of the 

models using either the scientific or the citizen-science dataset for the majority of ant species 

indicate that in general citizen-science data can be used to get reliable predictions on species 

distributions. Our results are therefore in line with previous findings for bird species, which 

demonstrated high overlap when comparing model predictions of habitat suitability quantified 

based on citizen-science data and scientific data from aerial surveys or satellite telemetry 

(Coxen et al., 2017; Tanner et al., 2020). Similarly to Tiago et al. (2017), we find large 

interspecific differences in niche overlap, although in our study the proportion of the 

environmental niche area covered by both the scientific and citizen-science niches is on average 

around 80% and never lower than half of the total niche. The lower values might be observed 

because the authors used as their reference scientific dataset atlas data spanning multiple years 

and therefore with more available observations. Additionally, amphibians and reptiles may be 

more furtive and difficult to detect for volunteers in comparison to ants. Compared to our 

findings regarding niche overlap (i.e., in environmental space), the results of SDM predictions 

(i.e., in geographic space) present more variation. The similarity of response curves and 

predictor importance between models based on the scientific or the citizen-science dataset is 

consistent with the conclusions of Tye et al. (2017), who investigated the bias of citizen-science 

data when modelling the distribution of a rare squirrel species. The variability in correlation 

between model predictions indicates that they may be more sensitive to species characteristics, 

however because of the role of chance when selecting predictors and calibrating the models, 

the absolute values should be interpreted with caution. Overall, the relationship between model 

predictions suggests that for species with low correlations, scientific and citizen-science models 
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are in agreement on low suitability or unsuitable habitats, but in contrast concerning areas of 

high suitability. 

Broadly speaking, using citizen-science data in SDMs can lead to over-estimating the suitability 

of urban areas as habitats for ant species. This is reported both for species occurring frequently 

in urban areas with consistent model predictions between the scientific and the citizen-science 

models (L. niger, S. fugax), and for species occurring in natural and peri-urban areas for which 

the scientific and citizen-science models favored the respective habitat type (F. cunicularia, F. 

fusca). These results concur with previous studies across a wide range of taxonomic groups 

demonstrating that citizen-science data are often biased towards highly populated areas, closer 

to settlements and with denser road networks, which are more accessible to volunteers (Botts 

et al., 2011; Cretois et al., 2021; Mair & Ruete, 2016). For example, Planillo et al. (2021) studied 

nightingale distributions in Berlin using SDMs and showed that opportunistic citizen-science 

data greatly over-predicted the suitability of urban areas compared to more important remote 

areas. The overestimation of urban habitat suitability can be linked to the results of 

environmental niche quantifications, as citizen-science niches were located in drier and warmer 

areas in the environmental space. Urban areas in the canton of Vaud are found at lower 

elevations in the central plateau, where temperature is higher and precipitations lower. 

Additionally, a heat island effect is often observed in urban habitats (Rizwan et al., 2008), and 

studies have shown that urban areas can facilitate the establishment of  ant species adapted to 

drier and warmer environments (Menke et al., 2011). 

Species-specific characteristics such as habitat preferences can partially explain the 

interspecific differences we observe in niche overlap and correlation between model 

predictions. In general, consistent predictions between the scientific and citizen-science models 

are produced for species occurring in specific habitat types, such as grasslands (F. lemani, F. 

pressilabris), forests (F. lugubris/paralugubris) or rural and urban areas (L. niger). On the other 

hand, generalists occurring in both natural and urban or disturbed habitats show a larger 

divergence in model predictions, especially more thermophilic species (F. cunicularia, F. fusca, 

M. sabuleti). As a result, the size of the environmental niche can be an important factor 

determining if citizen-science data are appropriate to model the distribution of a given species. 

Reductions in niche size can provide useful information about potential increases in species' 

extinction threat (Breiner et al., 2017), and high-quality results of niche quantification analyses 

for species with lower niche breadth could be encouraging for the use of citizen-science data in 

IUCN Red List assessments of vulnerable species. Indeed, both overlap between niches 

quantified with scientific or citizen-science data and SDM performance have been found to 

negatively correlate with niche breadth in previous studies (Connor et al., 2018; Tiago et al., 

2017). Our findings confirm the second relationship, however the correlation between niche 

breadth and Spearman’s rho between predictions was slightly negative but not significant. This 

difference may be due to the small number of species studied but can also indicate the greater 

role of specific functional traits related to species distributions. Traits related to diet and habitat 

have been shown to influence the over- or under-prediction of bird species diversity using 

SDMs (Zurell et al., 2016). Species detectability can also affect SDM performance and 

predictions of species persistence, especially when it varies between habitats (Lahoz-Monfort 

et al., 2014; Ruiz-Gutiérrez & Zipkin, 2011).  For example, in our study, the low correlation 
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between model predictions for the species T. nylanderi can be explained by reduced detection 

in forest habitats by volunteers, as it is small-sized and frequently nesting in plant material such 

as hollow nuts or acorns (Seifert, 2018).  

Despite differences in model performance between species, the AUC indicated fair 

performance or above for all our models using scientific or citizen-science data. Model 

performance during evaluation is commonly used to compare SDM results and multiple studies 

have shown that citizen-science models perform on average similarly to scientific models 

(Johnston et al., 2020; Tanner et al., 2020; Tye et al., 2017). However, when model evaluation 

is done internally, for example through cross-validation, the value of performance metrics may 

remain high even when spatial bias is strong, because this bias is also present in the evaluation 

data (Beck et al., 2014). For this reason, the AUC values obtained during this study cannot be 

used to directly compare the models produced with the two datasets and should only be 

considered as an indication of the quality of model predictions. Ideally, to confirm that citizen-

science model results are in good agreement with those based on scientific surveys, an external 

scientific evaluation dataset should be used (Matutini et al., 2021). Unfortunately, since the 

number of observations was limited for a lot of species in our scientific data, we could not 

follow such an approach. Future surveys of ant diversity in the canton of Vaud could potentially 

provide valuable data to complement and further support our results. 

 

Correction of bias in citizen-science data 

The increase in both the niche overlap and the correlation between the predictions of the models 

using the scientific or the citizen-science data suggests that the correction approach developed 

in the current study has the potential to reduce the environmental bias present in large citizen-

science datasets. The utility of the correction method is further demonstrated when considering 

that the highest improvement is observed for the species with the lowest values of niche overlap 

and correlation between predictions. In the case of the species F. cunicularia and F. fusca for 

example, there is a clear bias of the citizen-science dataset towards urban areas reflected in the 

predictions of the citizen-science models that is greatly reduced after the application of 

environmental correction. On the other hand, the more moderate increase in niche overlap for 

the species with the largest values is expected as the environmental bias in the citizen-science 

data is lower. The absence of improvement or decrease in the degree of correlation between the 

predictions of models with the scientific and corrected citizen-science dataset for species with 

previously high correlation can be justified in part by the role of random effects during species 

distribution modelling. Another possible explanation for this result is that environmental 

variables for modelling were selected using the scientific dataset and one of the corrected 

subsets of the citizen-science dataset instead of repeating the process for each subset separately. 

As a result, some models may not have had the optimal predictors, which could have made 

predictions more similar to those of the scientific dataset. 

Compared to alternative methods designed to account for bias in citizen-science data, our 

approach offers a relatively simple way to correct environmental bias when the density of 

sampling effort across the study area is unknown. This information is necessary for bias 

correction methods that rely on using proxies of volunteer sampling effort as predictors in 
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models or to determine the selection of background points, for example by sampling more 

points in areas with higher effort (Milanesi et al., 2020; Rutten et al., 2019; Ver Hoef et al., 

2021). Methods based on integrating observations from multiple species or datasets can handle 

the presence of bias without explicit information on sampling effort, however they require the 

application of more complex modelling algorithms, such as point-process models, which may 

be less accessible to many ecologists (Fithian et al., 2015; Isaac et al., 2020). Another option 

often preferred when dealing with biased citizen-science data is to reduce spatial bias by 

thinning, that is removing observations highly clustered in space (Aiello-Lammens et al., 2015). 

Although spatial thinning in many cases can improve SDM performance, it frequently fails in 

successful bias correction and can be inappropriate to use for rare species and more generally 

with datasets of small sample sizes due to the reduction in the number of species’ occurrences 

(Johnston et al., 2020; Steen et al., 2021). Additionally, recent studies showed that the 

distribution of bias in environmental space plays an important role in the success of spatial 

thinning approaches (Baker et al., 2022; Kadmon et al., 2004), and indicated that applying 

environmental filters when thinning observations improves model performance compared to 

geographical filters (Varela et al., 2014). By subsampling citizen-science observations within 

environmental clusters, our approach implements environmental thinning and takes advantage 

of the scientific dataset to estimate differences in sampling effort across environmental 

conditions.   

Although the method developed in the current study has the potential to improve bias correction 

in citizen-science datasets, there also some limitations that should be considered. Firstly, a 

prerequisite to apply this technique is the presence of scientific data in the study area for the 

species of interest, yet these data may be missing for under-studied areas or taxonomic groups 

(Amano et al., 2016). Secondly, a core assumption of our method is that the reference scientific 

dataset is unbiased with regards to sampling effort across the study area. Previous studies have 

shown that structured scientific datasets can also be biased, for example with regards to roads 

(Tye et al., 2017). In this case, environmental bias correction could lead to replacing the citizen-

science data bias with the scientific data bias in model predictions. The random-stratified 

sampling scheme used to collect the scientific data in the current study ensures that the sampling 

bias with regards to habitat types, including transportation infrastructures, is limited, however 

this consideration should be taken into account when applying the method to other datasets.  

Another limitation is that, when the number of observations in the scientific dataset is low, 

citizen-science data can bring new information on the distribution of a species (Dickinson et 

al., 2010), which could be lost during correction. Finally, similarly to spatial thinning, 

environmental thinning also greatly decreases the number of observations in the citizen-science 

dataset. Still, models based on few observations of high quality often outperform uncorrected 

datasets (Varela et al., 2014). A potential solution to the last two limitations would be to apply 

partial environmental thinning, where the frequency of scientific observations by environmental 

cluster is used as weights to subsample the citizen-science dataset, instead of sampling strictly 

the same proportion of points. This approach can both retain some of the information of the 

citizen-science dataset concerning the spatial distribution of species’ occurrences and ensure 

that a higher number of observations is kept. 
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Integrated models and future perspectives 

In this study, we combined scientific and corrected citizen-science data to model the 

environmental niches and distributions of 15 ant species in the canton of Vaud from a wide 

range of habitat types, such as species associated with urban areas (L. niger), mountainous and 

alpine grasslands (F. pressilabris) and coniferous or mixed forests (F. lugubris/paralugubris). 

The predictions of the integrated models offer an overview of ant diversity in the study area and 

highlight important sites for ants, including the high elevation areas of the Jura mountains and 

the western Swiss Pre-Alps. Ant species are protected in the canton of Vaud (Avril et al., 2019), 

and there is great interest in their conservation, especially in the case of wood ant colonies 

(Formica s.str sub-genus) in national parcs (Parc Jura vaudois, 2022). This is not surprising 

considering that ants participate in various ecosystem services, such as seed dispersal, 

pollination, and regulation of pest populations (Del Toro et al., 2012). In the soil, ants act as 

ecosystem engineers and can modify its physical and chemical properties during nest 

excavation (Folgarait, 1998). Citizen-science data can be invaluable to study this important 

taxonomic group, allowing to model the distributions of a larger number of species compared 

to using scientific data only. Future studies could expand our modelling strategy to produce 

maps of ant species richness in the canton of Vaud, in order to guide subsequent sampling 

campaigns or for conservation planning purposes. 

The consistency in environmental niches and SDM results between the scientific and the 

citizen-science dataset also underlines that citizen-science data have many promising 

applications in future ecological and conservation studies. With regards to the Opération 

Fourmis data, several opportunities for further research exist. For example, the degree of niche 

overlap between closely related ant species can be used to study if pairs of  species with higher 

hybridization rates have more similar environmental niches (Lavanchy, 2022). SDM results can 

also be used to predict the spread of invasive ant species in canton of Vaud, for example by 

combining them with a model simulating dispersal or migration (e.g. MigClim, Engler et al., 

2012), or to study the impacts of climate and land-use change on ant distributions (Bertelsmeier 

et al., 2016; Bujan et al., 2021; Del Toro et al., 2015). 

In conclusion, our results highlight how citizen-science data can reliably be used to model 

species environmental niches and distributions. Nevertheless,  researchers should be mindful 

of the characteristics of the species modelled, such as habitat preferences and detectability, in 

conjunction with the distribution of environmental conditions in their study area. Correcting the 

environmental bias present in the citizen-science data can be a simple and efficient solution to 

avoid overestimating the importance of unsuitable habitats. 
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SUPPLEMENTARY METHODS 

Genetic identification of ant species 

The additional ant samples collected during spring-summer 2022 in the context of this project 

were identified genetically at the species level with the following protocol. For each sampled 

colony of the Temnothorax and Tetramorium genera, as well as Myrmica species that could not 

be identified morphologically as Myrmica rubra or Myrmica ruginodis, a single worker was 

chosen for genetic identification based on the mitochondrial COI gene. After removing the 

abdomen, each individual was placed in a vial in liquid azote for 5 minutes and afterwards 

ground at 6200 rpm for 30 seconds. 180 μl of buffer ATL and 20 μl were added to each tube, 

and the samples were left to digest overnight at 56 oC and 30 rpm. DNA extraction was 

performed using the QIAGEN DNeasy Blood & Tissue kit with the following change: 100 μl of 

EB buffer were used for DNA elution. PCR was performed using the LCO and HCO primers, 

following the protocol in Lavanchy (2022), and DNA concentration was assessed through gel 

electrophoresis. Samples were sent to Microsynth AG, Switzerland, for Sanger sequencing. 

Sequencing trace files were corrected and trimmed with the MEGA-X software (Kumar et al., 

2018) and samples with ambiguous results were excluded from further analyses. For the 

Tetramorium and Myrmica individuals, COI sequence reads were aligned to previously analyzed 

Tetramorium and  Myrmica sequences respectively from the 2019 Opération Fourmis campaign 

using the MUSCLE algorithm with default settings. Temnothorax samples were excluded 

because of the poor quality of sequencing results. Maximum likelihood phylogenies for each 

genus were built in MEGA-X using the GTR + I + Γ model of DNA evolution with 100 bootstrap 

repetitions and fast SRP branch swapping. To identify the species, the clustering of the new 

samples with the already identified 2019 Opération Fourmis samples in the phylogeny was 

investigated. The bootstrap values were used to determine if the identification could be done 

confidently. When the result was ambiguous because of clustering with Opération Fourmis 

samples belonging to multiple species or low bootstrap values, the sample was considered as 

unidentified and not included in the models. 

 

Predictor selection 

To determine the most appropriate method for the selection of modelling environmental 

predictors, three alternative approaches were assessed using the data from the 2019 Opération 

Fourmis project. First, a PCA was carried out using the values of the environmental variables at 

the coordinates of the species observations for both datasets, and the first principal components 

explaining 95% of the variance were retained for each species. Secondly, a penalized regression 

using Elastic Net GLM was performed using the glmnet package v.4.1-2 (Friedman et al., 2010), 

and the number of retained variables at the end of the analysis was assessed. For each species 

the occurrences in both datasets were combined with a set of 10,000 randomly selected 

background points across the study area, following Barbet-Massin et al. (2012). Weights were 

applied to the observations to control for prevalence and give equal weight to presences and 

background points. All the predictors were added as both linear and quadratic terms to the 

regression, as especially for climatic variables quadratic terms represent better the response 

curve of a species. Finally, the nsdm package was used as described in the main text. The number 
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of predictors selected by each method is given in Table S3. Although both the PCA and the 

nsdm method yield comparable results and allow for ranking of the predictors based on their 

importance, nsdm provides a ranking of the original predictors, which are more easily 

interpretable than the principal components obtained through the PCA. 

 

 

SUPPLEMENTARY MATERIALS 

Species occurrence data 

Table S1. Number of occurrences for each of the selected species in i) the scientific dataset, ii) the 

citizen-science dataset, iii) the subsamples of the citizen-science dataset after correction of the 

environmental bias. 

Species Scientific Data Citizen-science Data Corrected C-S Data 

Formica cunicularia 30 386 15 

Formica fusca 33 125 39 

Formica lemani 115 140 42 

Formica 

lugubris/paralugubris 

87 449 314 

Formica pressilabris 181 79 73 

Lasius flavus 194 306 85 

Lasius niger 241 1300 312 

Myrmica rubra 26 86 36 

Myrmica ruginodis 133 244 40 

Myrmica sabuleti 42 116 35 

Myrmica scabrinodis 82 33 14 

Solenopsis fugax 44 100 39 

Temnothorax nylanderi - 

GR 

73 66 25 

Tetramorium caespitum 46 286 78 

Tetramorium impurum 24 53 18 

 

 

Environmental Niche Quantifications 
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Figure S1. Correlation circle using the first two axes of the PCA over the 59 environmental predictors 

chosen in the study area. 

 
Table S2. Results of environmental niche modelling for each species using the scientific and the citizen-

science dataset. Statistically significant values are given in bold. 

Species Overlap D Niche area 

covered by 

the scientific 

dataset 

(unfilling) 

Niche area 

covered by 

both datasets 

(stability) 

Niche area 

covered by the 

citizen-science 

dataset 

(expansion) 

Formica cunicularia 0.344 0.133 0.7 0.3 

Formica fusca 0.38 0.216 0.517 0.483 

Formica lemani 0.689 0.025 0.84 0.16 

Formica 

lugubris/paralugubris 0.719 0.007 0.811 0.189 

Formica pressilabris 0.769 0.033 0.946 0.054 

Lasius flavus 0.704 0.011 0.925 0.075 

Lasius niger 0.595 0.003 0.906 0.094 

Myrmica rubra 0.639 0.113 0.782 0.218 

Myrmica ruginodis 0.809 0.027 0.936 0.064 

Myrmica sabuleti 0.562 0.022 0.742 0.258 

Myrmica scabrinodis 0.668 0.026 0.794 0.206 

Solenopsis fugax 0.7 0.09 0.897 0.103 

Temnothorax nylanderi - 

GR 0.473 0.237 0.737 0.263 

Tetramorium caespitum 0.755 0.03 0.928 0.072 

Tetramorium impurum 0.746 0 0.785 0.215 

 

 

Predictor selection 

Table S3. Number of environmental predictors selected for modelling using each predictor selection 

method: i) Elastic Net GLM. The number of predictors based on the lambda with the least square error 

is given within the parenthesis and the number of predictors for the value of lambda at 1 standard 

deviation of the least square error is given outside the parenthesis. Because predictors are added as 

both linear and quadratic terms, the maximum number of potential predictors for this method is 118. ii) 

Principal Component Analysis, iii) NSDM package. 

Species Elastic Net GLM PCA NSDM 

Formica cunicularia 63 (63) 17 20 

Formica fusca 42 (48) 16 15 

Formica lemani 12 (58) 16 17 

Formica lugubris/paralugubris 35 (57) 17 15 

Formica pressilabris 43 (46) 15 19 

Lasius flavus 40 (64) 17 19 

Lasius niger 49 (101) 19 19 

Myrmica rubra 77 (88) 16 16 

Myrmica ruginodis 41 (82) 16 17 

Myrmica sabuleti 33 (49) 15 18 

Myrmica scabrinodis 21 (26) 15 14 

Solenopsis fugax 37 (45) 17 17 

Temnothorax nylanderi - GR 118 (118) 15 19 

Tetramorium caespitum 53 (77) 18 18 
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Tetramorium impurum 14 (15) 14 16 

 

Table S4. Predictor variables selected for species distribution modelling by i) pooling the scientific 

dataset and the citizen-science dataset for each species before the correction, ii) pooling the scientific 

dataset and a subset of the citizen-science dataset corrected for environmental bias. 

Species Predictors before correction Predictors after correction 

Formica cunicularia Urban area % within 200 m, 

Light EIV, 

Continentality EIV, 

Maximum consecutive days 

without frost, 

NDVI, 

Soil nutrients EIV, 

Forest area %, 

Slope 

Edge area % within 200 m, 

NDVI, 

Canopy height, 

Duration of daily sunshine, 

Aspect, 

Aridity index, 

Mean diurnal range 

Urban area % within 25 m 

Formica fusca Annual precipitation, 

Soil moisture EIV, 

Edge area % within 200 m, 

Forest area % within 25 m, 

Urban area %, 

NDVI, 

Soil humus EIV, 

Aspect 

Edge area % within 200 m, 

Soil nutrients EIV, 

Continentality EIV, 

Urban area % within 25 m, 

Temperature annual range, 

Mean temperature of driest 

quarter, 

Maximum consecutive days 

without frost, 

Forest area % within 25 m 

Formica lemani Soil nutrients EIV, 

Evapotranspiration, 

Temperature annual range, 

Forest area % within 25 m, 

Duration of daily sunshine, 

Soil moisture EIV, 

Perimeter of buildings, 

Aspect 

Soil nutrients EIV, 

Temperature annual range, 

NDVI, 

Evapotranspiration, 

Forest area % within 25 m, 

Edge area % within 200 m, 

Isothermality, 

Continentality EIV 

Formica 

lugubris/paralugubris 

Temperature seasonality, 

Slope, 

Aspect, 

Edge area % within 25 m, 

Soil humus EIV, 

Edge area % within 200 m, 

Canopy height, 

Mean temperature of driest 

quarter 

Temperature annual range, 

Soil nutrients EIV, 

Evapotranspiration, 

Mean temperature of driest 

quarter, 

Slope, 

Aspect, 

NDVI, 

Edge area % within 200 m 

Formica pressilabris Temperature annual range, 

Canopy height, 

Precipitation of warmest 

quarter, 

Mean temperature of wettest 

quarter, 

Soil aeration EIV, 

Isothermality, 

Slope, 

Light EIV 

Temperature annual range, 

Canopy height, 

Mean temperature of wettest 

quarter, 

Precipitation of warmest 

quarter, 

Soil aeration EIV, 

Light EIV, 

Slope, 

Urban area % within 200 m 

Lasius flavus Continentality EIV, 

Urban area % within 25 m, 

NDVI, 

Precipitation of warmest 

quarter, 

Continentality EIV, 
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Edge area % within 200 m, 

Slope, 

Aspect, 

Duration of daily sunshine, 

Soil humus EIV 

Edge area % within 200 m, 

Mean temperature of driest 

quarter, 

Forest area %, 

NDVI, 

Aspect, 

Length of roads 

Lasius niger Urban area % within 25 m, 

Maximum consecutive days 

without frost, 

Edge area % within 200 m, 

Isothermality, 

Perimeter of buildings, 

Aspect, 

Slope, 

Temperature annual range 

Maximum consecutive days 

without frost, 

Slope, 

Urban area % within 200 m, 

Soil nutrients EIV, 

Edge area % within 200 m, 

Soil humus EIV, 

Light EIV, 

NDVI 

Myrmica rubra Edge area % within 200 m, 

Soil moisture variation EIV, 

Urban area % within 25 m, 

Edge area %, 

Soil humus EIV, 

Permanent agricultural area % 

within 200 m, 

NDVI, 

Mean diurnal range 

Soil moisture variation, 

NDVI, 

Edge area % within 200 m, 

Soil humus EIV, 

Duration of daily sunshine, 

Urban area % within 25 m, 

Edge area %, 

Isothermality 

Myrmica ruginodis Edge area % within 200 m, 

Forest area % within 25 m, 

Precipitation of wettest month, 

NDVI, 

Precipitation seasonality, 

Edge area %, 

Continentality EIV, 

Soil humus EIV 

Forest area % within 25 m, 

NDVI, 

Edge area % within 200 m, 

Mean temperature of driest 

quarter, 

Aridity index, 

Slope 

Edge area % within 25 m, 

Urban area % within 200 m 

Myrmica sabuleti Soil moisture EIV, 

Soil nutrients EIV, 

Edge area % within 200 m, 

Canopy height, 

Mean temperature of driest 

quarter, 

Urban area % within 200 m, 

Permanent agricultural area % 

within 200 m, 

NDVI 

Continentality EIV, 

Mean temperature of wettest 

quarter, 

Edge area % within 25 m, 

Permanent agricultural area 

% within 25 m, 

Evapotranspiration 

Forest area % within 25 m, 

Aspect, 

Duration of daily sunshine 

Myrmica scabrinodis Canopy height, 

Edge area % within 200 m, 

Temperature seasonality, 

Slope, 

Mean temperature of wettest 

quarter, 

Urban area % within 200 m, 

Soil humus EIV, 

Permanent agricultural area % 

within 200 m 

Temperature seasonality, 

Canopy height, 

Edge area % within 200 m, 

Slope, 

Urban area % within 200 m, 

Mean temperature of wettest 

quarter, 

Permanent agricultural area 

% within 200 m, 

NDVI 

Solenopsis fugax Urban area % within 200 m, 

Continentality EIV, 

Continentality EIV, 

Urban area % within 200 m, 

Aridity index, 
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Permanent agricultural area % 

within 200 m, 

Soil moisture variation EIV, 

Aridity index, 

NDVI, 

Mean temperature of driest 

quarter, 

Aspect 

Light EIV, 

Edge area % within 25 m, 

Soil humus EIV, 

Duration of daily sunshine, 

Aspect 

Temnothorax nylanderi - 

GR 

Canopy height, 

Precipitation seasonality, 

Edge area % within 200 m, 

Maximum consecutive days 

without frost, 

Soil pH EIV, 

Continentality EIV, 

Edge area %, 

NDVI 

Canopy height, 

Continentality EIV, 

Duration of daily sunshine, 

NDVI, 

Growing season start, 

Aspect, 

Edge area %, 

Precipitation seasonality 

Tetramorium caespitum Urban area % within 200 m, 

Continentality EIV, 

Permanent agricultural area % 

within 200 m, 

Light EIV, 

Soil nutrients EIV, 

Soil moisture variation EIV, 

Maximum consecutive days 

without frost, 

Aspect 

Continentality EIV, 

Aspect, 

Soil moisture variation EIV, 

Urban area % within 200 m, 

Precipitation seasonality, 

Permanent agricultural area 

% within 200 m, 

Maximum consecutive days 

without frost, 

Mean temperature of driest 

quarter 

Tetramorium impurum Soil moisture EIV, 

Temperature Seasonality, 

Forest area % within 25 m, 

Mean temperature of wettest 

quarter, 

Aspect, 

NDVI, 

Slope, 

Edge area % within 200 m 

Precipitation of coldest 

quarter, 

NDVI, 

Canopy height, 

Evapotranspiration, 

Soil nutrients EIV, 

Continentality EIV, 

Edge area % within 200 m, 

Precipitation seasonality 

 

 

Species Distribution Modelling 

Table S5. Evaluation metrics for each of the ESM species distribution models. For each species a model 

was created using i) the scientific dataset only, ii) the citizen-science dataset only, iii) a pooled dataset 

of the scientific data and a subset of the citizen-science data corrected for environmental bias, iv) a 

corrected subset of the citizen-science dataset if enough occurrences were available. In the last case the 

mean AUC, MaxTSS and Boyce metrics were calculated from 10 models using 10 different randomly 

selected subsets respectively. 

Species Model AUC MaxTSS Boyce 

Formica cunicularia Scientific 0.78 0.429 0.942 

Formica cunicularia Citizen-Science 0.874 0.594 0.984 

Formica cunicularia Pooled 0.84 0.58 0.968 

Formica fusca Scientific 0.799 0.483 0.874 

Formica fusca Citizen-Science 0.805 0.487 0.932 

Formica fusca Pooled 0.811 0.473 0.969 

Formica fusca Corrected C-S 0.911 0.697 0.98 
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Formica lemani Scientific 0.95 0.776 0.958 

Formica lemani Citizen-Science 0.884 0.643 0.992 

Formica lemani Pooled 0.933 0.746 0.979 

Formica lemani Corrected C-S 0.927 0.745 0.951 

Formica lugubris/paralugubris Scientific 0.911 0.72 0.983 

Formica lugubris/paralugubris Citizen-Science 0.864 0.599 0.994 

Formica lugubris/paralugubris Pooled 0.874 0.648 0.986 

Formica lugubris/paralugubris Corrected C-S 0.863 0.623 0.976 

Formica pressilabris Scientific 0.984 0.908 0.994 

Formica pressilabris Citizen-Science 0.968 0.829 0.985 

Formica pressilabris Pooled 0.978 0.87 0.994 

Formica pressilabris Corrected C-S 0.969 0.838 0.984 

Lasius flavus Scientific 0.788 0.43 0.959 

Lasius flavus Citizen-Science 0.845 0.561 0.986 

Lasius flavus Pooled 0.805 0.472 0.998 

Lasius flavus Corrected C-S 0.838 0.516 0.99 

Lasius niger Scientific 0.82 0.512 0.871 

Lasius niger Citizen-Science 0.874 0.601 0.999 

Lasius niger Pooled 0.753 0.418 0.976 

Lasius niger Corrected C-S 0.789 0.445 0.979 

Myrmica rubra Scientific 0.924 0.735 0.948 

Myrmica rubra Citizen-Science 0.848 0.538 0.989 

Myrmica rubra Pooled 0.877 0.646 0.968 

Myrmica rubra Corrected C-S 0.916 0.704 0.971 

Myrmica ruginodis Scientific 0.805 0.437 0.981 

Myrmica ruginodis Citizen-Science 0.782 0.417 0.968 

Myrmica ruginodis Pooled 0.771 0.428 0.953 

Myrmica ruginodis Corrected C-S 0.847 0.544 0.936 

Myrmica sabuleti Scientific 0.772 0.447 0.819 

Myrmica sabuleti Citizen-Science 0.834 0.544 0.989 

Myrmica sabuleti Pooled 0.845 0.581 0.956 

Myrmica sabuleti Corrected C-S 0.937 0.769 0.96 

Myrmica scabrinodis Scientific 0.93 0.744 0.981 

Myrmica scabrinodis Citizen-Science 0.87 0.623 0.924 

Myrmica scabrinodis Pooled 0.93 0.707 0.994 

Solenopsis fugax Scientific 0.873 0.596 0.966 

Solenopsis fugax Citizen-Science 0.942 0.774 0.993 

Solenopsis fugax Pooled 0.876 0.619 0.962 

Solenopsis fugax Corrected C-S 0.954 0.802 0.979 

Temnothorax nylanderi - GR Scientific 0.948 0.771 0.96 

Temnothorax nylanderi - GR Citizen-Science 0.918 0.717 0.93 

Temnothorax nylanderi - GR Pooled 0.927 0.75 0.963 

Temnothorax nylanderi - GR Corrected C-S 0.929 0.797 0.935 

Tetramorium caespitum Scientific 0.869 0.621 0.956 

Tetramorium caespitum Citizen-Science 0.877 0.639 0.987 

Tetramorium caespitum Pooled 0.831 0.505 0.99 

Tetramorium caespitum Corrected C-S 0.863 0.562 0.981 

Tetramorium impurum Scientific 0.941 0.769 0.879 

Tetramorium impurum Citizen-Science 0.918 0.67 0.989 

Tetramorium impurum Pooled 0.924 0.712 0.94 
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Figures S2, S3, S4 (above). Results of ant species distribution models: i) Predicted habitat suitability 

using the scientific dataset, ii) predicted habitat suitability using the citizen-science dataset, iii) 

difference between the predictions of the citizen-science models and the scientific models, iv) predicted 

habitat suitability pooling the scientific dataset and a subset of the citizen-science dataset corrected for 

environmental bias. 

 

 

 
 

Figure S5. Variation of model predictions depending on the random choice of observations when 

correcting the citizen-science datasets. Standard deviation was calculated based on the results of 10 

models using each a different subset of the citizen-science dataset and the same predictors. 
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Figure S6. Relative importance of variables in the ant SDMs with the pooled scientific and corrected 

citizen-science dataset. Colors represent the type of environmental variable. Variables related to 

temperature, precipitation and habitat types were grouped to aid visualization 

 

 

Regression Results 

 
Figure S7. Simple linear regression results between niche breadth and model performance as measured 

with the AUC for each species. A) Performance of the models using the scientific dataset (p < 0.05, 

adjusted R2 = 0.5579), B) Performance of the models using the citizen-science dataset (p < 0.05, 

adjusted R2 = 0.8432). 
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Comparison of Spearman Correlation values 

 

 
 
Figure S8. Comparison of spearman correlation values between habitat suitability predictions of the 

scientific and the citizen-science datasets i) before correction (points), ii) for 10 corrected subsets 

(boxplots) 

 

 


