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Resumé 

Les invasions biologiques sont un de composants majeurs du changement global. Pour cette raison, 

beaucoup d’études ont essayé de comprendre les vecteurs et les impacts des invasions, mais la 

variabilité dans le taux d’invasion entre et à l’intérieur de différentes aires géographiques n’a pas 

été beaucoup étudiée. Notre objectif était de mieux comprendre le facteurs humains et écologiques 

qui guident l’invasion d’une des espèces exotiques les plus envahissantes, l’arbre R. pseudoacacia, 

et de chercher d’expliquer la différence apparente entre les taux d’invasion de trois pays différents : 

Suisse, Italie et France. Pour ce faire on a appliqué différentes méthodes : on a modélisé 

l’adéquation de l’habitat de R. pseudoacacia à l’échelle globale et puis on l’a utilisé pour conduire 

un travail de terrain basé sur l’habitat modélisé pour évaluer présences et absences et la dynamique 

des populations à une échelle locale. Modèles d’habitat, analyses univariées et modèles mixtes 

multivariés ont été utilisé pour analyser les données. Le climat était le prédicteur le plus important 

pour expliquer la présence de R. pseudoacacia et la richesse en espèces natives semblait jouer un 

rôle dans la différence de densité atteint par R. pseudoacacia. Cependant, aucun des prédicteurs 

étudiés pouvait expliquer entièrement la différence dans le taux d’invasion entre les différents pays. 

L’histoire de l’introduction (avec ses effets sur la pression de propagules), qui est différent dans les 

trois pays, pourrait avoir joué un rôle. 

Abstract 

Biological invasions are a major component of global change. For this reason, many studies have 

investigated the drivers and impacts of alien species invasions, but the variability in invasion rates 

between and within different areas has been poorly studied. Our aim was to better understand the 

anthropogenic and ecological factors that drive the invasion by a major invasive alien species, the 

tree R. pseudoacacia, and to try to explain the apparent difference in invasion rates between three 

different countries: Switzerland, Italy and France. To do this, we applied different methods: we 

modelled climatic suitability of R. pseudoacacia at a global level and then used it to conduct model-

based fieldwork to assess presence-absence and population dynamics at a local level. Habitat 

suitability models, univariate analysis and multivariate mixed models were used to analyse the data. 

Climate was the most important predictor in explaining presence of R. pseudoacacia and native tree 

species richness seemed to play a role in the difference in density reached by it. However, none of 

the studied predictors could explain entirely the difference in invasion rates among countries. 

History of introduction (with its effect on propagule pressure), different in the three countries, could 

likely have played a role. 
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Fig. 1: Localization of the study areas. a) Localization of Switzerland within Europe in opaque grey and fair green borders. b) 

Switzerland with the localisation of the two study areas in opaque grey. c) The study area 1 is represented with the name of the 

major swiss towns. d) the study area 2 is represented with the name of the major swiss towns.  

Table 1: Evaluation outputs for the global distribution ensemble model of R. pseuodacacia at 1 km resolution. The first column 

reports the names of the evaluation metrics and cutoffs, the second column (Emca) reports values for these metrics given by 

committee average, and the third column (Emwmean) reports the values given by weighted mean (used to build the ensemble 

model). Sensitivity and specificity are referred to the maxTSS and AUC cutoffs. Sen/spe thus give the % of presence-absence correctly 

predicted considering these cutoffs. 

Fig. 2: Habitat suitability of R. pseuodoacacia in Switzerland, and a buffer of 50 km outside the Swiss borders. 

Fig. 3 Response functions generated by the plots of the univariate GAMs relating the species occurrence and density to two factors: 

a) occurrence in relation to habitat suitability (probability from 0 to 1 multiplied by 1000 in biomod2; b) occurrence in relation to 

native tree species richness; c)  density in relation to native tree species richness; d) same as c), but without three outlier points 

considered as exceptions. In two of the three points R. pseudoacacia trees were just seedlings and saplings, for which survival was 

not sure; for the third point, R. pseudoacacia trees were quite old and there was a beginning of succession with small saplings of 

native trees of different species. Red and blue dashed lines represent the standard error, the points represent the data collected on 

the field. 

Fig. 4 Effect of categorical explicative variables on presence-absence and age classes of R. pseudoacacia. a) The number of plots 

with R. pseudoacacia in relation with the country in which the plots are located. b) Number of plots with average young-aged R. 

pseudoacacia trees and c) the number of plots with average middle-aged R. pseudoacacia trees, are presented in relation with the 

country in which the plots are located. d) Number of plots with R. pseudoacacia is presented in relation with the placement in the 

forest of the plots. e) The number of plots with R. pseudoacacia in relation to disturbance. f) The number of plots with R. pseudoacacia 

is presented in relation to landcover type. See M&M section for an explanation of the computation of the expected frequencies. 

Fig. 5: Difference in variables that were not controlled by sampling design among countries. a) Difference in native tree species 

richness among countries is represented. the thick black line represents the median. b) Difference in disturbed plots between the 

different countries. See M&M section for an explanation of the computation of the expected frequencies. 

Table 2: Coefficients and associated statistics for the complete multivariate mixed model. The first column lists all the predictors 

used in the modelling. Columns two to six provide the effects and associated statistics of predictors (fixed effects) on R. 

pseudoacacia presence-absence. The bottom rows (“Random effects”) show the effect of “country” as random factor.  

Fig. 6: The effects of multiple human-ecological factors on the presence of R. pseudoacacia based on the mixed models 

(GLMMs). The y axis shows the R2 (deviance in probability of presence explained) of each model, the x axis presents on the left the 

conditional R2 (models with random effect country included) and on the right the marginal R2 (models with only fixed effects, that is 

without the “country” variable). The orange diamond in the centre represents the R2 of the full model, whereas the coloured points 
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with the standard deviation represent the mean R2 of models with randomized predictors (see M&M section for an explanation of 

the different models and how they were built). 

 

Introduction 

Invasive alien species (IAS) are an important component of global environmental change, and 

one of the major causes of biodiversity loss (e.g. Wilcove et al. 1998). They can impact local 

communities by altering nutrient cycling, by outcompeting native species, through hybridisation, 

and in general by influencing structure and composition of communities (e.g. D’Antonio & Corbin 

2003; Liao et al. 2008). Due to their impact on the receiving environment (reduced crop productivity 

(Cook et al. 2011), recreational opportunities limited (Pyšek et al. 2007), increased frequency of 

wildfires (e.g. Brooks et al. 2004) just to give some examples), biological invasions can have 

important direct and indirect financial and social costs (McNeely 2001; Pyšek et al. 2009; Shackleton 

et al. 2019; Vilà et al. 2010.) The interest in biological invasions has greatly increased starting from 

the 1980s (Richardson & Pyšek 2006), together with their increase in threat due to globalization that 

allows species to cross their natural barriers (such as maximum dispersal capacity) and 

biogeographic boundaries (Lodge 1993; Richardson & Pyšek 2006; Seebens et al. 2017). Alien 

species can be introduced by humans both accidentally and on purpose. Concerning plants, the 

majority of species have been introduced following two principal pathways: (i) introduction for 

horticulture or ornamental purposes but escaped from cultivation; (ii) introduction for practical 

reasons in semi-wild habitats for erosion control and landscaping (Pyšek et al. 2009). More than 350 

tree species are known worldwide to be invasive (Richardson & Rejmánek, 2011; van Wilgen & 

Richardson, 2014) and most of them were introduced for the second reason and were just later 

recognised as invasive species (Benesperi et al. 2012; Reichard and Hamilton, 1997).  

Robinia pseudoacacia L. (commonly called robinia, acacia and black locust) is one of these tree 

species, for which the invasive potential was discovered after its introduction. It was first brought 

in Europe as an ornamental tree at the beginning of the 17th century, and then extensively planted 

for forestry purposes in the late 18th because of the increased demand in wood following the 

beginning of industrialization. Later, in the early 19th century, R. pseudoacacia was again promoted 

and planted but this time for erosion control after forest degradation and to support the sides of 

new railroads and highways (Göhre, 1952; Kowarik, 2010). Initial invasions of R. pseudoacacia are 

not well documented, but they have probably spread more from plantations than gardens (Vítková 

et al. 2017). The naturalization and spread of this tree were helped by the fact that it was not 
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perceived as a danger by many people; on the contrary, it entered and became adopted in European 

culture (Vítková et al. 2017). Furthermore, although nowadays its invasiveness and threats to native 

communities are well documented (e.g. Benesperi et al. 2012; Lazzaro et al. 2018), many countries 

continue to plant it for forest purposes and perceive it as part of the local flora (Vítková et al. 2017). 

However, R. pseudoacacia is also listed in many blacklists of invasive species (i.e. lists of species 

proven to be invasive and having important ecological, economic and/or social impacts in a certain 

area), often in the same countries that continue to plant it (e.g. Gruppo di Lavoro Specie Esotiche 

della Regione Piemonte (2014)).  

In Switzerland, R. pseudoacacia was introduced in 1800 principally for apiculture and soil 

stabilisation (Vítková et al. 2017) and is mostly present in mixed stands (that is, there are not many 

pure R. pseudoacacia stands). Robinia pseudoacacia is considered as invasive across all of 

Switzerland, but especially in Ticino (Info Flora, 2013). The primary negative effects of R. 

pseudoacacia relate to habitat alterations and reduction of the native biodiversity (CABI, 2018), 

which results principally from changes in nutrient availability and light conditions (Vítková et al. 

2017). Like many other invasive tree species (Zengeya et al. 2017), through having both negative 

ecological impacts and economic and cultural value, R. pseudoacacia generates conflicting opinions 

between different interest groups (Vítková et al. 2017), making it important to better understand 

its distribution, dynamics and spread to ensure efficient and effective management to reduce 

unnecessary costs and potentially improve benefits (Vítková et al. 2017).  

To manage IAS, it is essential to know what factors facilitate successful invasions. For this reason, 

one aspect of invasion science focuses on the processes driving biological invasions and looks into 

factors such as traits of the invasive species or of the receiving community, and how this may 

facilitate invasive capacity and success (Rejmanek & Richardson, 1996; Richardson & Pysek, 2006). 

Community invasibility refers to the susceptibility of habitats to colonization, establishment and 

spread of IAS, and is often related to the biotic resistance hypothesis (e.g. Byers et al. 2003; Case, 

1990; Law & Morton 1996), climate (e.g. Holmes et al. 2005; Vicente et al. 2010), management, 

disturbance and history of the introduction of IAS (having an effect on propagule pressure (Colautti 

et al. 2006; Richardson & Pysek, 2006; Theoharides & Dukes, 2007)). Similarly, invasiveness consists 

in the traits of IAS that help to facilitate their colonization, establishment and spread in the new 

environment (Goodwin et al. 1999), such as rapid juvenile growth, wide abiotic tolerance, effective 

dispersal, novel weapons, novel interactions, and high resource acquisition and competitive ability, 

between others (Richardson & Pysek, 2006; Theoharides & Dukes, 2007). Spread dynamics (Arim et 
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al. 2006) and mechanisms of impact on native communities and ecosystems have also been widely 

studied (e. g. Benesperi et al. 2012; Lazzaro et al. 2018; Ricciardi & Cohen, 2007; Vilà et al. 2011).  

In the case of the study species, R. pseudoacacia has different traits that increase its invasiveness. 

It has a very wide abiotic tolerance concerning soils (Cierjacks et al. 2013) and it has weedy qualities, 

that is, it grows very rapidly, establishes well after disturbance, and can survive well during frosts 

and droughts (Vítková et al. 2017). Moreover, it has very few natural enemies and pathogens in the 

introduced range (Cierjacks et al. 2013). However, R. pseudoacacia does not establish well in low 

light conditions and it is not highly effective in long-distance dispersal and creation of new colonies 

(Vítková et al. 2017). Concerning invasibility the wide range of reasons for introduction and the 

multiple landscapes it was planted in has led to high propagule pressure but also shows it is a 

generalist (Vítková et al. 2017; Vítková et al. 2019).  

It is important to consider that the primary drivers of plant invasion can change according to 

scale (Milbau et al. 2009; Stohlgren et al. 2006). For example, while climate is the universal driver 

that can predict invasion globally and at the level of continents or large regions, it remains important 

also at smaller regional and local extents. Climate is also the major filter during the colonization 

stage (Theoharides & Dukes, 2007). However, at regional and local levels, topography, landcover and 

land use, disturbance, biotic interactions and resource availability also become important factors 

facilitating or hindering invasions (Milbau et al. 2009). History of introduction, which can determine 

subsequent propagule pressure, can additionally be important at these levels (Donaldson et al. 

2014). These factors work in a hierarchical manner, that is, small scale factors become important 

only when the conditions at larger scales are satisfied (Milbau et al. 2009), suggesting it is important 

to understand dynamics at different scales. Another important fact to consider is that these primary 

drivers of plant invasion also vary depending on the stage of invasion (Castro-Díez et al. 2011; 

Theoharides & Dukes, 2007). For instance, climate is the most important filter of invasion at the 

colonization stage, whereas disturbance regimes play an important role at the colonization and 

establishment stages. By contrast, biotic resistance is much more important at the establishment 

stage compared to the colonization stage (Theoharides & Dukes, 2007). Finally, propagule pressure 

which is determined by history of introduction and by reproductive capacity of the species, is 

important at the stage of transport and colonization primarily but can also have important and long-

lasting effects at following stages (Donaldson et al. 2014; Theoharides & Dukes, 2007). For these 

reasons, disentangling the human and environmental factors that affect species distributions and 
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dynamics at different scales and stages of invasion is important for guiding management plans 

(Cabra-Rivas et al. 2016; Richardson & Whittacker 2010).   

To understand these different invasion dynamics across difference scales, different scientific 

tools and approaches can be used. Species distribution models (SDMs; Guisan & Thuiller, 2005) are 

one family of useful tools for understanding broad-scale requirements that facilitate invasions. 

SDMs relate georeferenced species occurrences with different human and environmental predictors 

variables through response curves, in order to better understand and/or predict their distribution 

(Guisan et al. 2017). Outputs from SDMs are useful for predicting new areas of invasion and this way 

support prevention, early detection and containment (Guisan et al. 2013). SDMs can also help 

understanding the importance of different drivers of invasion success for different alien species 

(Cabra-Rivas et al. 2012). Furthermore, combining a modelling approach with field-based studies 

can be useful when working at finer scales, to look at dynamics that are impossible or difficult to 

explore using SDMs or to validate the model outputs. In the case of invasions, field measurements 

are for instance particularly needed to look at the IAS impacts on receiving communities, or to look 

at IAS population growth and structure. In this case, climatic SDMs can guide sampling for the field-

study and help afterwards in the analysis to look at importance of climate in explaining distribution 

of the invasive species.  

Many studies have investigated the drivers and impacts of R. pseudoacacia invasions at local 

scales (e.g. Benesperi et al. 2012; Lazzaro et al. 2018; Cabra-Rivas et al. 2012), but the variability in 

invasion rates between and within different areas has been poorly studied (Vítková et al. 2019). In 

particular, while very different apparent levels of invasion were suspected between Switzerland and 

neighbouring countries, no obvious factor could be identified (R. Shackleton pers. obs.). For this 

reason, in this study we aimed to better understand the hierarchical dynamics of human and 

environmental factors in explaining different invasion rates of R. pseudoacacia in different countries 

in Europe using integrated methods. In particular, we wanted to understand the climatic and non-

climatic (more local) drivers of invasion for this tree species. To do this, we compared the invasion 

dynamics in Switzerland and two of its neighbouring countries - France and Italy - with a combined 

modelling and fieldwork approach. We focused on localised areas in each country where the climate 

is similar but where invasion rates and dynamics seemed to differ (see table S1 in supplementary 

material). In particular, we aimed to answer the following questions: (1) Can we confirm the 

difference in invasion rates between the different countries? (2) Do different drivers of invasion 

have different importance, and do they vary among countries? (3) If R. pseudoacacia invasion rates 
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differ between neighbouring countries, do distinct environmental and anthropogenic factors drive 

this difference? 

 

Materials and Methods 

Study species 

Robinia pseudoacacia is a deciduous thorny tree of the Fabaceae family. Its growth is rapid, and 

it can reach 30 m in height (Cierjacks et al. 2013). Thanks to Rhizobium bacteria communities in root 

nodules, R. pseudoacacia has a nitrogen fixing capacity allowing it to change soils (Cierjacks et al. 

2013) and can promote further invasion by other alien species (D’Antonio et al. 1999). Flowers are 

white, borne in racemes, and are insect pollinated (Cierjacks et al. 2013). It reproduces both sexually 

and asexually through horizontal root elongation, the latter being its principal mode of 

reproduction. R. pseudoacacia can spread rapidly over short distances, especially though asexual 

reproduction (Kowarik 1996), but wind and water can sometimes facilitate long-distance dispersal 

of seed, although dispersal of more than 60 m is rare (Kowarik 2010; Morimoto et al. 2009). The 

establishment of new distant populations is not common, as the seeds are heavy, and the rate of 

germination is low (Cierjacks et al. 2013; Vítková et al. 2017). This means spread and new satellites 

of invasion normally establish thank to human planting and disturbance.  

R. pseudoacacia is native to North America in two disjunct areas along the eastern coast of the 

country. It is found with a wider range around the Appalachians mountains and with a smaller 

distribution between the states of Arkansas, Missouri and Oklahoma. In its native range, it occurs 

on limestone-derived soils with moist, temperate forests, often classified as humid or super-humid 

areas (Huntley, 1990). Nonetheless it has been introduced to many parts of the world in which the 

climate is different compared to its native range. This is likely due to the fact that is has a wide 

temperature tolerance, as it can tolerate temperatures as up as 40°C and as low as -12°C, but it 

remains limited by extreme frosts, long cold season and excessive shading (CABI, 2018; Sitzia et al. 

2016; Vítková et al. 2017). This tree tolerates a wide range of soil pH, as well as pollution, infertile, 

saline, toxic and extremely dry soils, but does not do well in waterlogged and poorly drained soils 

(CABI, 2018; Vítková et al. 2017).  

 

Study area 

This study focuses on western central Europe (Figure 1 a)). For the vegetation surveys, two cross-

border comparison sites were used: 1) Western Switzerland (namely Canton Vaud and Canton 
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Geneva at the west edge of the Swiss Alps) and neighbouring Eastern France (part of Haute-Savoie 

and Ain departments); and 2) South-Eastern Switzerland (Canton Ticino) and neighbouring North-

Western Italy (Como, Varese and Verbano-Cusio-Ossola provinces) at the southern edge of the Swiss 

Alps, which is part of the Insubrian region (Figure 1 b). The first cross-border comparative site is 

characterised by a temperate and humid climate with cold, wet winters and abundant snowfall, with 

an annual mean temperature of about 9°C in the lowlands and mean annual total precipitations of 

about 1000mm (Kessler & Chambraud 1986; Météosuisse 2018; see Figure 1 c). The second study 

area is characterised by the Insubric climate with dry winters and wet springs and autumns. Annual 

mean temperature is between 11° and 12°C and mean annual total precipitations of about 2000 

mm (Meteosvizzera 2012; see Figure 1d).  

 

Fig. 3: Localization of the study areas. a) Localization of Switzerland within Europe in opaque grey and fair green borders. b) 

Switzerland with the localisation of the two study areas in opaque grey. c) The study area 1 is represented with the name of the 

major swiss towns. d) the study area 2 is represented with the name of the major swiss towns.  

Species distribution modelling 

Choice of data for modelling  

A global species distribution model (SDM; Guisan & Thuiller, 2005) relating the species 

occurrence records from both the native and invaded range with climatic variables only was built, 

as climate is expected to have the greatest influence on species distribution at this scale (Woodward 
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1987; Guisan et al. 2006; Milbau et al. 2009). Furthermore, taking into account the occurrence 

records from both ranges allows capturing the complete climatic niche of the species and thus 

increases the model predictive power (Broennimann & Guisan, 2008; Verbruggen et al. 2013). 

Occurrence records for R. pseudoacacia were collected from the GBIF database for worldwide 

occurrences, from InfoFlora for Swiss occurrences, from TelaBotanica for French occurrences, and 

from Wikiplantbase for the Liguria and Toscana regions in Italy.  Many occurrence records for Italy 

were not available on the internet, but records were collected through personal communications 

with the person responsible for the cartography of invasive species for each region (Passalacqua; 

Stinca; Bernardo; Martini; Bovio, Wilhalm; Alessandrini, pers. com.). Occurrences from before 1970 

were removed because too old data do not match the time period used for the contemporary 

climate maps, and their locational accuracy was insufficient. This resulted in 31,677 presence points 

with a locational accuracy of 1000 m or finer. These points were spatially aggregated as revealed by 

the ecospat.mantel.correlogram test (in ecospat package, Broennimann et al. 2018) on RStudio (R 

Development CoreTeam, 2008), they were thus disaggregated to have only one point per cell of 1 

km2 (same as the climatic variables resolution, see below).  

The 19 CHELSA bioclimatic variables from Karger et al. (2017; see table S2) at 1 km resolution (30 

Arc seconds) were used as predictors. For the selection of the best predictors, and to avoid having 

highly correlated variables, a principal component analysis (PCA) and a correlation cluster were 

performed (see Figure S3 and S2 respectively). One or maximum two variables were then selected 

per cluster (see Table S2 for selected variables). Despite being correlated (see Figure S2) the 

variables bio06 (min T° of coldest month) and bio11 (mean T° of coldest quarter) were both used in 

the model as they were still clearly differentiated in the PCA (see Figure S3) and because in our case, 

as we predicted probability of presence in the same region as the sampled data, collinearity would 

have a limited impact on predictions (Dormann et al. 2013; Harrell, 2015). They were kept in order 

to evaluate the effect of extreme frosts in winter (Sitzia et al. 2016) and the effect of a long cold 

season (Vítková et al. 2017), as both mentioned as having substantial effect on R. pseudoacacia 

distribution in the literature.  

 

Model fitting and evaluation 

As modelling algorithms can have important effects on model outputs (Thuiller et al. 2004), and 

multiple technique exists for predicting species distribution each with their pros and cons (Elith et 

al. 2006), we chose to use an ensemble model combining different approaches (Araújo & New, 
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2007). This was conducted in RStudio using the package biomod2 (Thuiller et al. 2016). We applied 

five different modelling techniques: 1) a generalised linear model (GLM; McCullagh, 2019), 2) a 

generalised additive model (GAM) (Hasti & Tibshirani, 1990), 3) a generalised boosted model (GBM), 

Ridgeway 1999), 4) a random forest (RF) (Breiman, 2001), and 5) a maximum entropy model 

(MAXENT) (Phillips et al. 2006). All these algorithms need a form of absence occurrence points to 

model the species distribution, thus, two sets of 30,000 pseudoabsences (PA; or background points) 

were randomly chosen in the spatial background. The choice of the PAs used to calibrate the model 

– and thus of the background within which they are selected – can have a big impact on the 

predictions (Thuiller et al. 2004; Barve et al. 2011). To avoid having PAs where R. pseudoacacia could 

not occur for environmental or accessibility reasons, the model was calibrated using only ecoregions 

(Olson et al. 2001) where the species is known to be present. Each single model algorithm was cross 

validated four times, with both PA sets. Models were calibrated using 70% of data available and 

evaluated with the remaining 30% (i.e. repeated split-sample cross-validation; Guisan et al. 2017), 

and variable importance was evaluated by permutations (i. e. resampling without replacement; 

Guisan et al. 2017). The Biomod2 package (Thuiller et al. 2016) gives response curves for each 

variable and modelling technique to help with evaluation (see Figure S6). Model performances were 

evaluated using two metrics: the area under the curve (AUC) of a receiver operating characteristic 

(ROC) plot (Hanley & McNeil, 1982) and the maximization approach (Guisan et al. 2017) of the true 

skill statistics (TSS; Allouche et al. 2006; i.e. maxTSS). Both of these metrics assess if the predictions 

given by the model differ from random predictions. AUC ranges from 0 to 1, with 0.5 indicating 

random predictions, whereas TSS ranges from -1 to 1, with 0 or less indicating predictions not 

different from random (Guisan et al. 2017). The ensemble model was built by weighted averaging, 

with the weights based on the repeated split-sample cross-validation performance. To decrease 

uncertainty and improve the overall accuracy of predictions, only individual models with a TSS score 

≥ 0.8 were included in the ensemble model (Allouche et al. 2006; Shabani et al. 2018). 

Spatial projections given by the ensemble model were transferred into ArcGIS v. 10.5.1 (ESRI Inc. 

2011) and the continuous values of habitat suitability (between 0 and 1000) were reclassified in 

three suitability categories: low (0-333), medium (334-666) and high (667-1000) suitability. 
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Field study 

Random-stratified sampling 

A random-stratified balanced model-based sampling approach (Claridge, 2002; Guisan et al. 

2006; Le Lay et al. 2010) was conducted. This approach allows for randomised sampling within 

prediction strata to be conducted, thus sampling a range of different environmental conditions for 

the species and can be useful to optimize the sampling effort while reducing error and bias (Guisan 

et al. 2017). The stratification was performed in RStudio and was based on three classes of climatic 

suitability (low, medium and high) from the previously prepared global model (see above), and 

aggregated landcover form CORINE 2012 v.20 (European Environment Agency (EEA)) 

(anthropogenic, 1; agricultural, 2; natural, 3; wet, 4 areas and water bodies, 5; see table S3). Water 

bodies were not eliminated because R. pseudoacacia can grow near lakes and rivers, and not taking 

into account the aggregated landcover water bodies would have eliminated all lake and river shores. 

To avoid having sampling points in the middle of the lake, only the pixels of category 5 that fell on 

shores were considered.  

Each climatic suitability class was combined (whenever possible) with all the five landcover types, 

giving 15 strata. For high climatic suitability, five points were randomly chosen in each landcover 

type, except for the wet areas in Ticino because only four cells of this stratum exist. Points falling in 

medium and low climatic suitability combinations were chosen within a buffer of 5 km from the 

highly suitable points (at a minimum distance of 1 km, as for high climatic suitability) to avoid having 

too dispersed sampling locations. For medium climatic suitability, two points were randomly chosen 

in each landcover type, while only one point (whenever possible) was randomly chosen in each 

landcover type for low climatic suitability. Points were in the centre of a 1 km2 cell. This stratification 

was chosen to allow comparing different landcover types and climatic suitability, and this way avoid 

having only few landcover types sampled (a risk with a simple random sampling). Fewer points were 

selected for medium and low suitability areas because the aim of the study is principally to compare 

highly suitable areas between countries, although they were needed to ensure that the sampling 

was not biased. The resulting sample comprised 181 locations with a 10 m x 10 m plots visited in 

each. This included: 39 plots in Italy and Ticino, 49 plots in Romandie and 54 plots in France (for the 

localisation of points in the habitat suitability map, see figure S5). When the target random sampling 

point was impossible to reach, another point was taken in the same cell or in another cell with the 

same value, in order to have a sampling as balanced as possible. 
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Sampling and data collection 

The goal of the fieldwork was principally to investigate the role of ecological setting, disturbance 

and management in shaping the presence or absence, the density, age and height classes of R. 

pseudoacacia. To do this we collected the following information for each plot: presence-absence of 

the species, its density, height, breast height diameter (BHD), native tree species richness, soil cover, 

as well as the position of the plot in relation to the forest, evidence of management and disturbance. 

Bare soil or water; canopy tree cover; young tree cover; shrub cover; herb cover; adult robinia tree 

cover and young robinia tree cover was estimated as a percent of each 10 m x 10 m plot. In each 

plot we also assessed evidence of human management using five categories: none (=0); clear cut 

(=1); thinning (=2); just few trees cut (not systematic =3); mowing (=4); pasture (=5). Furthermore, 

at each plot, we also assessed disturbance using seven categories - none (=0); roadside (=1); railway 

side (=2); settlement (=3); dump (=4); agriculture (=5); natural disturbance (=6); two or more (=7) - 

that were recorded within 50 m from the limits of the plot, as seeds normally do not disperse at 

more than 60 m (Morimoto et al. 2009). This choice is conservative in order to be sure that that 

recorded disturbances could have an effect in the transport, establishment and survival of R. 

pseudoacacia seeds and growth. Position in relation to the forest was defined in three categories: 

inside (> 50 m from the forest edge); edge (< 50 m from the forest edge; Harper et al. 2005); non-

forest (areas covered by trees of less than 50 m x 50 m). Classes of disturbance and management 

were defined following an exploratory fieldwork.  

Mean BHD was used as a proxy to define a single age class for R. pseudoacacia in each plot with 

categories of: < 20 cm = young; 20-45 cm = middle; > 45 cm = old (classes taken from Staska et al. 

2014). When there was more than one stem emerging for a single tree (after disturbance or by 

natural occurrence), only the biggest one was taken into account for categorising age class 

distributions. When different stems were growing from a clearly visible previously cut stem, the 

diameter was taken from cut trunk, and was therefore not at breast height. Because of frequent 

disturbance, and also very different ages within the same plot, it was difficult to assess an age class 

for certain plots. To complement the age classes, height classes were also assessed starting from R. 

pseudoacacia trees height within the plot. Height classes (classes taken from Vicente et al. 2019) 

are the following: < 0.5 m = A (seedling); 0.5-2 m = B (sapling); 2-5 m = C (small tree); 5-10 m = D 

(medium tree); > 10 m = E (big tree).  

Furthermore, at each plot we included precise GPS points and the precise landcover type (not 

aggregated) from the raster CORINE 2012 landcover (EEA; see Table S3, 1st and 2nd columns), and 
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the habitat suitability given by the model in that point. To take the GPS measures in the centre of 

the plots the app Collector for ArcGIS (ESRI, 2019) was used, setting a minimum of 15 m horizontal 

precision (precision that was reachable in almost every location). 

 

Statistical analyses of field data 

Univariate analyses 

First, field data were explored with univariate analyses to see if each predictor, among all those 

collected in the field, had an individual effect on R. pseudoacacia presence-absence, density, or age 

and height classes. GAMs with four smoothing terms (k=4; to uncover possible non-linear effects) 

were fitted to analyse the effect of habitat suitability and native tree species richness on presence-

absence and tree density of R. pseudoacacia (the density variable was analysed with a negative 

binomial distribution, see S1: Choice of distribution). Chi-squared tests of independence, or Fisher’s 

exact tests if one category had an expected frequency of less than 5, were used to analyse the 

differences between the different countries (France FR; Romandie CHfr (Cantons of Vaud and 

Geneva); Italy IT; Ticino TI) in R. pseudoacacia: presence-absence, height and age classes, 

disturbed/undisturbed sites, managed/unmanaged sites (the categories of management and 

disturbance were transformed into binary variables to simplify the analysis), land cover types (see 

table S3, 1st and 2nd columns), and positions in the forest (inside, edge/non-forest). The relationship 

between density and management, disturbance, country and land cover were analysed with 

Kruskal-Wallis non-parametric tests. Finally, variables that could not be controlled in the sampling 

design, that is, native tree species richness and disturbance, were analysed in relation to the country 

(Kruskal-Wallis test and chi-squared test of independence respectively) in order to rule out any 

significant difference among the countries. For all variables expected presences and absences in 

each category were calculated following the chi-squared test of independence formula (expected 

(theoretical) frequency if the response variable is independent from the explicative variable = (row 

total * column total) / grand total). All statistical analyses were computed in RStudio (v. 1.2.1335).  

 

Multivariate analysis  

To analyse the effects of predictors all together and understand their relative importance to 

explain presence-absence of R. pseudoacacia, Generalized Linear Mixed-Effects Models (GLMMs) 

from lme4 package (Bates, Maechler & Bolker, 2012) were fitted only with factors that showed a 

significant effect on probability of R. pseudoacacia presence in the univariate analyses. The GLMM 
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was used to analyse presence-absence of R. pseudoacacia in relation to habitat suitability, native 

tree species richness, disturbance, position in the forest and type of habitat (5 aggregated categories 

created from fieldwork results for this analysis: see table S3, 3rd column) as fixed effects. Continuous 

variables (that is, habitat suitability and native tree sp. richness) were scaled for the analysis. The 

region (Italy, Ticino, Romandie and France) was used as a random effect to account for its impact 

on the probability of presence. To assess the importance of each fixed effect in the model, one 

predictor was randomized at a time, and the mean R2 (marginal and conditional) of 100 replicates 

was extracted and compared within each model and with the complete model. At the end, six 

models were built, one complete model with all predictors, one model with randomized “habitat 

suitability” variable, one with randomized “native tree species richness” variable, one with 

randomized “disturbance” variable, one with randomized “position in the forest” variable and finally 

one with randomized “landcover” variable.  

 

Results 

Species distribution modelling 

Choice of data for modelling 

Spatial autocorrelation (SAC) was not very high (about 0.25 at 1 km; see Figure S1) and 

disaggregation to completely eliminate SAC would have removed the majority of occurrence points. 

For this reason, the compromise to take only points at a minimum distance of one km from one 

each other was taken to optimise the number of occurrences in relation to SAC and resulted in 

12,980 points with a SAC of about 0.25, from which coordinates were extracted to be used in the 

modelling.  

 

Model evaluation, variables importance and suitability predictions 

The model received high maxTSS and AUC scores and high sensitivity (see Table 1), signifying that 

it had a good match with the already existing presence points. Mean temperature of the coldest 

quarter (bio11) was the most important predictor for R. pseudoacacia distribution, followed by 

temperature seasonality (bio04; measure of temperature change during the year) and by the 

minimum temperature of the coldest month (bio06). Other predictors did not have a very high 

explanatory power (see Figure S4). Of these, precipitation of the warmest quarter was the most 

important (bio18; see Figure S4). From the suitability map it can be seen that all the lower lying 

plains in the three countries present ideal climatic conditions to sustain R. pseudoacacia populations 



 17 

(Figure 2). Due to R. pseudoacacia short growing season and its sensitivity to the mean T° of coldest 

quarter of the year (see above), it can be seen that habitat suitability decreases very rapidly with 

altitude. 

 

Table 3: Evaluation outputs for the global distribution ensemble model of R. pseuodacacia at 1 km resolution. The first column 

reports the names of the evaluation metrics and cutoffs, the second column (Emca) reports values for these metrics given by 

committee average, and the third column (Emwmean) reports the values given by weighted mean (used to build the ensemble 

model). Sensitivity and specificity are referred to the maxTSS and AUC cutoffs. Sen/spe thus give the % of presence-absence correctly 

predicted considering these cutoffs. 

Evaluation metric Value (Emca) Value (Emwmean) 

maxTSS 0.887 0.896 

maxTSS cutoff 808 432 

sensitivity 92.533 94.969 

specificity 96.136 94.631 

AUC (ROC) 0.987 0.989 

AUC cutoff 808 437.5 

sensitivity 92.533 94.828 

specificity 96.136 94.83 

 

 
Fig. 4: Habitat suitability of R. pseuodoacacia in Switzerland, and a buffer of 50 km outside the Swiss borders. 
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Human and ecological influences on Robinia pseudoacacia invasion dynamics  

Univariate analyses 

Presence of R. pseudoacacia, and its age classes (young and middle) were not independent from the 

country (presence: χ2 = 17.159 · df = 3 · Cramer's V = 0.2537 · p = 0.0006554: Age class: χ2 = 8.562 · 

df = 3 · Cramer's V = 0.3585 · Fisher's p = 0.00012; see Figure 2a, b and c). Concerning presence of 

R. pseudoacacia, in Ticino and Italy the percent of invaded plots (39% and 49% respectively) was 

more than three times higher than in Romandie (10%). Italy had almost the double the number of 

invaded plots compared to France (27%). Invasions in Switzerland remained less common than in 

the other two countries, even when Ticino (the most invaded canton in Switzerland), Vaud and 

Geneva Cantons were combined (23%). Concerning age classes, Switzerland (Ticino, Vaud and 

Geneva) had more middle-aged plots compared to France and Italy, which had more young-aged 

plots.  

Across all countries, habitat suitability had a clear positive impact on occurrence of R. pseudoacacia 

(Chi.sq = 11.92 · df = 2.75186 · p-value = 0.00238 · R-sq.(adj) = 0.115; see Figure 1a), increasing it of 

about 40% when it was at the maximum. Robinia pseudoacacia was, on the contrary, negatively 

affected by native tree species richness, with it being more likely to occur in areas with lower native 

tree species richness (Chi.sq = 6.423 · df = 2.000049 · p-value = 0.0113 · R-sq.(adj) =  0.0329; see 

Figure 1b). Similarly, density of R. pseudoacacia decreased with an increasing richness of native 

species, but the relationship was more variable, also without taking into account three points that 

were considered as exceptions  (with exceptions: Chi.sq = 17.06 · df = 3.627669· p-value = 0.000377 

· R-sq.(adj) = 0.225; see Figure 1c; without exceptions: Chi.sq = 31.8 · df = 3.596629 · p-value = 4.62e-

07 · R-sq.(adj) = 0.271; see Figure 1d) than presence-absence. Density was not dependent on climatic 

suitability and was independent from any of the categorical variables. 

Occurrence of R. pseudoacacia also differed according to placement in the forest, with it being more 

common at forest edges and outside forests (χ2 = 11.248 · df = 1 · φ = 0.251 · p-value = 0.001; Figure 

2d) than elsewhere. Disturbed sites were more prone to R. pseudoacacia invasion than undisturbed 

ones (χ2 = 10.676 · df = 1 · φ = 0.257 · p-value = 0.0004998; see Figure 2e) and the presence of the 

species was not independent from the land cover category (χ2 = 25.843 · df = 16 · Cramer's V = 0.3222 

· Fisher’s p = 0.02199; see Figure 2f). Robinia pseudoacacia was more common in discontinuous 

urban fabrics (residential areas), complex cultivation areas (mixed land uses), agricultural lands 

surrounded by natural vegetation (that is, not intensive agricultural land), broad-leaved forest and 

lake and river shores. On the contrary, mixed and coniferous forests hosted less R. pseudoacacia, 
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along with non-irrigated arable lands (intensive agriculture), pastures and marshes. Presence was 

not dependent on the evidence of management, and age classes were independent from all 

predictors except the “country”.  

Native tree species richness and disturbance, which were not controlled by sampling design, were 

significantly different between the countries (native tree sp. richness: chi-squared= 24.822 · df = 3 · 

p-value = 1.682e-05; disturbance: χ2 = 9.0914 · df = 3 · Cramer’s V= 0.06542 · p-value = 0.0281). 

Native tree species richness was the highest in Romandie (mean = 3.918367), followed by France 

(mean = 3.037037), Ticino (mean = 2.923077) and Italy (mean = 2.435897; see Figure 5 a)). 

Disturbance was slightly higher than expected in Romandie and France compared to Ticino where it 

was quite lower than expected and Italy where it was as expected by the chi-squared test of 

independence (see Figure 5 b)). 
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Fig. 3 Response functions generated by the plots of the univariate GAMs relating the species occurrence and density to two factors: 

a) occurrence in relation to habitat suitability (probability from 0 to 1 multiplied by 1000 in biomod2; b) occurrence in relation to 

native tree species richness; c)  density in relation to native tree species richness; d) same as c), but without three outlier points 

considered as exceptions. In two of the three points R. pseudoacacia trees were just seedlings and saplings, for which survival was 

not sure; for the third point, R. pseudoacacia trees were quite old and there was a beginning of succession with small saplings of 

native trees of different species. Red and blue dashed lines represent the standard error, the points represent the data collected on 

the field. 
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Fig. 4 Effect of categorical explicative variables on presence-absence and age classes of R. pseudoacacia. a) The number of plots 

with R. pseudoacacia in relation with the country in which the plots are located. b) Number of plots with average young-aged R. 

pseudoacacia trees and c) the number of plots with average middle-aged R. pseudoacacia trees, are presented in relation with the 

country in which the plots are located. d) Number of plots with R. pseudoacacia is presented in relation with the placement in the 

forest of the plots. e) The number of plots with R. pseudoacacia in relation to disturbance. f) The number of plots with R. pseudoacacia 

is presented in relation to landcover type. See M&M section for an explanation of the computation of the expected frequencies. 
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Fig. 5: Difference in variables that were not controlled by sampling design among countries. a) Difference in native tree species 

richness among countries is represented. the thick black line represents the median. b) Difference in disturbed plots between the 

different countries. See M&M section for an explanation of the computation of the expected frequencies. 

Multivariate analyses 

The most important predictor in the multivariate mixed model to explain the presence of R. 

pseudoacacia across the visited field plots was habitat suitability predicted by the ensemble SDM 

(see Figure 6). Disturbance was also seen to be an important predictor and higher disturbance had 

a significant positive effect on the occurrence of R. pseudoacacia. Higher native tree species richness 

and the position inside the forest (further in) had a negative effect R. pseudoacacia occurrence, but 

this effect was not significant. Finally, aggregated landcover did not have any negative nor positive 

effects on R. pseudoacacia occurrence, due to the fact that some land cover in the same aggregated 

category could promote invasion (e.g. extensive agriculture) and others rather hamper it (e.g. 

intensive farming). The random effect “country” in the mixed model explained ca. 10% of the total 

deviance in data in the full model, and this was consistent also in all the models with randomized 

variables (see Table 2 for statistic terms; see Figure 6).  

 

Table 4: Coefficients and associated statistics for the complete multivariate mixed model. The first column lists all the predictors 

used in the modelling. Columns two to six provide the effects and associated statistics of predictors (fixed effects) on R. 

pseudoacacia presence-absence. The bottom rows (“Random effects”) show the effect of “country” as random factor.  

  Is_Robinia_there    

Predictors Estimates z value Odds Ratios CI  p 
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(Intercept) -2.274351 -2.493 0.10 0.02 – 0.61  0.013 

Habitat_suitability 1.539042 3.811 4.66 2.11 – 10.28  0.00014 

native_trees_richness -0.387269 -1.682 0.68 0.43 – 1.07  0.093 

Dist_binary 1.362457 2.012 3.91 1.04 – 14.72  0.044 

placement_inforest: 
inside 

-1.456313 -1.697 0.23 0.04 – 1.25  0.090 

Type_hab_simpl 0.006996 0.038 1.01 0.70 – 1.44  0.969 

Random Effects    
σ2 3.29    

τ00 country 1.04    

N country 4    

Observations 181    

Marginal R2 / Conditional R2 0.507 / 0.625    
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Fig. 6: The effects of multiple human-ecological factors on the presence of R. pseudoacacia based on the mixed models 

(GLMMs). The y axis shows the R2 (deviance in probability of presence explained) of each model, the x axis presents on the left the 

conditional R2 (models with random effect country included) and on the right the marginal R2 (models with only fixed effects, that is 

without the “country” variable). The orange diamond in the centre represents the R2 of the full model, whereas the points with the 

standard deviation represent the mean R2 of models with randomized predictors (see M&M section for an explanation of the 

different models and how they were built). 

 

Discussion 

In this study, we aimed to better understand the anthropogenic and ecological factors that drive 

the invasion by a major IAS, the tree R. pseudoacacia. To do this we tried to explain the apparent 

difference in invasion rates that can be seen between three different countries: Switzerland, Italy 

and France, with two regions in Switzerland: Romandie, neighbouring France, and Ticino 

neighbouring Italy. In particular, we wanted to answer the following questions: (1) Can we confirm 

the difference in invasion rates between the different countries? (2) Do different drivers of invasion 

have different importance, and do they vary among countries? (3) If R. pseudoacacia invasion rates 
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differ between neighbouring countries, do distinct environmental and anthropogenic factors drive 

this difference? To answer these questions, we applied different methods: we modelled climatic 

suitability of R. pseudoacacia at a global level – to capture the full climatic niche - and then used it 

to conduct model-based fieldwork to assess presence-absence and population dynamics at a local 

level. We used ensemble models, univariate analyses (GAMs and chi-squared tests of 

independence) and multivariate mixed models (GLMMs) to analyse the data. The results reveal 

differences in invasion dynamics of R. pseudoacacia between the three countries and confirm what 

was indicated in the three countries’ Forest Inventories (INFC 2007; IFN4 2009/13; IFN 2012): that 

is, Italy is the most invaded, followed by France and last Switzerland. The difference in invasion 

explained by country was not well explained by any of the anthropogenic-ecological factors we 

analysed, but individual factors across countries could be variably related to the invasion success. 

Finally, each predictor had a different importance in the models to explain the presence-absence 

and density of R. pseudoacacia, suggesting a hierarchical distribution of predictors at different scales 

and stages of invasion. Hereafter, we discuss each of these factors individually. 

 

Is there a difference in invasion rates between countries? 

The difference in invasion rates between the three countries was evident in the analysis (Figure 

4 a). Italy was the most invaded of the countries followed by France and Switzerland (Ticino, Vaud 

and Geneva put together). These results were expected following the preliminary data collected 

from the forest inventories of the different countries (see Table S1), which is now confirmed by this 

study. Following our modelled habitat suitability (Figure 2), similar to the findings by Li et al. (2018), 

France, Italy and Switzerland have areas that are equally suitable in terms of climate for invasion by 

R. pseudoacacia, thus, climate cannot be the reason for the differences among countries. Four other 

factors analysed were investigated that could also explain these differences, but none of them 

seemed to explain well the difference alone. Another factor, not assessed quantitatively here, can 

also have a big importance on differential invasion rates: the introduction history and pathways that 

can affect propagule pressure; this factor will be discussed in detail below. 

 

Do different drivers of invasion have different importance, and do they vary among countries? 

Our analysis seems to confirm the hierarchy between predictors according to Milbau et al. (2009.) 

Climate suitability was the variable that contributed most in explaining R. pseudoacacia presence or 

absence in a certain area (Figure 6), according to previous studies (e.g. Milbau 2009; Szymura et al. 
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2018; Vicente et al. 2010). The second most important variable was disturbance, another well-

known factor related to the facilitation of invasions (D’Antonio et al. 1999; McDougall & Turkington 

2005; Szymura et al. 2018) through change in resource availability or landscape pattern 

(Theoharides & Dukes, 2007). Disturbance was followed by two predictors that did not show a 

significant effect on presence but seemed to play a role in it: position in the forest (being at the edge 

increased the probability of presence) and native tree species richness (i.e. a part of biotic resistance 

with competition of resident plants, herbivory by resident animals and soil fungal communities 

(Byers & Noonburg 2003; Levine et al. 2004), which seemed to decrease probability of presence). 

However, further investigation is needed here.  

It is interesting to note that predictors seem to vary in importance also following the invasion 

stage at which the IAS is in a certain area. Climate and, in a smaller measure, disturbance seem to 

be two very important variables for evaluating whether the species can occur or not in a certain 

area, independently from the density it will reach. On another hand, climate and disturbance were 

not significant to predict density of this species among plots, whereas native trees richness (part of 

biotic resistance) was more important. That could mean that initial success does not predict 

necessarily successive establishment and spread, because drivers could differ among invasion 

stages, as sustained by Theoharides & Dukes (2007). Therefore, it seems that both anthropogenic 

and ecological factors are favouring R. pseudoacacia invasions, but with different dynamics 

depending on geographic and environmental contexts.  

Finally, the predictors that could not be controlled with the sampling varied among countries: 

mean native tree species richness was different in the different countries, which could reflect biotic 

resistance and thus explain in part the difference in invasion rates between the different countries 

(see below). Disturbance was also slightly different between the countries, which could reflect land-

use intensity. These differences will be further discussed below. 

 

If R.pseudoacacia invasion rates differ between neighbouring countries, do distinct environmental 

and anthropogenic factors between regions drive this difference? 

We observe that differences between countries exist, but this is not well explained by the 

explanatory variables we used. The richness in native tree species explains a small part of this 

difference (Figure 5 a; Figure 6; Table 2), which is in agreement with studies on biotic resistance to 

invasions (Levine et al. 2004), but it is not sufficient, and this relation between native trees richness 

and the presence of R. pseudoacacia could also represent the impact of invasive species on 
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massively invaded habitats (e.g. Vilà et al. 2011; some plots in Italy and Ticino were invaded by two 

or more alien species and there was not any native species), rather than biotic resistance to invasion. 

Another predictor that varied between the different countries was disturbance. However, as 

according to our index Romandie was the most disturbed (compared to the other regions, although 

the difference was slight), it was also the least invaded country, even though we saw from the mixed 

model that disturbance tends to promote invasion (see Table 2).  

For this reason, our hypothesis is that the large part of the difference in invasion rates among 

countries, and thus the bulk of the remaining deviance in our model, could be explained by the 

history of introduction related to different cultural uses of R. pseudoacacia in the three different 

countries. This has likely caused a difference in propagule pressure in different habitats between 

countries, which had long-lasting effects on the distribution and spread of R. pseudoacacia 

invasions. In Switzerland R. pseudoacacia was initially introduced as small plantations, principally 

for honey production, and only secondarily for the creation of poles in vineyards and/or wine barrels 

and for landscaping and soil reclamation (i.e. restoring soil quality; Vítková et al. 2017), but it was 

never used for forestry purposes. In Italy, its major use was for soil reclamation after deforestation 

following World War Two (Ferraris et al. 2000; Maltoni et al. 2012) and stabilisation of slopes during 

road and railways construction (Alessandrini, pers. com.; Ferraris et al. 2000; Maltoni et al. 2012). 

Another use of R. pseudoacacia in Italy was for forestry practices (Ferraris et al. 2000; Maltoni et al. 

2012; Regione Piemonte, 2014) leading to large plantations that contribute to high propagule 

pressure. Agricultural and field abandonment in the post-war period is also thought to have 

facilitated invasion by this species. In France, R. pseudoacacia was initially introduced for the 

creation of poles in vineyards and wine barrels. Later, in the 19th century it was used a lot for forestry 

practices (Ginter pers. com.; Ginter et al. 2018). Thus, Switzerland is, of the three countries, the one 

that introduced R. pseuodacacia least. Moreover, no recent plantation events exist in Switzerland 

(Vítková et al. 2017), whereas in Italy and France, its forestry qualities are still well regarded and as 

such the tree has been long promoted (Ferraris et al. 2000; Maltoni et al. 2012; Ginter et al. 2018). 

This is further suggested by the fact that, in Switzerland, we found older R. pseudoacacia trees in 

Ticino, Vaud and Geneva compared to France and Italy (Figure 4 b) and c)). All this confirms the 

findings by Vítková et al. (2019) that the number of uses in Central Europe (Switzerland is part of it) 

were less numerous than the number of uses in southern Europe (Italy and southern France are part 

of this area) and that difference in R. pseudoacacia presence between central Europe and southern 

Europe was given in a large part by the history of its introduction and its uses, leading to higher 
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propagule pressure in some places. Differences in use and the large number of propagules 

introduced increases the probability of establishment of seeds in the surrounding landscape and 

the further spread regardless of control efforts (Castro-Díez et al. 2011; Donaldson et al. 2013), thus 

supporting the role of history in the differences we observed between countries.  

Concerning the difference between Ticino, Vaud and Geneva, our hypothesis is that this is again 

due to historical reasons related to introduction goals (and subsequent propagule pressure) and 

disturbance. In Ticino, R. pseuodacacia was planted widely to stabilize slopes during the 

construction of the Gotthard railway (Delucchi, pers. com.): this likely created a high propagule 

pressure (Donaldson et al. 2013). Another important factor that likely promoted the spread of R. 

pseuodacacia in both Ticino and Italy was the cortical cancer that affected chestnuts trees (Castanea 

sativa Miller) in the 60’s (Delucchi, pers. com.): a vast number of chestnuts died or were cut, and R. 

pseudoacacia rapidly took this novel space and expanded considerably (Regione Piemonte, 2014; 

Delucchi, pers. com.). The other Swiss cantons are less steep so R. pseudoacacia was not used so 

much for soil stabilisation, chestnuts are much less frequent, and land use intensity is higher 

(agricultural principally), with likely less gaps for invasion. In particular, in the Vaud canton, the 

principal uses of R. pseudoacacia wood were for fence posts for carpentry uses (Daujat, pers. com.), 

which entailed only small plantations. The importance of human-dispersal and introduction in 

facilitating local invasions is key, as this species is a very good colonizer over short distances where 

already present but is a poor colonizer over long-distances, and thus with few natural colonies newly 

establishing far away (Vítková et al. 2017). 

Other factors not considered in this study could be important to take into account for explaining 

the differences in invasion between countries. The first one is that some other factors could have 

been included in the model as predictors (e.g. soil type), that could improve the quantification of 

habitat suitability. However, in our opinion, this is not very likely because it is known that R. 

pseuodacacia has a very wide abiotic tolerance (it is one of its major invasiveness traits) and can 

stand most soil types except very compacted and non-drained ones (Huntley, 1990; Vítková et al. 

2017). Another factor could be the different solar radiation that distinguish the Canton Ticino from 

the Vaud and Geneva cantons (Météosuisse, 2018). R. pseudoacacia has been preferentially 

observed in sunny places (Cierjacks et al. 2013), and this could have an effect on its growth and 

spread velocity. Future studies should take this factor into account to assess whether it could have 

a role in the observed differences. Furthermore, including the German-speaking part of Switzerland 

into a similar study could help to further and more holistically identify interesting trends and 
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dynamics regarding invasions of R. pseudoacacia. Other factors that could be worth investigating in 

more details are approaches of the different countries to policies and management regarding R. 

pseudoacacia, looking into the history to better trace introduction pathways and goals for the 

species, and looking at soil seed banks to more properly assess propagule pressure. It could also be 

useful to better study the effects of different types of disturbance on R. pseudoacacia invasion 

dynamics, in order to account for different disturbances that could be either detrimental or positive, 

and to study the effects of native tree species richness and biotic resistance in general (which is 

quite debated in the literature; e. g. Herben et al. 2004), in order to better disentangle when native 

species richness acts as biotic resistance from when native species richness is impacted by the alien 

species, i.e., in which invasion stages is biotic resistance to invasion more effective. All these 

complementary analyses would be useful to better assess the proposed hypotheses. 

 

Conclusion 

Although it was not conclusive concerning the difference in invasion rates between the three 

countries, this study provides insights into invasion dynamics of R. pseudoacacia:  

• Climate is further confirmed to be the most important predictor in explaining presence of R. 

pseudoacacia, and thus we can support the idea the climate is one of the major filters for 

invasion. 

• Disturbance, in particular human-related, has an important role in explaining R. 

pseudoacacia presence. 

• Native tree sp. richness seems to play a role in the difference in density reached by R. 

pseudoacacia, but further investigation is needed. 

• None of the studied predictors can explain entirely the difference in invasion rates among 

countries.  

• History of introduction (with its effect on propagule pressure), which is different in the three 

countries, could play a role in it but was not quantitatively tested in this study. 

• Invasion dynamics depend on a vast number of human- and biology-related factors, each 

one with a different importance at different spatial scales and invasion stages. It is important 

to define the spatial scale and invasion stage that we want to consider, in order disentangle 

which factor is the most important in every specific situation, with the final aim to facilitate 

invasion management strategies. 

 



 30 

Acknowledgements 

I would like to thank Antoine Guisan for the direction of this project, for being always available 

to discuss about it and for helpful comments on a previous version of this paper. Many thanks also 

to Ross T. Shackleton for his supervision and stimulating discussions on all aspects of the project, 

and in particular for his invaluable help on the field. I am grateful to Olivier Broenniman for his 

suggestions in several parts of the project and, with Mathieu Chevalier, for their help in statistical 

analysis. I would also like to thank Simone Parisi for his support all along this project and for him 

being always available to help me with fieldwork. I thankfully acknowledge Alessandro Alessandrini, 

Liliana Bernardo, Maurizio Bovio, Emanuele Del Guacchio, Gabriele Galasso, Fabrizio Martini, 

Nicodemo G. Passalacqua, Anna Rampa, Adriano Stinca and Wilhalm Thomas for their courtesy in 

providing me with the occurrence data of the study species in Italy; Info Flora provided occurrence 

data for Switzerland and Tela Botanica for France. Thanks to Marco Delucchi and Mosè Cometta for 

the interesting and useful discussion on the study species; to Charline Daujat, Thomas Zumbrunnen 

and Zoé Ginter for providing me with information on its introduction in Switzerland and France. I 

gratefully acknowledge Agassiz foundation for funding the study.  

 

References 

Abegg, M., Vidondo, B., Speich, S., Keller, M., Meile, R., Herold-Bonardi, A., … Cioldi, F. (2014). 

Quatrième inventaire forestier national suisse - tableaux et cartes des résultats de l’IFN 2009-2013 

disponibles sur internet (IFN4b). [Published online 06.11.2014] Available from World Wide Web 

[Data set]. doi: 10.21258/1000005  

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: 

prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. 

doi: 10.1111/j.1365-2664.2006.01214.x  

A Practical Guide to Mixed Models in R. (n.d.). Retrieved November 2, 2019, from 

https://ase.tufts.edu/gsc/gradresources/guidetomixedmodelsinr/mixed%20model%20guide.html 

Arim, M., Abades, S. R., Neill, P. E., Lima, M., & Marquet, P. A. (2006). Spread dynamics of invasive 

species. Proceedings of the National Academy of Sciences, 103(2), 374–378. doi: 

10.1073/pnas.0504272102 

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & 

Evolution, 22(1), 42–47. 



 31 

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. 

(2011). The crucial role of the accessible area in ecological niche modeling and species distribution 

modeling. Ecological Modelling, 222(11), 1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011 

Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear Mixed-Effects Models Using S4 Classes (R 

Package Version 0.999999-0).  

http://cran.r-project.org/web/packages/lme4/index.html  

Benesperi, R., Giuliani, C., Zanetti, S., Gennai, M., Mariotti Lippi, M., Guidi, T., … Foggi, B. (2012). Forest 

plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodiversity and 

Conservation, 21(14), 3555–3568. doi: 10.1007/s10531-012-0380-5 

Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., … Richardson, D. M. 

(2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 

26(7), 333–339. doi: 10.1016/j.tree.2011.03.023 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: both native 

and invaded ranges matter. Biology Letters, 4(5), 585–589. doi: 10.1098/rsbl.2008.0254 

Broennimann, O., Di Cola, V., Petitpierre, B., Breiner, F., Scherrer, D., Manuela, Da., … Mod, H. (2018). 

Package ‘ecospat.’ 

Brooks, M. L., D’Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTOMASO, J. M., … Pyke, 

D. (2004). Effects of Invasive Alien Plants on Fire Regimes. BioScience, 54(7), 677. doi: 

10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 

Brundu, G., & Richardson, D. M. (2016). Planted forests and invasive alien trees in Europe: A Code for 

managing existing and future plantings to mitigate the risk of negative impacts from invasions. 

NeoBiota, 30, 5–47. doi: 10.3897/neobiota.30.7015 

Byers, J. E., & Noonburg, E. G. (2003). SCALE DEPENDENT EFFECTS OF BIOTIC RESISTANCE TO 

BIOLOGICAL INVASION. Ecology, 84(6), 1428–1433. doi: 10.1890/02-3131 

CABI, 2018. Robinia pseudoacacia (black locust) datasheet. Invasive Species Compendium. URL: 

https://www.cabi.org/isc/datasheet/47698 

Cabra-Rivas, I., Saldaña, A., Castro-Díez, P., & Gallien, L. (2016). A multi-scale approach to identify 

invasion drivers and invaders’ future dynamics. Biological Invasions, 18(2), 411–426. 

Case, T. J. (1990). Invasion resistance arises in strongly interacting species-rich model competition 

communities. Proceedings of the National Academy of Sciences, 87(24), 9610–9614. 



 32 

Castro-Díez, P., Langendoen, T., Poorter, L., & Saldaña-López, A. (2011). Predicting Acacia invasive 

success in South Africa on the basis of functional traits, native climatic niche and human use. 

Biodiversity and Conservation, 20(12), 2729–2743. doi: 10.1007/s10531-011-0101-5 

Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., von der Lippe, M., & Weber, E. (2013). 

Biological Flora of the British Isles: Robinia pseudoacacia. Journal of Ecology, 101(6), 1623–1640. 

doi: 10.1111/1365-2745.12162 

Claridge, A.W. (2002). Use of bioclimatic analysis to direct survey effort for the long-footed potoroo 

(Potorous longipes), a rare forest-dwelling rat-kangaroo. Wildlife Research, 29(2), 193-202. 

Colautti, R. I., Grigorovich, I. A., & MacIsaac, H. J. (2006). Propagule Pressure: A Null Model for 

Biological Invasions. Biological Invasions, 8(5), 1023–1037. doi: 10.1007/s10530-005-3735-y 

Cook, D. C., Fraser, R. W., Paini, D. R., Warden, A. C., Lonsdale, W. M., & De Barro, P. J. (2011). 

Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against 

Food Insecurity. PLoS ONE, 6(10), e26084. doi: 10.1371/journal.pone.0026084 

D'Antonio CM, Dudley TL, Mack M. (1999) Disturbance and biological invasions: Direct effects and 

feedbacks. In: Walker LR, editor. Ecosystems of disturbed ground. 16 ed. New York: Elsevier. pp. 

413–452. 

D’Antonio, C., & Corbin, J. D. (2003). Effects of plant invaders on nutrient cycling: using models to 

explore the link between invasion and development of species effects. Models in Ecosystem 

Science. Princeton University Press, Princeton, New Jersey, USA, 363–384. 

Donaldson, J. E., Hui, C., Richardson, D. M., Robertson, M. P., Webber, B. L., & Wilson, J. R. U. (2014). 

Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global 

Change Biology, 20(5), 1527–1537. doi: 10.1111/gcb.12486 

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … E. Zimmermann, N. (2006). 

Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 

29(2), 129–151. doi: 10.1111/j.2006.0906-7590.04596.x 

ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA. Environmental Systems Research Institute. 

Essl, F., Biró, K., Brandes, D., Broennimann, O., Bullock, J. M., Chapman, D. S., … Follak, S. (2015). 

Biological Flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 103(4), 1069–1098. 

doi: 10.1111/1365-2745.12424 

Ferraris P., Terzuolo P.G., Brenta P.P, Palenzona M. (2000). La Robinia: indirizzi per la gestione e la 

valorizzazione. Regione Piemonte, Blu Edizioni, pp. 48. 



 33 

Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in 

relation to environmental gradients. Progress in Physical Geography, 19(4), 474–499. 

Ginter Z., Seneca Ferreira J., Hautdidier B. (2018). Stuck behind vineyard stakes? Uses and narratives 

around the black Locust forests of a winemaking region in southwestern France. Conference 

paper. 

Göhre, K., (1952). Die Robinie Und Ihr Holz. Deutscher Bauernverlag, Berlin. 

Goodwin, B. J., McAllister, A. J., & Fahrig, L. (1999). Predicting Invasiveness of Plant Species Based on 

Biological Information. Conservation Biology, 13(2), 422–426. doi: 10.1046/j.1523-

1739.1999.013002422.x 

Gruppo di Lavoro Specie Esotiche della Regione Piemonte (a cura del), (2014). Scheda monografica 

Robinia pseudoacacia. Regione Piemonte, Torino. Ultimo aggiornamento: febbraio 2016. 

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat 

models. Ecology Letters, 8(9), 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x 

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A. et al. (2006). Using niche-

based models to improve the sampling of rare species. Conservation Biology, 20(2), 501-511. 

Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J. M. C., Aspinall, R., & Hastie, T. (2006). 

Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 

43(3), 386–392. doi: 10.1111/j.1365-2664.2006.01164.x 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., … 

Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 

16(12), 1424–1435. doi: 10.1111/ele.12189 

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: with 

applications in R. Cambridge University Press. 

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology, 143(1), 29–36. doi: 10.1148/radiology.143.1.7063747 

Hastie, T., & Tibshirani, R. (1990). Generalized Additive Models (Vol. 43). CRC Press. 

Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C., … Esseen, P.-A. 

(2005). Edge Influence on Forest Structure and Composition in Fragmented Landscapes. 

Conservation Biology, 19(3), 768–782. doi: 10.1111/j.1523-1739.2005.00045.x 

Herben, T., Mandák, B., Bímová, K., & Münzbergová, Z. (2004). INVASIBILITY AND SPECIES RICHNESS OF 

A COMMUNITY: A NEUTRAL MODEL AND A SURVEY OF PUBLISHED DATA. Ecology, 85(12), 3223–

3233. doi: 10.1890/03-0648 



 34 

Huntley, J.C., (1990). Robinia pseudoacacia L. black locust. In: Burns, R.M., Honkala, B. H., (Eds.), Silvic 

of North America 2. Hardwoods. Agric. Hand. 654, Washington, pp. 755–761. 

Ialongo, C. (2016). Understanding the effect size and its measures. Biochemia Medica, 150–163. doi: 

10.11613/BM.2016.015 

IGN (2016). IGN (chiffres, cartes et informations sur la forêt française issus des campagnes d’inventaire 

2011 à 2015 de l’IGN). Mémento : La forêt en chiffres et en cartes – édition 2016 [archive]. pp. 28 

Info Flora, (2013). Piante esotiche invasive: una minaccia per la natura, la salute e l’economia. Specie 

della Lista Nera: Robinia. URL: 

https://www.infoflora.ch/assets/content/documents/neofite/inva_robi_pse_i.pdf 

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). 

Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. 

Kessler, J., & Chambraud, A. (1986). La météo de la France: tous les climats localité par localité. 

Retrieved from https://books.google.ch/books?id=jOZGMgAACAAJ 

Kowarik, I. (1996). Primäre, sekundäre und tertiäre Wälder und Forsten mit einem Exkurs zu ruderalen 

Wäldern in Berlin. Landschaftsentwicklung Und Umweltforschung (Berlin), 104, 1–22. 

Kowarik, I., (2010). Biologische Invasionen. Neophyten und Neozoen in Mitteleuropa, 

2nd ed. Ulmer, Stuttgart, Germany. 

Law, R., & Morton, R. D. (1996). Permanence and the assembly of ecological communities. Ecology, 

77(3), 762–775. 

Lazzaro, L., Mazza, G., d’Errico, G., Fabiani, A., Giuliani, C., Inghilesi, A. F., … Foggi, B. (2018). How 

ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical 

properties and soil microbial, nematode, microarthropod and plant communities. Science of The 

Total Environment, 622–623, 1509–1518. doi: 10.1016/j.scitotenv.2017.10.017 

Le Lay, G., Engler, R., Franc, E. & Guisan, A. (2010). Prospective sampling based on model ensembles 

improves the detection of rare species. Ecography, 33(6), 1015-1027. 

Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant 

invasions: Biotic resistance to plant invasion. Ecology Letters, 7(10), 975–989. doi: 10.1111/j.1461-

0248.2004.00657.x 

Li, G., Xu, G., Guo, K., & Du, S. (2014). Mapping the Global Potential Geographical Distribution of Black 

Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model. Forests, 

5(11), 2773–2792. doi: 10.3390/f5112773 



 35 

Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., … Li, B. (2008). Altered ecosystem carbon and 

nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177(3), 706–714. 

Lodge, D. M. (1993). Biological invasions: lessons for ecology. Trends in Ecology & Evolution, 8(4), 133–

137. 

Maltoni A., Mariotti B., Tani A. (2012). La gestione della robinia in Toscana: la gestione dei popolamenti, 

l’impiego in impianti specializzati, il controllo della diffusione. Regione Toscana, Università di 

Firenze, pp. 167. 

McCullagh, P. (2019). Generalized linear models. Routledge. 

MacDougall, A.S. and Turkington, R., 2005. Are invasive species the drivers or passengers of change in 

degraded ecosystems?. Ecology, 86(1), pp.42-55. 

McNeely, J. A. (2001). Global strategy on invasive alien species. IUCN. 

Météosuisse (2018). Bulletin climatologique année 2018. Genève. pp. 12 

Retrieved from  

https://www.meteosuisse.admin.ch/home/climat/climat-de-la-suisse/rapports-climatiques.html 

MeteoSvizzera (2012). Rapporto sul clima – Cantone Ticino 2012, rapporto di lavoro MeteoSvizzera, pp. 

63. 

 Retrieved from https://www4.ti.ch/fileadmin/DT/temi/aria/clima/01_Rapporto_clima_Ticino.pdf 

Milbau, A., Stout, J. C., Graae, B. J., & Nijs, I. (2009). A hierarchical framework for integrating invasibility 

experiments incorporating different factors and spatial scales. Biological Invasions, 11(4), 941–

950. doi: 10.1007/s10530-008-9306-2 

Morimoto, J., Kominami, R., & Koike, T. (2010). Distribution and characteristics of the soil seed bank of 

the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landscape and 

Ecological Engineering, 6(2), 193–199. doi: 10.1007/s11355-009-0096-1 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., … 

Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new 

global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. 

BioScience, 51(11), 933–938. 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species 

geographic distributions. Ecological Modelling, 190(3–4), 231–259. 

Pyšek, P., Cock, M., Nentwig, W., & Ravn, H. P. (2007). Ecology and management of giant hogweed 

(Heracleum mantegazzianum). CABI. 



 36 

Pyšek, P., Lambdon, P. W., Arianoutsou, M., Kühn, I., Pino, J., & Winter, M. (2009). Alien Vascular Plants 

of Europe. In Handbook of Alien Species in Europe (pp. 43–61). doi: 10.1007/978-1-4020-8280-1_4 

R Development Core Team (2008). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org. 

Regione Piemonte (2014). Le specie forestali arboree esotiche. Riconoscimento e gestione. pp. 24 

Reichard, S. H., & Hamilton, C. W. (1997). Predicting Invasions of Woody Plants Introduced into North 

America: Predicción de Invasiones de Plantas Leñosas Introducidas a Norteamérica. Conservation 

Biology, 11(1), 193–203. 

Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? 

Ecology, 77(6), 1655–1661. 

Ricciardi, A., & Cohen, J. (2007). The invasiveness of an introduced species does not predict its impact. 

Biological Invasions, 9(3), 309–315. doi: 10.1007/s10530-006-9034-4 

Richardson, D. M., & Pyšek, P. (2006). Plant invasions: merging the concepts of species invasiveness and 

community invasibility. Progress in Physical Geography: Earth and Environment, 30(3), 409–431. 

doi: 10.1191/0309133306pp490pr 

Richardson, D., & Rejmanek, M. (2011). Trees and shrubs as invasive alien species–a global review. 

Diversity and Distributions, 17, 788–809. doi: 10.1111/j.1472-4642.2011.00782.x 

Richardson, D. M., & Whittaker, R. J. (2010). Conservation biogeography–foundations, concepts and 

challenges. Diversity and Distributions, 16(3), 313–320. 

Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 172–181. 

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … Essl, F. (2017). No 

saturation in the accumulation of alien species worldwide. Nature Communications, 8(1). doi: 

10.1038/ncomms14435 

Shabani, F., Kumar, L., & Ahmadi, M. (2018). Assessing Accuracy Methods of Species Distribution 

Models: AUC, Specificity, Sensitivity and the True Skill Statistic. 13. 

Shackleton, R. T., Le Maitre, D. C., Van Wilgen, B. W., & Richardson, D. M. (2015). The impact of 

invasive alien Prosopis species (mesquite) on native plants in different environments in South 

Africa. South African Journal of Botany, 97, 25–31. doi: 10.1016/j.sajb.2014.12.008 

Shackleton, R. T., Shackleton, C. M., & Kull, C. A. (2019). The role of invasive alien species in shaping 

local livelihoods and human well-being: A review. Journal of Environmental Management, 229, 

145–157. doi: 10.1016/j.jenvman.2018.05.007 



 37 

Sitzia, T., Cierjacks, A., de Rigo, D., Caudullo, G., 2016. Robinia pseudoacacia in Europe: distribution, 

habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., 

Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. 204  

Staska, B., Essl, F., & Samimi, C. (2014b). Density and age of invasive Robinia pseudoacacia modulate its 

impact on floodplain forests. Basic and Applied Ecology, 15(6), 551–558. doi: 

10.1016/j.baae.2014.07.010 

Stohlgren, T. J., Jarnevich, C., Chong, G. W., & Evangelista, P. H. (2006). Scale and plant invasions: a 

theory of biotic acceptance. Preslia, 78(4), 405–426. 

Szymura, T. H., Szymura, M., Zając, M., & Zając, A. (2018). Effect of anthropogenic factors, landscape 

structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Science of 

The Total Environment, 626, 1373–1381. doi: 10.1016/j.scitotenv.2018.01.131 

Tabacchi, G., De Natale, F., Di Cosmo, L., Floris, A., Gagliano, C., Gasparini, P., Genchi, L., Scrinzi, G., 

Tosi, V. (2007). Le stime di superficie 2005. Inventario Nazionale delle Foreste e dei Serbatoi 

Forestali di Carbonio (INFC). MiPAF – Corpo Forestale dello Stato - Ispettorato Generale, CRA - 

ISAFA, Trento. [on line] URL: http://www.infc.it  

Thuiller, W., Araújo, M. B., Pearson, R. G., Whittaker, R. J., Brotons, L., & Lavorel, S. (2004). Biodiversity 

conservation: uncertainty in predictions of extinction risk. Nature, 430(6995), 34. 

Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., & Thuiller, C. W. (2016). Package 

‘biomod2.’ Species Distribution Modeling within an Ensemble Forecasting Framework 

Https://CRAN. R-Project. Org/Package= Biomod2. 

Van Wilgen, B. W., & Richardson, D. M. (2014). Challenges and trade-offs in the management of 

invasive alien trees. Biological Invasions, 16(3), 721–734. doi: 10.1007/s10530-013-0615-8 

Verbruggen, H., Tyberghein, L., Belton, G. S., Mineur, F., Jueterbock, A., Hoarau, G., … De Clerck, O. 

(2013). Improving transferability of introduced species’ distribution models: new tools to forecast 

the spread of a highly invasive seaweed. PLoS One, 8(6), e68337. 

Vicente, J., Alves, P., Randin, C., Guisan, A., & Honrado, J. (2010). What drives invasibility? A multi-

model inference test and spatial modelling of alien plant species richness patterns in northern 

Portugal. Ecography, 33(6), 1081–1092. doi: 10.1111/j.1600-0587.2010.6380.x 

Vicente, J. R., Kueffer, C., Richardson, D. M., Vaz, A. S., Cabral, J. A., Hui, C., … Honrado, J. P. (2019). 

Different environmental drivers of alien tree invasion affect different life-stages and operate at 

different spatial scales. Forest Ecology and Management, 433, 263–275. doi: 

10.1016/j.foreco.2018.10.065 



 38 

Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., … Hulme, P. E. (2010). How well 

do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa 

assessment. Frontiers in Ecology and the Environment, 8(3), 135–144. doi: 10.1890/080083 

Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., … Pyšek, P. (2011). Ecological 

impacts of invasive alien plants: a meta-analysis of their effects on species, communities and 

ecosystems. Ecology Letters, 14(7), 702–708. 

Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., & Pyšek, P. (2017). Black locust ( Robinia pseudoacacia ) 

beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and 

Management, 384, 287–302. doi: 10.1016/j.foreco.2016.10.057 

Vítková, M., Sádlo, J., Roleček, J., Petřík, P., Sitzia, T., Müllerová, J., & Pyšek, P. (2019). Robinia 

pseudoacacia dominated vegetation types of Southern Europe: species composition, history, 

distribution and management. Science of The Total Environment, 134857. doi: 

10.1016/j.scitotenv.2019.134857 

Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A., & Losos, E. (1998). Quantifying threats to imperiled 

species in the United States. BioScience, 48(8), 607–615. 

Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strategies influence species distribution 

models and their predictions? An information-theoretic approach based on simulated data. BMC 

Ecology, 9(1), 8. doi: 10.1186/1472-6785-9-8 

Woodward, F. I., & Woodward, F. (1987). Climate and plant distribution. Cambridge University Press. 

Zengeya, T., Ivey, P., Woodford, D. J., Weyl, O., Novoa, A., Shackleton, R., … Van Wilgen, B. (2017). 

Managing conflict-generating invasive species in South Africa : challenges and trade-offs. doi: 

10.4102/abc.v47i2.2160 

 

 

 

 

 

 

 

 



 39 

What drives the success of the invasive tree Robinia pseudoacacia: 
climate suitability, disturbance or land management? 
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Table S1: Presence of R. pseudoacacia in forests of different European countries. 

 

 
Figure S1: Spatial autocorrelation between the occurrence points (at 1 km resolution). The y axis shows the value of correlation 

found by the Mantel test, whereas the x axis shows the distance in decimal degrees (1 degree corresponds to about 78 km at 45N/S). 

It can be seen that SAC is eliminated only at 6 decimal degrees of distance (corresponding to about 470 km). For this reason, we 

decided to only take one point per cell of 1 km2 as it is only correlated by a value of 0.25 at 1 km (about 0.001 degrees). 

Presence in different countries 
 

ha % of forest surface Source 

CH (2013) 2'480 0.2 IFNS, 2013 

I (2007) 233'553 2.3 INFC, 2007  

F (2012) 200'000 1.2 IFNF, 2012 

G 34'000 0.3 Vitkova et al. 2017 

A  . 0.2 Vitkova et al. 2017 
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Fig. S2: Correlation among the CHELSA bioclimatic variables. The more the variables are next to each other in the phylogeny, the 

more they are correlated. For the model we tried to select one or maximum two variables per cluster, following what was known of 

the ecology of R. pseudoacacia. For the cluster containing bio15, bio01, bio 05 and bio10, none of the variables was selected because 

we wanted a maximum of six predictors to avoid overfitting. CHELSA_bio10_04 = bio04; CHELSA_bio10_06 = bio06; 

CHELSA_bio10_11 = bio11; CHELSA_bio10_19 = bio19; CHELSA_bio10_12 = bio12; CHELSA_bio10_18 = bio18. For a description of 

variable corresponding to the abbreviation see Table S4. 
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Fig. S3: PCA of CHELSA bioclimatic variables. Arrows that point in orthogonal directions are not correlated at all. The more the arrows 

point in the same direction, the more the variables are correlated. The length of the arrow represents the importance of the variable 

in explaining R. pseudoacacia distribution (the lengthier the more it explains). 
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Figure S4: Importance of climatic variables included in the global distribution model for R. pseudocacia. The model was calibrated 

at the scale of global ecoregions. 

Table S2: Predictors used for modelling R. pseudoacacia distribution. 

Abbreviation Variable Unit Source 

Bio04 Temperature Seasonality 

(standard deviation *100) 

°C * 100 Karger et al. (2017) 

Bio06 Min Temperature of Coldest 

Month 

°C Karger et al. (2017) 

Bio11 Mean Temperature of 

Coldest Quarter 

°C Karger et al. (2017) 

Bio12 Annual Precipitation mm Karger et al. (2017)   

Bio18 Precipitation of Warmest 

Quarter 

mm Karger et al. (2017) 

Bio19 Precipitation of Coldest 

Quarter 

mm Karger et al. (2017) 
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Fig. S5: Fieldwork points visited in the two study areas on the climatic suitability map. 
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Table S3: CORINE landcover categories. In the first three columns CORINE landcover types are represented with their code, name 

and reference. Fourth and Fifth columns represent the aggregated landcovers as we used them for fieldwork and analysis. 

Value Land cover type Source Aggregated 

landcover for 

fieldwork 

planification 

Aggregated 

landcover for 

multivariate 

analysis 

111 Continuous urban fabric  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

European 

Environment 

Agency (EEA) 

Urban; 1 - 

112 Discontinuous urban fabric Urban; 1 Anthropic; 1 

121 Industrial or commercial units Urban; 1 Neutral or not 

enough data (<5 

occurrences); 0 

122 Road and rail networks and associated land Urban; 1 - 

123 Port areas Urban; 1 - 

124 Airports Urban; 1 - 

131 Mineral extraction sites Urban; 1 - 

132 Dump sites Urban; 1 - 

133 Construction sites Urban; 1 - 

141 Green urban areas Urban; 1 Neutral or not 

enough data (<5 

occurrences); 0 

142 Sport and leisure facilities Urban; 1 Neutral or not 

enough data (<5 

occurrences); 0 

211 Non-irrigated arable land Agricultural; 2 Agricultural; 2 

212 Permanently irrigated land Agricultural; 2 - 

213 Rice fields Agricultural; 2 - 

221 Vineyards Agricultural; 2 - 

222 Fruit trees and berry plantations Agricultural; 2 - 

223 Olive groves Agricultural; 2 - 

231 Pastures Agricultural; 2 Agricultural; 2 

241 Annual crops associated with permanent crops Agricultural; 2 - 

242 Complex cultivation patterns Agricultural; 2 Agricultural; 2 

243 Land principally occupied by agriculture, with 

significant areas of natural vegetation 

Agricultural; 2 Agricultural; 2 

244 Agro-forestry areas Agricultural; 2 - 

311 Broad-leaved forest Natural; 3 Forest; 3 
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312 Coniferous forest Natural; 3 Forest; 3 

313 Mixed forest Natural; 3 Forest; 3 

321 Natural grasslands Natural; 3 Neutral or not 

enough data (<5 

occurrences); 0 

322 Moors and heathland Natural; 3 - 

323 Sclerophyllous vegetation Natural; 3 - 

324 Transitional woodland-shrub Natural; 3 Neutral or not 

enough data (<5 

occurrences); 0 

331 Beaches, dunes, sands Natural; 3 - 

332 Bare rocks Natural; 3 - 

333 Sparsely vegetated areas Natural; 3 - 

334 Burnt areas Natural; 3 - 

335 Glaciers and perpetual snow Natural; 3 - 

411 Inland marshes Wet; 4 Humid and 

shores; 4 

412 Peat bogs Wet; 4 Neutral or not 

enough data (<5 

occurrences); 0 

421 Salt marshes Wet; 4 - 

422 Salines Wet; 4 - 

423 Intertidal flats Wet; 4 - 

511 Water courses Water bodies; 5 Neutral or not 

enough data (<5 

occurrences); 0 

512 Water bodies Water bodies; 5 Humid and 

shores; 4 

521 Coastal lagoons Water bodies; 5 - 

522 Estuaries Water bodies; 5 - 

523 Sea and ocean Water bodies; 5 - 

999 NODATA - - 
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Fig. S6: Response curves of R. pseuodacacia for the six climatic variables included in the global model for the five modelling 

techniques. CHELSA_bio10_04 = bio04; CHELSA_bio10_06 = bio06; CHELSA_bio10_11 = bio11; CHELSA_bio10_19 = bio19; 

CHELSA_bio10_12 = bio12; CHELSA_bio10_18 = bio18. For a description of variable corresponding to the abbreviation see Table S4. 

 

 
Fig. S7: Repartition of R. pseudoacacia presences in different disturbance types. On the left the proportion between expected and 

observed presences in a certain type of disturbance is presented, whereas at the right the number of plots containing the species in 

each type of disturbance is presented. 
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Fig. S8: Representation of the change in probability of presence of R. pseuodacacia in relation to the five explanatory variables of 

the mixed model. Pay attention to the fact that y axis has not always the same scale. 
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Fig. S9: The different types of disturbance collected in our field study are reported in relation to the country. The x axis represents 

the type of disturbance (for the correspondence of numbers with the disturbance type see the section M&M above), whereas the y 

axis represents the country (CHfr in red; FR in blue; ITA in yellow, TI in green). The height of the columns represents the proportion 

of the plots within each country on the total of the specific type of disturbance, whereas the width represents the proportion of that 

specific type of disturbance on the total of disturbed plots. Disturbance was analyzed as a binary variable because the categories 

where not precise, as for example the majority of plots had two or more types of disturbance, which entailed a loss of information.  

 

S1: Choice of distribution 

To analyse the effect of variables collected on density, a negative binomial family was chosen 

instead of a Poisson. This is due to the fact that the Poisson model was found to be over-dispersed 

by P__dist (package msme; dispersion = 7.77) and dispersiontest (package AER; alpha = 6.2, p-

value = 0.008049) and the variance was much higher than the mean (one of Poisson’s assumptions). 

Negative binomial family is surer to use when count data are over-dispersed (Rodriguez 2013), and 

the model was no more over-dispersed once negative binomial distribution was selected (dispersion 

= 1.18). 

 

S2: Effect size 

Given that any effect, no matter the magnitude, can produce small p-value or large p-value if the 

sample size is big or small enough and that identical or similar effects can have different p-values 

following the precision of the estimates, we decided to put effect size measures in the results of chi-

squared tests of independence and in the results of the mixed model as a complement of 

information, because according to Iolongo (2016) effect size effect size takes into account the size 
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of the sample, whereas p-value does not take it into account, and when enlarging the sample, the 

probability of getting a small p-value increases also for very small effect that would not be 

recognized as significant with a smaller sample. Effect size measures that have been used in this 

paper are phi for 2x2 contingency tables, Cramer’s V for tables with unequal number of columns 

and rows and Odds ratio for the probability of presence of R. pseudoacacia in the mixed model. 

These three effect sizes measure the effect as the variation between two or more variables observed 

between different groups. Phi and Cramer’s V use the correlation to measure the effect, whereas 

Odds ratio represents the likelihood that an event occurs due to a certain factor and not due to 

chance (Ialongo, 2016). 


