Summary of Clinical (C) and neuroimaging (I) course modules

<table>
<thead>
<tr>
<th>Topic and Weeks</th>
<th>Content summary</th>
<th>Topic and Weeks</th>
<th>Content summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Clinical Course: Module C (6x4h) = 2 ECTS</td>
<td>Modern neuroimaging methods of investigation of the human brain in health and disease:</td>
<td>Module I (6x4h): 2 ECTS</td>
</tr>
<tr>
<td>Wednesday from 8-12h</td>
<td>(8-9h DNC patient colloquium; 9-12h course)</td>
<td>Wednesday from 8-12h</td>
<td>(order newly defined on annual basis depending on teacher availability)</td>
</tr>
<tr>
<td>Module C</td>
<td>N = Neuroanatomy; PF = Physiology and Function; BD = Brain Diseases; PA = Pathology; PL = Plasticity</td>
<td>Topic I: Introductory Science and Methods</td>
<td>Principles of Image Formation (PIF) Image restoration; Analogue-to-digital conversion; Image reconstruction; Image quality & quality correction</td>
</tr>
<tr>
<td>Introduction to Neuroanatomy, Systems and Disease</td>
<td>Brief recapitulation on basic principles of neuroanatomy and physiology focusing on the brain and disease</td>
<td>Topic II: MR Physics and MR imaging Modalities</td>
<td>Matlab (ML) Basic use of Matlab</td>
</tr>
<tr>
<td>Language – plasticity and development</td>
<td>Plasticity</td>
<td>Introductory Statistics (IS) Study design; Estimation & Hypothesis testing; Continuous & Categorical Data; Correlation & Regression</td>
<td>Topic III: Structural brain imaging</td>
</tr>
<tr>
<td>Motor Neuron Disease (MND) Progressive Supranuclear Palsy (PSP), and Fronto -Temporal Lobar Degeneration (FTLD)</td>
<td>Topic IV: Functional brain imaging</td>
<td>Morphometry & Volumetry (MV) Concepts: Global vs local measures; Atlas based region-of-interest approaches; Volumetry; Voxel-based methods.</td>
<td>Diffusion-weighted Imaging (DWI) MR physics of water diffusion; Deterministic and probabilistic tractography</td>
</tr>
<tr>
<td>Friday from 8-12h</td>
<td>Brain Connectivity</td>
<td>Advanced MR Methods (AMR) Relaxometry; Magnetisation transfer imaging; Advanced diffusion-MRI applications.</td>
<td>Structural Covariance (SC) Definition of seeds; structural covariance analysis of multi-modal data</td>
</tr>
<tr>
<td>Wednesday from 8-12h</td>
<td>Diffusion-weighted Imaging (DWI) MR physics of water diffusion; Deterministic and probabilistic tractography</td>
<td>Structural Covariance (SC) Definition of seeds; structural covariance analysis of multi-modal data</td>
<td>Diffusion Covariance (DC) Analysis of diffusion data; Multi-modal data analysis and statistics</td>
</tr>
<tr>
<td>Module I</td>
<td>Integrative Human Brain Research Institute (IHBR)</td>
<td>Data mining & Big Data Analysis</td>
<td>Challenges of the Human Brain Project (HBP)</td>
</tr>
<tr>
<td>Wednesday from 8-12h</td>
<td>Introductory Science and Methods</td>
<td>Pattern Recognition methods (PR) Machine-learning principles, Support-vector machines; Classification</td>
<td>Data basing; Distributed networks; Data protection</td>
</tr>
</tbody>
</table>

Content summary

Clinical Course: Module C (6x4h) = 2 ECTS

Modern neuroimaging methods of investigation of the human brain in health and disease:

Module I (6x4h): 2 ECTS

- **(order newly defined on annual basis depending on teacher availability)**
- **Matlab (ML) Basic use of Matlab**
- **Introductory Statistics (IS) Study design; Estimation & Hypothesis testing; Continuous & Categorical Data; Correlation & Regression**
- **Morphometry & Volumetry (MV) Concepts: Global vs local measures; Atlas based region-of-interest approaches; Volumetry; Voxel-based methods.**
- **Diffusion-weighted Imaging (DWI) MR physics of water diffusion; Deterministic and probabilistic tractography**
- **Challenges of the Human Brain Project (HBP)**
- **Data basing; Distributed networks; Data protection**

Brief recapitulation on basic principles of neuroanatomy and physiology focusing on the language system

Motor Neuron Disease (MND) Progressive Supranuclear Palsy (PSP), and Fronto -Temporal Lobar Degeneration (FTLD)

Brain Connectivity

Diffusion-weighted Imaging (DWI) MR physics of water diffusion; Deterministic and probabilistic tractography

Structural Covariance (SC) Definition of seeds; structural covariance analysis of multi-modal data

Data mining & Big Data Analysis

Pattern Recognition methods (PR) Machine-learning principles, Support-vector machines; Classification

Multi-variate statistics (MV) Gaussian mixture models; Intersubject variability

Challenges of the Human Brain Project (HBP)

Data basing; Distributed networks; Data protection

Summary of Clinical (C) and neuroimaging (I) course modules

Module C (6x4h) = 2 ECTS

Modern neuroimaging methods of investigation of the human brain in health and disease:

Module I (6x4h): 2 ECTS

Week 1

Clinical Course: Module C (6x4h) = 2 ECTS

Modern neuroimaging methods of investigation of the human brain in health and disease:

Module I (6x4h): 2 ECTS

Wednesday from 8-12h (8-9h DNC patient colloquium; 9-12h course)

Wednesday from 8-12h