

MRI physics for SPM users

SPM course 11/2013

Antoine Lutti antoine.lutti@chuv.ch

Outline

General principals

- Origin of the signal
- RF excitation
- Relaxation (T1, T2, ...)

Anatomical imaging

- Image contrast
- Standard acquisition methods
- Advanced acquisition methods

Functional imaging

- BOLD effect
- Limitations of fMRI acquisitions
- Advanced methods

Outline

General principals

- Origin of the signal
- RF excitation
- Relaxation (T1, T2, ...)

Anatomical imaging

- Image contrast
- Standard acquisition methods
- Advanced acquisition methods

Functional imaging

- BOLD effect
- Limitations of fMRI acquisitions
- Advanced methods

Origin of the signal

Bicycle dynamo

Rotating magnet induces an electric current in the coil

MRI

Rotating magnetization M_0 induces an signal in the head coil

Origin of the signal

Water molecule

- MRI signal arises from water molecules surrounding brain tissue NOT from tissue itself
- The **higher** the water concentration (*proton density*) the **stronger** the signal

Hardware

Magnetic field **B**₀ created by superconducting magnet

B₀ is oriented along the main direction of the bore

The receive coil detects signal arising from the magnetization

Layout - orientation

z direction: aligned with receive coil Longitudinal direction

(x,y) plane: perpendicular to receive coil *Transverse plane*

Layout - orientation

Magnetization M₀ has a **longitudinal component** along the z-direction

Magnetization M₀ has a **transverse component** in the x-y plane

RF excitation

At rest: $\mathbf{M_0}$ is along the longitudinal direction Signal cannot be detected

After RF excitation:

M₀ is in the transverse plane

Signal can be detected

All MR sequences require RF excitation

Return to equilibrium

After RF excitation M₀ returns to its initial state (equilibrium)

Return to equilibrium

Return to equilibrium

Following RF excitation M₀:

- Longitudinal component of M₀ increases. Recovery time **T1**
- Transverse component of M_0 decreases. Decay time $\mathrm{T2}$

Outline

General principals

- Origin of the signal
- RF excitation
- Relaxation (T1, T2, ...)

Anatomical imaging

- Image contrast
- Standard acquisition methods
- Advanced acquisition methods

Functional imaging

- BOLD effect
- Limitations of fMRI acquisitions
- Advanced methods

Anatomical imaging requirements

Optimal image contrast

- High image resolution
- Preserve brain morphology
- Avoid signal losses

T2 relaxation & signal intensities

SIGNAL INTENSITIES DECREASE WITH INCREASING ECHO TIME

T₂ contrast

proton density-weighted image

T2-weighted image

Image contrast is **TE-dependent**

T₂ contrast

- T_{2,CSF}>T_{2,GM/WM} => On T₂-weighted images, CSF appears bright
- WM and GM have similar T₂ values => low WM/GM contrast in T₂-weighted images

Longitudinal relaxation

Return to equilibrium:

Increase of longitudinal component time constant T₁

The recovered longitudinal component will be flipped into the transverse plane when RF excitation is repeated

Longitudinal relaxation

A simple imaging acquisition:

T1 relaxation during TR governs amount of magnetization available for next excitation

T1 contrast

T1 differences between brain tissues yield image contrast in anatomical imaging

PD contrast – long TR

- TR >> T1:
 - All tissues fully relax
 - → No T1w contrast
 - Image contrast: water density
 - → PDw contrast
- Inconveniences:
 - Very time consuming
 - Fairly poor GM/WM contrast

T1 contrast – short TR

Optimal GM/WM contrast

Generally preferred for anatomical imaging

TR<<T1

Frahm J. et al. MRM 1986

T1 contrast – short TR

Anatomical sequences

- FLASH
 - Frahm J. et al. MRM 1986
- Inversion Recovery (time consuming)
- MPRAGE

Mugler & Brookeman MRM 1990; Mugler & Brookeman JMRI 1991; Look D.C., Locker D.R., Rev. Sci. Instrum, 1970;

• MDEFT Deichmann R. et al Neuroimage 2006

FLASH: ~6-7mins

MDEFT:~12mins

Standard anatomical imaging applications

Anatomical images yields estimates of grey matter volume

Ashburner & Friston Neuroimage 2000;

Intracortical myelination

Bartzokis G Neurobiol. Aging 2011

Standard anatomical imaging applications

Transient changes in brain structure due to juggling

Standard anatomical imaging allows insight into brain plasticity

Improved morphometry: MT based VBM

Image contrast

Enhanced image contrast yields improved grey matter volume estimates

Grey matter volumes

MDEFT MT

MT > MDEFT

Helms et al., Neuroimage 2009

Standard limitations Spatially-varying bias

Standard T1w image

receive bias

Receive head coils with spatially varying sensitivities

 α = B1x α_{nom}

transmit bias

Standard limitations receive bias

Original image

Corrected image

Receive bias corrected by bias field correction of SPM 's unified segmentation

T1 contrast – short TR

 α =6° α =20° PDw T1w

Frahm J. et al. MRM 1986

Standard limitations transmit bias

Non uniform RF excitation:

$$\alpha = B1x\alpha_{nom}$$

- Non uniform RF excitation leads to inhomogeneous contrast over the image
- Cannot be corrected at postprocessing
- Map of B1 field must be acquired in-vivo

Lutti A. et al MRM 2010, Lutti A. et al PONE 2012

Standard imaging limitations transmit bias

Standard T1w image

Bias-free image

Contrast bias affect grey matter volume estimates

Standard imaging limitations comparability

High variability across multiple scans – low comparability

Low sensitivity in cross-sectional/longitudidal studies

Standard imaging limitations - summary

Inaccuracy

Hardware bias

Comparability

Varies with imaging sequence and across scans

Interpretability

Mixed effect of multiple MR parameters

Qualitative

Arbitrary units. No insight into microarchitecture

Quantitative mapping - motivations

- Quantitative MRI provides quantitative and specific biomarkers of brain tissue properties (myelination, iron concentration, water concentration,...)
- No bias between brain areas (transmit/receive field)
- Data quantitatively comparable across scanners. Optimal sensitivity in longitudinal and multi-centre studies

Sereno M.I. et al., Cereb. Cortex 2013; Dick F. et al J. Neurosci. 2012

Quantitative mapping - motivations

Rooney W.D. et al MRM 2007

Quantitative estimates of MRI parameters are biomarkers of tissue properties

MPM protocol for quantitative mapping

Scan time: ~25min (1mm³ resolution)

~35min (800um³ resolution)

Helms G., et al MRM 2008; Helms G., et al MRM 2009; Lutti A. et al MRM 2010, Lutti A. et al PONE 2012;

VBQ: fingerprint of tissue changes in ageing

Myelin mapping: towards in-vivo histology

Sereno M.I. et al., Cereb. Cortex 2013; Dick F. et al. J. Neurosci. 2012

Structure/function relationship

Sereno M.I. et al., Cereb. Cortex 2013; Dick F. et al. J. Neurosci. 2012

Anatomical imaging - summary

Standard anatomical imaging

- Provides estimates of grey matter volumes. Study of brain plasticity, neurodegeneration,...
- Limited accuracy, sensitivity and specificity.

Quantitative MRI

- Provides quantitative estimates of MRI parameters
- Enhanced accuracy, sensitivity, specificity
- Provides biomarkers of tissue microstructure insight into biological processes underlying tissue change.

Outline

General principals

- Origin of the signal
- RF excitation
- Relaxation (T1, T2, …)

Anatomical imaging

- Image contrast
- Standard acquisition methods
- Advanced acquisition methods

Functional imaging

- BOLD effect
- Limitations of fMRI acquisitions
- Advanced methods

Blood Oxygen Level Dependent (BOLD) effect

- Ogawa et al., 1990: "static" BOLD effect in rat brain
- Kwong et al., Bandettini et al., Ogawa et al., 1992: BOLD fMRI in human

Note: localized changes, delayed/dispersed BOLD response

Bandettini et al., MRM 1992

Kwong et al., PNAS 1992

Magnetic susceptibility of hemoglobin

Deoxygenated hemoglobin (Hb)

- paramagnetic
- different to tissue (H₂O)
- Changes local magnetic field and

reduces signal in MRI images

Oxygenated Hb:

- diamagnetic
- same as tissue (H₂O)

BOLD contrast in a nutshell (Blood Oxygen Level Dependent)

- Synaptic activity increases metabolism
- Increased cerebral blood flow (neurovascular coupling) and oxyhemoglobin concentration

The BOLD effect

Oxygenated / deoxygenated hemoglobin = endogenous contrast agent

BOLD EFFECT
Change in oxygenated / deoxygenated
hemoglobin concentration leads to
detectable signal change

Functional imaging requirements

 Optimal BOLD sensitivity – T2* weighted contrast

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \underbrace{T_2'}$$

Field inhomogeneities

- Rapid sampling of BOLD response
 - Short acquisition time per image volume

Typical protocol: 64 voxels along read & phase, 3mm resolution

- read direction: 500us per line **fast**
- phase direction: 500usx64=32ms slow (low bandwidth)

Acquisition time per volume:

 $TR_{volume} = Nslices x TR$

Slice ordering: ascending, descending, interleaved

3mm resolution: TR~60ms

Optimal echo time TE for fMRI

$$BS(TE) = C \cdot TE \cdot exp(-TE/T2*)$$

At 3T TE = 30 ms: - Good trade-off between high BOLD sensitivity and low susceptibility-related signal dropout

- Optimal time-efficiency

- Variation in magnetic susceptibility distorts the static magnetic field (B0)
- Strong B0 inhomogeneities at the air/tissue interface lead to artefacts in EPI images

Susceptibility effects in EPI: distortion and dropout

Strong B₀ inhomogeneities

Full signal decay before image acquisition

Signal dropout

Moderate B₀ inhomogeneities

Increased signal decay during image acquisition

Image distortions

Susceptibility effects in EPI: distortion and dropout

Distortion

Phase-encode direction

Dropout

Dropout and distortion

Phase-encode direction

EPI distortion correction with field map

Fieldmap toolbox

Mapping of B0 inhomogeneities calculated from 'fielmap data'

EPI distortion correction with field map

Fieldmap toolbox

Mapping of B0 inhomogeneities calculated from 'fielmap data'

Use pixel shift map to unwarp image

Susceptibility effects in EPI: distortion

Distortion

- Pixel displacement in phase-encoding direction
- Problem for spatial localisation of activations.
- Inaccurate coregistration reduces sensitivity of group studies.

Reduce distortion

Shorter acquisition times, use parallel imaging

Distortion correction

Post-processing using field maps

Cusack et al., Neuroimage 2003

With

Dropout compensation: z-shimming

- Use of preparation gradient pulses (zshim gradients) to compensate local dropouts
- But: Reduces signal in normal areas

Acquisition of several images with different z-shimming reduces temporal resolution

⇒ Optimal compromise: moderate zshimming

Moderate z-shimming: trade-off

(Simulation for slice thickness of 2 mm)

No z-shimming

z-shimming with -2 mT/m*ms

60

30

20

10

Moderate z-shimming: example

Standard EPI

EPI + z-shim

Dropout compensation - multi-echo EPI

- Acquire multiple EPI readouts (=images) after a single RF excitation pulse
- Short TE images recover dropouts

Poser et al., Neuroimage 2009

- Enhanced BOLD sensitivity over the whole brain
- Pitfall: increased acquisition time

Measuring cardiac and respiratory effects

Model based on peripheral measurements:

Pulse oximeter

Respiration belt

Modelling and correcting for cardiac and respiratory effects

- Measured cardiac and respiratory phase can be modelled using a sum of periodic functions e.g. sines and cosine of increasing frequency (Fourier set)
- Modelled effects can be

Glover G.H. Et al. MRM 2000; Hutton et al., Neuroimage 2011

Physiological effects in BOLD

Cardiac effects - vessels

60 50 40 30 20 10

standard

Respiratory effects - global

Activation in visual cortex and LGN with and w/o physiological noise correction

Physiological correction enhances BOLD sensitivity

Hutton et al., Neuroimage 2011

3D EPI acquisitions for fMRI

3D EPI yields higher image signal-to-noise (SNR₀)

Temporal stability (tSNR) is an indicator of BOLD sensitivity

Krueger, G., Glover, G.H. MRM 2001, Triantafyllou, C. et al Neuroimage 2005

High-resolution EPI: 1.5mm 2D/3D EPI at 3T

Lutti et al., Magn Reson Med 2013

3D EPI acquisitions for fMRI

3D EPI yields higher image signal-to-noise (SNR₀)

Temporal stability (tSNR) is an indicator of BOLD sensitivity

Krueger, G., Glover, G.H. MRM 2001, Triantafyllou, C. et al Neuroimage 2005

Ultra-fast fMRI - 3mm³ resolution

Poser B.A., Norris D.G. Neuroimage 2009;

• TR = 1s

Ultra-fast fMRI - 3mm³ resolution

Visual stimulus left-rest-right-rest flickering checkerboard.

2D EPI 3D EPI 200 150 400 50 transverse slices 60 sagittal slices TR = 1sTR = 3s

Mean F-value for visual excitation: 2D EPI: 36;3D EPI: 50 Mean T-value for visual excitation: 2D EPI: 4.5;3D EPI: 6

Functional imaging - summary

- fMRI: brain activation detected via increased metabolim ('BOLD effect')
- EPI acquisitions allow optimal sampling of BOLD response
- EPI images/time-series:
 - Distortions corrected at post-processing
 - Signal dropouts –minimized at run time
 - Physiological instabilities online monitoring + offline processing

Advanced acquisitions:

- Enhanced BOLD sensitivity high resolution
- Rapid acquisitions higher efficiency

Correction yields optimal BOLD sensitivity