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Overview
* Multivariate Approaches



Mass-univariate analyses

* Tests hypotheses at each voxel.
— Not a test of a single hypothesis.

* A hybrid between:
— Exploratory analysis
— Hypothesis testing

* No clear separation between exploratory
data analysis and hypothesis testing.



Multivariate approaches

* A single hypothesis test for the entire
brain.

» Multivariate approaches include:

— Hotelling’s T? tests.
« Essentially just an F test.

— MANCOVA/ANCOVA tests.
 Wilk's lambda statistic

— Pattern recognition.



Pattern Recognition

Training: analogous to exploratory analysis.
Testing: analogous to hypothesis testing.

Clear separation between exploratory
analysis and hypothesis testing.



Hypothesis Testing

* Roughly, hypothesis testing involves comparing
two models, to determine which models the
probability of the data more accurately.

— p(Y|My) or p(Y[M,)




Model Selection

Search for the best of a number of models:
P(Y[Mo), p(Y|My), p(Y[M,), p(Y|Mg), p(Y[M,)...

Cross-validation is essentially hypothesis testing.
— Learn a hypothesis/model from the training data.
— Test it on the data that was left out.

Other model selection strategies are also possible — eg Bayesian
Model Selection.

The complexity of the best model depends on how much data is
available.

— Brains are a bit complicated



Multivariate models of form

In theory, assumptions about structural covariance

among brain regions are more biologically plausible.
Form determined (in part) by spatio-temporal modes of gene
expression.

Empirical evidence in (eQ)

Mechelli, Friston, Frackowiak & Price. Structural covariance in
the human cortex. Journal of Neuroscience 25(36):8303-8310

(2005).

We should work with the most accurate modelling
assumptions available.
— If a model is accurate, it will make accurate predictions.



Generative Model for
Discrimination

* Generative:
P(t=1|x) =p(x|t=1)P(t=1)
p(x|t=0)P(t=0) + p(x|t=1)P(t=1)
Where X feature data
t prediction

« Discriminative:
— Directly learns to give P(t=1|x)

— We are not normally interested in all the variables
needed to represent within-group variability.

— Only after a discriminative direction.



Fisher's Linear Discriminant
Analysis
e A multivariate | P0xy=0) =plsy=0) py=0) pxy=1) = p(xly=1) p(y=1)

model. : :

» Special case  }*
of canonical ’ Q ’ .
variates T — T

Feature 1 Feature 1

a n a I yS | S . P(x) = p(x,y=0) + p(x,y=1) p(y=0[x) = p(x,y=0)/p(x)
e

* A generative
model. .




Other linear discrimination

approaches
e Can also use

discriminative . Ground truth . FLDA

models. 2 2

o~ -3 ~ -3

. % -4 5-4

« Anatomical ¢, 3.

differences are P 5

-7 -7

encoded by the
vector orthogonal to
the separating hyper-
plane.

Feature 1

Simple Logistic Regression

* The most accurate
model of difference is
the one that best

Feature 2
1 1 1 1 1 1 1
~l » (4] i N w N -

Feature 2
1 1 1 1 1 1 1
~l [o>] (4] H w N -

Feature 1 Feature 1



Probabillistic Approaches

Feature 2

Feature 2

Simple Logistic Regression
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Regression

« For predicting a continuous variable
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Regression

Objective: N
estimate Z ez
parameters to t
minimize t=1

Ordinary least
squares estimation
(OLS) (assuming i.i.d.
error):

B=(X"X)"X"y




Curse of Dimensionality

More voxels in an image than images in a study
t=Xw+e
System is under-determined, so need to regularise

Could use PCA, but more principled to use ridge-
regression.

Learn the regularisation
parameters with REML.

Turns out to be same as
Gaussian Process model.




Gaussian Process Regression

Estimate a covariance matrix by maximising.
log p(t|@) = -Y4log |C(B)| - ¥:tTC(0) 1t

Where e.g. C(0) = 6,1 + 0, + 85 X;TX; + 8, X,TX,
Augment covariance matrix with data for testing:

. _[C k
fuII_kT C

Make inference from
— Pt ent:0) = N(KTC-t, ¢ - kTC-1k)
Classification is a bit more complicated



Predicting Age — univariate v multivariate

Single Voxel Combining All Voxels

response at [-7.5, -16.5, 1.5]
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Weight Map

For linear classifiers, predictions are made by:

Yy =ayXXy+ap X Xo+az X Xg+...+b

where: Yy is the prediction

X1, X5, X5 €1C are voxels in the image to classify
a,, a,, 8 etc are voxels in a weight map
b is a constant offset.

The weight map can be visualised



Maps

Multivariate weight map Simple T statistic image
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Overview

e Scalar Momentum



Distances

Biologically plausible measures of anatomical similarity.

Nonlinear distance
measures



The 2D shapes (again)




“Scalar momentum” — encodes the original shapes




The 2D shapes (yet again)




Reconstructed from scalar momentum and

tamnlate




“Scalar momentum” — encodes the oriainal shapes
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Residuals
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Overview

e Some Evaluations



Ugly Duckling Theorem

 An argument asserting that classification
IS Impossible without some sort of bias.

Watanabe, Satosi (1969). Knowing and Guessing: A Quantitative
Study of Inference and Information. New York: Wiley. pp. 376-377.

7.6. THEOREM OF THE UGLY DUCKLING

The purposes of this section is to show that from the formal point of view
there exists no such thing as a class of similar objects in the world, insofar as
all predicates (of the same dimension) have the same importance. Conversely,
if we acknowledge the empirical existence of classes of similar objects, it
means that we are attaching nonuniform importance to various predicates,
and that this weighting has an extralogical origin.




David Mumford’s version

Empirical Statistics and Stochastic Models for Visual Signals

Figure 1.11 Each of the shapes A,B.C.D and E is similar to the central shape, but

in different ways. Different metrics on the space of shape bring out these distinctions.



| XI Data
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VBM-type Features

Warped Grey Matter “Modulated” Warped GM
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Volumetric Measures from Deformation
Fields

Jacobian determinants Initial Velocity Divergence
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Age Prediction - Best Result

Scalar Momentum (10mm FWHM)
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Age Prediction — Comparison Among
Features

8-Fold Cross-Validation
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Age Prediction — Model Log Likelihoods

Differences > 4.6
indicate
“decisive”
evidence in
favour of one
approach over
another.

Log Likelihood
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Sex Prediction — Best Result
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Sex Prediction — Best Result

ROC Curve (AUC=0.9769)
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Sex Prediction — Comparison Among
Features

Gaussian Process (EP)
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Sex Prediction — Model Log Likelihoods
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