

Data pre-processing framework in SPM

Bogdan Draganski

Outline

- Why do we need pre-processing?
- Overview
- Structural MRI pre-processing
- fMRI pre-processing

Why do we need pre-processing?

What do we want?

- Inter-subject averaging
 - Increase sensitivity with more subjects
 - Fixed-effects analysis
 - Extrapolate findings to the population as a whole
 - Mixed-effects analysis
- Make results from different studies comparable by aligning them to standard space
 - e.g. The T&T convention, using the MNI template

Movement

Distortions

Non-gaussian distribution

Pre-processing Overview

- MR Images are corrupted by smoothly varying intensity inhomogeneity caused by magnetic field imperfections and subject-field interactions
 - Would make intensity distribution spatially variable
- A smooth intensity **correction** can be modelled by a linear combination of DCT (discrete cosine transform) basis functions

Inhomogeneity correction

- Field inhomogeneity will disrupt intensity based segmentation
- Bias correction required

Estimate

 T_1

Tissue intensity distributions – T1w MRI

- Find the "best" parameters according to an "objective function" (minimised or maximised)
- Objective functions can often be related to a probabilistic model (Bayes -> MAP -> ML -> LSQ)

Segmentation results

Spatially normalised — BrainWeb phantoms (T1, T2, PD)

Tissue probability maps of GM⁷ and WM

Cocosco, Kollokian, Kwan & Evans. "BrainWeb: Online Interface to a 3D MRI Simulated Brain Database". NeuroImage 5(4):S425 (1997)

Spatial normalisation

Affine registration

Non-linear registration

Without regularisation, the non-linear spatial normalisation can introduce unwanted deformation Template image Von-linear registration using

regularisation

(error = 302.7)

Affine registration (error = 472.1)

Non-linear registration without regularisation (error = 287.3)

Spatial normalisation - Limitations

- Seek to match functionally homologous regions, but...
 - No exact match between structure and function
 - Different cortices can have different folding patterns
 - Challenging high-dimensional optimisation
 - Many local optima
- Compromise
 - Correct relatively large-scale variability (sizes of structures)
 - Smooth over finer-scale residual differences

• Uses information from tissue probability maps (TPMs) and the intensities of voxels in the image to work out the probability of a voxel being GM, WM or CSF

Old Segmentation

New Segmentation

- If someone has atrophy, normalisation will stretch grey matter to make brain match healthy template
- This will reduce ability to detect differences

Analogy: as we blow up a balloon, the surface becomes thinner.

Likewise, as we expand a brain area it's volume is reduced.

Modulated

Modulation

- Multiplication of the warped (normalised) tissue intensities so that their regional or global volume is preserved
 - Can detect differences in completely registered areas
- Otherwise, we *preserve concentrations*, and are detecting *mesoscopic* effects that remain after approximate registration has removed the macroscopic effects
 - Flexible (not necessarily "perfect") registration may not leave any such differences

Native

intensity = tissue density

Unmodulated

1/3

1/3

2/3

Modulated

2/3

- Why would we deliberately blur the data?
 - Improves spatial overlap by blurring over minor anatomical differences and registration errors
 - Averaging neighbouring voxels suppresses noise
 - Increases sensitivity to effects of similar scale to kernel (matched filter theorem)
 - Makes data more normally distributed (central limit theorem)
 - Reduces the effective number of multiple comparisons
- How is it implemented?
 - Convolution with a 3D Gaussian kernel, of specified full-width at half-maximum (FWHM) in mm

- Smoothing kernel should match the shape and size of the expected effect
- Benefits
 - more "Gaussian distribution" of the data
 - Smooth out incorrect registration
- RFT requires FWHM > 3 voxels

12mm

Global normalisation

- Shape is really a multivariate concept
 - Dependencies among volumes in different regions
- SPM is mass univariate
 - Combining voxel-wise information with "global" integrated tissue volume provides a compromise

Above: (ii) is globally thicker, but locally thinner than (i) – either of these effects may be of interest to us.

Below: The two "cortices" on the right both have equal volume...

Figures from: *Voxel-based morphometry of the human brain*... Mechelli et al, 2005

fMRI pre-processing

- Slice timing correction (optional)
- Realignment (Motion correction)
- Unwarping (Motion correction x B0 correction)
- Co-registration
 - Link functional scans to anatomical scan
- Spatial normalisation (unified segmentation)
 - Fitting images to a standard brain
- Smoothing
 - Increases signal-to-noise ratio and approximates a Gaussian distribution

Pre-processing Overview

Objectives Overview Structural Functional Outline

Slice timing (optional)

Slice timing (optional)

Realign (E 🔻	Slice timing	g Smoo	th
Coregister (Normalise (▼ Segme	ent
Specify 1st-I	level	Review	
Specify 2nd-	level	Estimate	
	Results		
	namic Causal M	lodelling	
Dy			
SP	M for functio	nal MRI	
Display Ch	M for functio	nal MRI der 💌 🕅 FMR	l e

Realignment - motion correction Translation Rotation Ζ Yaw Roll

Realignment - motion correction

Rigid body transformations parameterised by:

Т	rar	nslä	ations		Pit	ch		aho	Rc) V avis		Yaw about 7 axis				
		about X axis														
(1	0	0	Xtrans	(1	0	0	0)	cos(Θ)	0	sin(Θ)	0)	$\cos(\Omega)$	sin(Ω)	0	0)	
0	1	0	Ytrans	0	$\cos(\Phi)$	sin(Ф)	0	0	1	0	0		$\cos(\Omega)$	0	0	
0	0	1	Zt rans	0	-sin(Φ)	$\cos(\Phi)$	0	-sin(Θ)	0	$\cos(\Theta)$	0	0	0	1	0	
0	0	0	1)	0	0	0	1	0	0	0	1)	0	0	0	1	

Minimizing the squared difference (error) between the images

Realignment motion correction

		,				
Realign (E 💌	Slice timing Smooth					
Coregister (💌 Nor	rmalise (💌 Segment					
Specify 1st-level	Review	Review				
Specify 2nd-level	Estimate	Estimate				
	Results					
Dynamic	c Causal Modelling					
SPM fo	r functional MRI					
Display Check R	teg Render 🔻 FMRI					
		(Impo				
oolbox: 💌 🦳 PPIs		dimment.				

Unwarp

Fieldmap

Raw EPI

Undistorted EPI

Unwarp can estimate changes in distortion

from movement

- distortions in a reference image (FieldMap)
- subject motion parameters (that we obtain in realignment)
- change in deformation field with subject movement (estimated via iteration)

Co-registration

Normalized mutual information

Visual Image

Thermal Image

Chess Image after Registration Image after Fusion

functional and structural images in the same space

Co-registration

Spatial registration

Registration of structural images to a standard brain template (standard space)

→The obtained transformation (warping) parameters can be applied on co-registered fMRI data

 \rightarrow Improved spatial normalization based on high resolution structural information

Smoothing

Smoothing

LREN Laboratoire de Recherche en Neuro-Imagerie

www.unil.ch/lren

www.facebook.com/LRENIab