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Passive word 

listening 

versus rest 

7 cycles of  

rest and listening 

Blocks of 6 scans 

with 7 sec TR 

Question: Is there a change in the BOLD 

response between listening and rest? 

Stimulus function 

One session 

fMRI experiment example 
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Mass-univariate analysis: voxel-wise GLM 
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Model is specified by 

1. Design matrix X 

2. Assumptions about e 

N: number of scans 

p: number of 

regressors 

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds. 
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• one sample t-test 

• two sample t-test 

• paired t-test 

• Analysis of Variance 

(ANOVA) 

• Analysis of Covariance 

(ANCoVA) 

• correlation 

• linear regression 

• multiple regression 

GLM: a flexible framework for parametric analyses 



Parameter estimation 
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Ordinary least 

squares estimation 

(OLS) (assuming i.i.d. 

error): 
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Objective: 

estimate 

parameters to 

minimize 
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Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 

3. Due to breathing, heartbeat & unmodeled neuronal 
activity, the errors are serially correlated. This violates 
the assumptions of the noise model in the GLM. 



Boynton et al, NeuroImage, 2012. 

Scaling 

Additivity 

Shift 

invariance 

Problem 1: BOLD response 

Hemodynamic response function (HRF): 

Linear time-invariant (LTI) system: 

u(t) x(t) hrf(t) 

Convolution operator: 



Problem 1: BOLD response 
Solution: Convolution model 



Convolution model of the BOLD response 

Convolve stimulus function 

with a canonical 

hemodynamic response 

function (HRF): 

 HRF 
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Brief 

Stimulus 

Undershoot 
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Informed Basis Set Canonical HRF 

Hemodynamic Response  Temporal Basis Set 

Canonical 

Temporal 

Dispersion 



blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 

account  low-frequency drift 

red =  predicted response, NOT taking 

into  account low-frequency drift 

Problem 2: Low-frequency noise  
Solution: High pass filtering 

discrete cosine 

transform (DCT) 

set 
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Problem 3: Serial correlations 

i.i.d: 



Multiple covariance components 

=  1 + 2 

Q1 Q2 

Estimation of hyperparameters  with ReML (Restricted Maximum Likelihood). 

V 

enhanced noise model at voxel i 

error covariance components Q 

and hyperparameters 
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Summary: a mass-univariate approach 



Summary: Estimation of the parameters 

i.i.d. assumptions: 

OLS estimates: 
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Contrasts 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] 



Hypothesis Testing 

 Null Hypothesis H0 

     Typically what we want to disprove (no effect). 

      The Alternative Hypothesis HA expresses outcome of interest. 

To test an hypothesis, we construct “test statistics”. 

 Test Statistic T 

     The test statistic summarises evidence 

about H0. 

     Typically, test statistic is small in 

magnitude when the hypothesis H0 is true 

and large when false.  

      We need to know the distribution of T 

under the null hypothesis. Null Distribution of T 



cT = 1 0 0 0 0 0 0 0 

T =  

contrast of 

estimated 

parameters 

variance 

estimate 

box-car amplitude > 0 ? 

= 

1 = cT> 0 ? 

1 2 3 4 5 ... 

T-test - one dimensional contrasts – SPM{t} 

Question: 

Null hypothesis: H0: c
T=0  

Test statistic: 
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T-test: one dimensional contrasts – SPM{t} 

 T-test is a signal-to-noise measure (ratio of estimate to 

standard deviation of estimate). 

 T-contrasts are simple combinations of the betas; the T-
statistic does not depend on the scaling of the regressors 
or the scaling of the contrast. 

H0: 0Tc vs     HA: 0Tc

 Alternative hypothesis: 
 



F-test - the extra-sum-of-squares principle 

 Model comparison: 

Null Hypothesis H0: True model is X0 (reduced model) 

Full model ?  

X1   X0 

or Reduced model?  

X0 Test statistic: ratio of 

explained variability and 

unexplained variability (error) 

1 = rank(X) – rank(X0) 

2 = N – rank(X) 

RSS 

 2ˆ
full

RSS0
 

 2ˆ
reduced



F-test - multidimensional contrasts – SPM{F} 

 Tests multiple linear hypotheses: 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

cT  = 

H0: 4 = 5 = ... = 9 = 0 

X1  (4-9) X0 

Full model? Reduced model? 

H0: True model is X0 

X0 

test H0 :  c
T = 0 ? 

SPM{F6,322} 



F-test example: movement related effects 
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F-test: summary 

 F-tests can be viewed as testing for the additional variance 
explained by a larger model wrt a simpler (nested) model  
model comparison. 
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 In testing uni-dimensional contrast with an F-test, for example 
1 – 2, the result will be the same as testing 2 – 1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects. 

 F tests a weighted sum of squares of one or several 
combinations of the regression coefficients . 

 Hypotheses: 

0  : Hypothesis Null 3210  H

0 oneleast at   : Hypothesis eAlternativ kAH 



Orthogonal regressors 
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Correlated regressors 

Shared variance 

Variability in Y 



Correlated regressors 

Variability in Y 
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Inference at a single voxel 

Null distribution of test statistic T 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 

Noise 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatial correlated data. 

Discrete data Spatially extended data 



Topological inference 

Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 

Topological feature: 
Cluster extent 

space 

uclus 

uclus : cluster-forming threshold 

Cluster level inference 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold 

c 

Set level inference 



RFT and Euler Characteristic 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Expected Euler Characteristic 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported 
coordinates 
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