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fMRI experiment example
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Question: Is there a change in the BOLD
response between listening and rest?




Voxel-wise time series analysis

Model
specification

Parameter
estimation

Wil

Hypothesis
Statistic

4 BOLD signgf

single voxel
time series SPM




Single voxel regression model
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Mass-univariate analysis: voxel-wise GLM
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N: number of scans

p. number of
N v N v N v regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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GLM: a flexible framework for parametric analyses

* one sample t-test
* two sample t-test
* paired t-test

 Analysis of Variance
(ANOVA)

« Analysis of Covariance
(ANCoVA)

e correlation
* linear regression
« multiple regression



Parameter estimation
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Ordinary least
squares estimation
(OLS) (assuming i.i.d.
error):

B=(X"X)"XTy




Problems of this model with fMRI time series

1. The BOLD response has a delayed and dispersed
shape.

2. The BOLD signal includes substantial amounts of
low-frequency noise (eg due to scanner drift).

3. Due to breathing, heartbeat & unmodeled neuronal
activity, the errors are serially correlated. This violates
the assumptions of the noise model in the GLM.
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Problem 1: BOLD response

Hemodynamic response function (HRF):
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Boynton et al, Neurolmage, 2012.



Problem 1: BOLD response
Solution: Convolution model
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Convolution model of the BOLD response

Convolve stimulus function
with a canonical
hemodynamic response
function (HRF):
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Hemodynamic Response = Temporal Basis Set

Canonical HRF
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Problem 2: Low-frequency noise

Solution: High pass filtering

discrete cosine
transform (DCT)
set
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Problem 3: Serial correlations

autocovarnance

autocovariance
function




Multiple covariance components

enhanced noise model at voxel | C. = 02\/
| |

e, ~N(0,C) V=2 4Q

error covariance components Q
and hyperparameters A4

Q1

+ 4,

Estimation of hyperparameters A with ReML (Restricted Maximum Likelihood).
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Summary: Estimation of the parameters

i.i.d. assumptions: €~N(0,a%D)

OLS estimates: B = (XTX)"*XTy

B, = 3.9831

VUUYUY

B,_> = {0.6871,1.9598,1.3902,166.1007,76.4770,—64.8189}

W

fg = 131.0040
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Contrasts
O A contrast selects a specific effect of interest.
= A contrast c is a vector of length p.
00200000000V
—— —— = ¢TB is a linear combination of regression
coefficients .
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Hypothesis Testing

To test an hypothesis, we construct “test statistics”.

d Null Hypothesis H,
Typically what we want to disprove (no effect).

= The Alternative Hypothesis H, expresses outcome of interest.

] Test Statistic T
The test statistic summarises evidence

about H,,.

Typically, test statistic is small in
magnitude when the hypothesis H, is true
and large when false.

= We need to know the distribution of T

under the null hypothesis.

Null Distribution of T




T-test - one dimensional contrasts — SPM({t}

Question: box-car amplitude > 0 ?
c'™=10000000 _
. p=c'p>07?
BB B B - Null hypothesis: H,: cT/=0

contrast of

estimated
parameters
Test statistic: T= .
variance
estimate
c' B c' B
T = = fros
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T-test: one dimensional contrasts — SPM({t}

] T-test is a signal-to-noise measure (ratio of estimate to
standard deviation of estimate).

1 Alternative hypothesis:
Ho ¢'S=0 vs Hy ¢ >0

J T-contrasts are simple combinations of the betas; the T-
statistic does not depend on the scaling of the regressors
or the scaling of the contrast.



F-test - the extra-sum-of-squares principle

 Model comparison:

Null Hypothesis H,: True model is X, (reduced model) J

Full model ?

or Reduced model?

Test statistic: ratio of
explained variability and
unexplained variability (error)

RSS, — RSS |
F « J
Z reduced
ESS
X gss ~ Bave |

v, = rank(X) — rank(X)
v, = N —rank(X)



F-test - multidimensional contrasts — SPM{F}

 Tests multiple linear hypotheses:
Hy: True model isxol Hy: B =p=...= =0 testH,: cT,B:O?‘

X X X 000100000
0 1 (Bs-o) 0 0005010000

000001000
000000100
000i000010
000i000001

B SPM{F6,322}

Full model? Reduced model?



F-test example: movement related effects
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F-test: summary

] F-tests can be viewed as testing for the additional variance
explained by a larger model wrt a simpler (nested) model =
model comparison.

] F tests a weighted sum of squares of one or several
combinations of the regression coefficients S.

J Hypotheses:

(1) (1) 8 8 Null HypothesisH,: g, =4, =£,=0
8 - 3 Alternative HypothesisH , : at least one g, # 0

 In testing uni-dimensional contrast with an F-test, for example
S — B,, the result will be the same as testing g, — g;. It will be
exactly the square of the t-test, testing for both positive and
negative effects.



Orthogonal regressors

Variability described by X;

Testing for X,

Testing for X,
Variability in Y




Correlated regressors

Variability described by X,

Shared variance
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Variability in Y




Correlated regressors

Testing for X,

Variability described by X,
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Correlated regressors

Testing for X,
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Correlated regressors

Variability described by X,
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Correlated regressors

Testing for X,

Variability described by X,
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Correlated regressors

Testing for X,

Variability described by X,

2x Aq paquosap Ajljiqelien

Variability in Y




Correlated regressors

Testing for X; and/or X,

Variability described by X,

2x Aq paquosap Ajjiqelien

Variability in Y
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Inference at a single voxel

u

Null distribution of test statistic T

p

Null Hypothesis H,:
Zero activation

Decision rule (threshold) u:
determines false positive
rate o

— Choose u to give acceptable
a under H,

. = 3.9831



Multiple tests
"

: If we have 100,000 voxels,

0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable; to correct
for this we can define a null hypothesis
for a collection of tests.

Noise

Signal




Multiple tests
u

If we have 100,000 voxels,
0.=0.05 = 5,000 false positive voxels.

This is clearly undesirable; to correct
for this we can define a null hypothesis
for a collection of tests.

11.3% 11.3% 12.5% 10.8% 11.5% 100% 10.7% 112% 10.2% 9.5%
Percentage of Null Pixels that are False Positives



Family-Wise Null Hypothesis

Family-Wise Null Hypothesis:
Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel,
we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = ‘corrected’ p-value

Use of uncorrected p-value, a O 1

Use of corrected p value a=0.1
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Bonferroni correction

The Family-Wise Error rate (FWER), ag,e, for a family of N
tests follows the inequality:

where « Is the test-wise error rate.

Therefore, to ensure a particular FWER choose:

azaFWE
N

This correction does not require the tests to be independent but
becomes very stringent if dependence.
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Spatial correlations

100 x 100 independent tests Spatially correlated tests (FWHM=10)

Discrete data Spatially extended data

Bonferroni is too conservative for spatial correlated data.

0.05
10,000

10,000 voxels = agonr = =u, = 4.42 (uncorrected u = 1.64)



Topological inference
Peak level inference
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Topological inference

Cluster level inference
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Topological feature:
Cluster extent ‘

Ugs : Cluster-forming threshold

space



Topological inference

Set level Inference
Topological feature:
Number of clusters ‘

Ugs : Cluster-forming threshold

intensity

clus




RFT and Euler Characteristic

Euler Characteristic y;:
» Topological measure

Xu = #Dblobs -# holes

= at high threshold u:
Xu = #Dblobs

FWER = p(FWE)
~ Elx,]
o< A(Q)|A|Y? u exp(—u?/2)/(2m)3/?
/’ ~ \

Search volume Roughness Threshold
(1/smoothness)




Expected Euler Characteristic

Testimgag For X4

&,
100 x 100 Gaussian Random Field ‘
with FWHM=10 smoothing
ArwE = 0.05 = Uppr = 3.8 l“
(uponr = 4.42, Uyncorr= 1.64) :& .




Random Field Theory

U The statistic image is assumed to be a good lattice
representation of an underlying continuous stationary
random field.

Typically, FWHM > 3 voxels
(combination of intrinsic and extrinsic smoothing)

O A priori hypothesis about where an activation should be,
reduce search volume = Small Volume Correction: A

 mask defined by (probabilistic) anatomical atlases

M n H M n ,‘r
» mask defined by separate "functional localisers LI o f
» mask defined by orthogonal contrasts vl SRR N A
. . . .." ¥ ‘t‘ SRS
* (spherical) search volume around previously reported £l

coordinates
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