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Passive word 

listening 

versus rest 

7 cycles of  

rest and listening 

Blocks of 6 scans 

with 7 sec TR 

Question: Is there a change in the BOLD 

response between listening and rest? 

Stimulus function 

One session 

fMRI experiment example 
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Mass-univariate analysis: voxel-wise GLM 
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Model is specified by 

1. Design matrix X 

2. Assumptions about e 

N: number of scans 

p: number of 

regressors 

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds. 
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• one sample t-test 

• two sample t-test 

• paired t-test 

• Analysis of Variance 

(ANOVA) 

• Analysis of Covariance 

(ANCoVA) 

• correlation 

• linear regression 

• multiple regression 

GLM: a flexible framework for parametric analyses 



Parameter estimation 
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Ordinary least 

squares estimation 

(OLS) (assuming i.i.d. 

error): 
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Problems of this model with fMRI time series 

1. The BOLD response  has a delayed and dispersed 
shape. 

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift). 

3. Due to breathing, heartbeat & unmodeled neuronal 
activity, the errors are serially correlated. This violates 
the assumptions of the noise model in the GLM. 



Boynton et al, NeuroImage, 2012. 

Scaling 

Additivity 

Shift 

invariance 

Problem 1: BOLD response 

Hemodynamic response function (HRF): 

Linear time-invariant (LTI) system: 

u(t) x(t) hrf(t) 

Convolution operator: 



Problem 1: BOLD response 
Solution: Convolution model 



Convolution model of the BOLD response 

Convolve stimulus function 

with a canonical 

hemodynamic response 

function (HRF): 

 HRF 
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Brief 

Stimulus 

Undershoot 

Peak 

Informed Basis Set Canonical HRF 

Hemodynamic Response  Temporal Basis Set 

Canonical 

Temporal 

Dispersion 



blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 

account  low-frequency drift 

red =  predicted response, NOT taking 

into  account low-frequency drift 

Problem 2: Low-frequency noise  
Solution: High pass filtering 

discrete cosine 

transform (DCT) 

set 
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Problem 3: Serial correlations 

i.i.d: 



Multiple covariance components 
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Estimation of hyperparameters  with ReML (Restricted Maximum Likelihood). 
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Summary: a mass-univariate approach 



Summary: Estimation of the parameters 

i.i.d. assumptions: 

OLS estimates: 
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Contrasts 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] 



Hypothesis Testing 

 Null Hypothesis H0 

     Typically what we want to disprove (no effect). 

      The Alternative Hypothesis HA expresses outcome of interest. 

To test an hypothesis, we construct “test statistics”. 

 Test Statistic T 

     The test statistic summarises evidence 

about H0. 

     Typically, test statistic is small in 

magnitude when the hypothesis H0 is true 

and large when false.  

      We need to know the distribution of T 

under the null hypothesis. Null Distribution of T 



cT = 1 0 0 0 0 0 0 0 

T =  

contrast of 

estimated 

parameters 

variance 

estimate 

box-car amplitude > 0 ? 

= 

1 = cT> 0 ? 

1 2 3 4 5 ... 

T-test - one dimensional contrasts – SPM{t} 

Question: 

Null hypothesis: H0: c
T=0  

Test statistic: 
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T-test: one dimensional contrasts – SPM{t} 

 T-test is a signal-to-noise measure (ratio of estimate to 

standard deviation of estimate). 

 T-contrasts are simple combinations of the betas; the T-
statistic does not depend on the scaling of the regressors 
or the scaling of the contrast. 

H0: 0Tc vs     HA: 0Tc

 Alternative hypothesis: 
 



F-test - the extra-sum-of-squares principle 

 Model comparison: 

Null Hypothesis H0: True model is X0 (reduced model) 

Full model ?  

X1   X0 

or Reduced model?  

X0 Test statistic: ratio of 

explained variability and 

unexplained variability (error) 

1 = rank(X) – rank(X0) 

2 = N – rank(X) 

RSS 

 2ˆ
full

RSS0
 

 2ˆ
reduced



F-test - multidimensional contrasts – SPM{F} 

 Tests multiple linear hypotheses: 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

cT  = 

H0: 4 = 5 = ... = 9 = 0 

X1  (4-9) X0 

Full model? Reduced model? 

H0: True model is X0 

X0 

test H0 :  c
T = 0 ? 

SPM{F6,322} 



F-test example: movement related effects 
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F-test: summary 

 F-tests can be viewed as testing for the additional variance 
explained by a larger model wrt a simpler (nested) model  
model comparison. 
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 In testing uni-dimensional contrast with an F-test, for example 
1 – 2, the result will be the same as testing 2 – 1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects. 

 F tests a weighted sum of squares of one or several 
combinations of the regression coefficients . 

 Hypotheses: 

0  : Hypothesis Null 3210  H

0 oneleast at   : Hypothesis eAlternativ kAH 
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Correlated regressors 

Shared variance 

Variability in Y 
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Inference at a single voxel 

Null distribution of test statistic T 

u 

Decision rule (threshold) u: 

   determines false positive  

   rate α 

Null Hypothesis H0:  

   zero activation 

 Choose u to give acceptable 

 α under H0 



Multiple tests 
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Signal 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 

Noise 



Multiple tests 
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11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

If we have 100,000 voxels, 

α=0.05   5,000 false positive voxels. 

 

This is clearly undesirable; to correct 

for this we can define a null hypothesis 

for a collection of tests. 



Family-Wise Null Hypothesis 

FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 

Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 

we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 

The Family-Wise Error rate (FWER), αFWE,  for  a family of N 

tests follows the inequality: 

 

 

 

where α is the test-wise error rate. 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be independent but 

becomes very stringent if dependence. 



Spatial correlations 

100 x 100 independent tests Spatially correlated tests (FWHM=10) 

Bonferroni is too conservative for spatial correlated data. 

Discrete data Spatially extended data 



Topological inference 

Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 

Topological feature: 
Cluster extent 

space 

uclus 

uclus : cluster-forming threshold 

Cluster level inference 



Topological inference 

Topological feature: 
Number of clusters 

space 

uclus 

uclus : cluster-forming threshold 

c 

Set level inference 



RFT and Euler Characteristic 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Expected Euler Characteristic 



Random Field Theory 

 The statistic image is assumed to be a good lattice  

representation of an underlying continuous stationary  

random field. 

Typically, FWHM > 3 voxels 

(combination of intrinsic and extrinsic smoothing) 

 

 

 

 A priori hypothesis about where an activation should be,  

reduce search volume  Small Volume Correction: 

• mask defined  by (probabilistic) anatomical atlases 

• mask defined by separate "functional localisers" 

• mask defined by orthogonal contrasts 

• (spherical) search volume around previously reported 
coordinates 
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