Go to: content | top | bottom | search
You are hereUNIL > Department of Biochemistry > Research > Research groups > Acha-Orbea Hans

Acha-Orbea Hans, Full Professor



Hans Acha-Orbea studied biochemistry at the ETH in Zurich and received a Ph.D. in biochemistry in 1984 with H. Hengartner, H. Zuber and R. Zinkernagel. After a postdoctoral fellowship with H. O. MacDevitt at Stanford University in California, USA he came to the Ludwig Institute of Cancer Research, Lausanne Branch as an Assistant Member and START fellow in 1989. Since 1994 he had a joint appointment as an Associate Member at the Ludwig Institute for Cancer Research and Associate Professor at the Department of Biochemistry. Since 2008 he is Full Professor at the Department of Biochemistry. The main focus of his laboratory concerns research on dendritic cells with special interests in pathogen-host interaction, immune response and immune tolerance.

Transgenic mice developing dendritic cell tumors, a tool for investigating dendritic cell immunology and a model for human histiocytosis

Characterization of a new histiocytosis model; oncogenic transformation of dendritic cells in transgenic mice

Dendritic cells (DC) are the key regulators of immune response and immune tolerance. In the absence of microbes and danger signals they induce immune tolerance towards presented peptides whereas after microbial infection they direct the immune response towards the infecting microbe. They can imprint the site of infection as well as the effector function required for elimination of the microbe on the responding T cells. Different subset of DC exist in mice with partly understood functions. Amongst the conventional DC the two major subsets are CD8+ and CD11b+ DC respectively. The former are more efficient at CD8 T cell priming and crosspresentation, the latter for CD4 T cell priming. Plasmacytoid DC are responsible for large amounts of type I interferon production immediately after pathogen encounter and later for antigen presentation. In addition several subsets of tissue DC such as Langerhans cells of the skin exist.


We have obtained a first model for human histiocytosis by overexpressing the SV40 large T oncogene specifically in DC using the CD11c promoter (2). Depending on the expression levels of the transgene in transgenic founders mice show DC transformation at 4 or 12 months respectively with full penetrance (Fig. 1 ). The forming tumors are all CD8+ DC and we were able to show that always mature splenic nonactivated CD8+ DC transform after about 3 months or 6-12 months in the two transgenic founder lines. The reason for this preferential transformation of CD8+ DC might lie in the higher steady state proliferation of this subset in normal mice. Despite the fact that Langerhans are thought to be at the origin of human Langerhans cell histiocytosis the non-Langerhans cell-derived CD8+ tumors in our mice show striking similarities to human disease. Tumors express high levels of Langerin as in human disease, a marker thought to be specific for Langerhans cells until recently (Fig. 1). These results raise the possibility that in a subset of human disease transformation/accumulation of conventional splenic DC might be involved. The tumors maintain most of the features of freshly isolated CD8+ DC such as cytokine production after Toll-like receptor stimulation, antigen (cross)-presentation and expression of specific transcription factors and surface markers. Stable cell lines can be easily derived from the tumors that maintain all the features of non-activated DC. These tools represent the first stable cell lines with the features of normal DC and are valuable tools for designing experiments to understand DC function.



Fig. 1: left: transgene construct. a) kinetics of tumor formation in high and low transgene expressiong mice. b) drop of hematocrit after tumor formation.  c) organs in litter mates (LM) and transgenic mice with tumors (TG). From these tumors, growth-factor-independent stable dendritic cell lines can be derived. d) Immunohistology for Langerin (CD207) expression in mouse and human disease. Reproduced with permission from Blood (2).


Fig. 2: Features of DC tumors and cell lines. A) DC lines and freshly isolated tumors (TG) are comparable to freshly isolated splenic CD8+ DC (LM). B) Upon CpG stimulation in presence of IFN-γ cell lines and fresh tumors produce the same cytokines as freshly isolated CD8+ DC. C) Tumoral DC and DC lines have similar presentation and cross-presentation abilities as freshly isolated DC. Reproduced with permission from Blood (2).

We now can easily isolate stable, exogenous growth factor-independent DC lines from wild type, KO or transgenic mice. These lines keep all the tested features of freshly isolated CD8+ DC such as (cross)-presentation, cytokine production and upregulation of co-stimulatory molecules upon TLR stimulation. We have observed that these tumoral cell lines die by apoptosis within 40 hours after TLR stimulation. Using the cell lines we were able to quantitate pro- and anti-apoptotic molecules as well as effector caspase cleavage after activation by Western blot analysis. Similar effects were observed on wild type DC in vivo. Using KO mice for pro-apoptotic molecules we could define the pairs of pro-apoptotic molecules as well as cytokines required to induce apoptosis of wild type CD8+ DC. We also found that the cytokines produced after TLR stimulation are necessary and sufficient for induction of apoptosis in CD8+ DC (5, 6).

Fig. 3: DC line

Current projects

We are in the process of generating models with transformed Langerhans cells and CD11b+ DC. In addition, we have lentivirally transduced DC lines to produce torlerigenic molecules in order to address the mechanisms of tolerance induction by DC in vivo and in vitro, We are also addressing the role of activation-induced DC death in induction of immune response and tolerance and in protection from immune pathologies in KO mice and DC lines.

Plasma cell differentiation during an immune response

During a T cell-mediated immune response, antigen-specific B cells become activated via DC-primed antigen-specific T cells to form germinal centers and develop into memory and effector cells (plasma cells). Plasma cells migrate back to the bone marrow where they compete for niches where their long-term survival is induced. In the absence of bone marrow homing, plasma cells are short-lived.

We have recently described a new plasma cell marker, CD93. This C-type lectin is expressed during the early stages of B cell development in the bone marrow and the spleen. We have shown that it is upregulated during plasma cell development (3). Its expression is maintained on long-lived plasma cells in the bone marrow niche. Little is know about the function of this molecule, nothing about its role in the plasma cell survival/homing. We were recently able to show that CD93 is required for retention of plasma cells in the bone marrow /4). In the absence of CD93 mice show a marked drop in long-term antibody production after immunization.

LATY136F mice show T cells with TH2 effector phenotype and function. They induce a hyper IgG1 and IgE syndrome when this linker cannot recruit PLCγ. When these effector T cells are mixed with naïve B cells in vitro they induce the same differentiation of B cells in an MHC and CD4-independent, cell-contact-dependent fashion. Amongst the co-stimulation molecules only CD80/86 but not ICOSL, CD40 are required for this effect. In vivo, in the absence of CD80/86 or CD28 the lymphoproliferation is not observed and CD40 KO mice make at later time points a hyper IgM and IgG1 syndrome (7).


2015 |  2014 |  2013 |  2012 |  2011 |  2010 |  2009 |  2008 |  2007 |  2006 |  2005 |  2004 |  2003 |  2002 |  2001 |  2000 |  1999 |  1998 |  1997 |  1996 |  1995 |  1994 |  1993 |  1992 |  1991 |  1990 |  1989 |  1988 |  1987 |  1985 |  1983 |  1980 |  Thèses (doctorat) | 

Cohen S.B., Smith N.L., McDougal C., Pepper M., Shah S., Yap G.S., Acha-Orbea H., Jiang A., Clausen B.E., Rudd B.D. et al., 2015. β-Catenin Signaling Drives Differentiation and Proinflammatory Function of IRF8-Dependent Dendritic Cells. Journal of Immunology 194(1) pp. 210-222. [DOI] [Web of Science] [Pubmed]
Grosjean F., Nasi S., Schneider P., Chobaz V., Liu A., Mordasini V., Moullec K., Vezzoni P., Lavanchy C., Busso N. et al., 2015. Dendritic Cells Cause Bone Lesions in a New Mouse Model of Histiocytosis. PLoS One 10(8) pp. e0133917. [DOI] [Web of Science] [Pubmed]
Széles L., Meissner F., Dunand-Sauthier I., Thelemann C., Hersch M., Singovski S., Haller S., Gobet F., Fuertes Marraco S.A., Mann M. et al., 2015. TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State. Journal of Immunology (baltimore, Md. : 1950) 195(3) pp. 1025-1033. [DOI] [Web of Science] [Pubmed]
Vremec D., Hansen J., Strasser A., Acha-Orbea H., Zhan Y., O'Keeffe M., Shortman K., 2015. Maintaining dendritic cell viability in culture. Molecular Immunology 63(2) pp. 264-267. [DOI] [Web of Science] [Pubmed]
Ashok D., Acha-Orbea H., 2014. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends in Parasitology 30(10) pp. 499-507. [DOI] [Web of Science] [Pubmed]
Ashok D., Schuster S., Ronet C., Rosa M., Mack V., Lavanchy C., Marraco S.F., Fasel N., Murphy K.M., Tacchini-Cottier F. et al., 2014. Cross-presenting dendritic cells are required for control of Leishmania major infection. European Journal of Immunology 44(5) pp. 1422-1432. [DOI] [Web of Science] [Pubmed]
Benasciutti E., Mariani E., Oliva L., Scolari M., Perilli E., Barras E., Milan E., Orfanelli U., Fazzalari N.L., Campana L. et al., 2014. MHC Class II Transactivator Is an In Vivo Regulator of Osteoclast Differentiation and Bone Homeostasis Co-opted From Adaptive Immunity. Journal of Bone and Mineral Research 29(2) pp. 290-303. [DOI] [Web of Science] [Pubmed]
Duval A., Fuertes Marraco S.A., Schwitter D., Leuenberger L., Acha-Orbea H., 2014. Large T Antigen-Specific Cytotoxic T Cells Protect Against Dendritic Cell Tumors through Perforin-Mediated Mechanisms Independent of CD4 T Cell Help. Frontiers in Immunology 5 p. 338. [DOI] [Web of Science] [Pubmed]
Seguín-Estévez Q., Dunand-Sauthier I., Lemeille S., Iseli C., Ibberson M., Ioannidis V., Schmid C.D., Rousseau P., Barras E., Geinoz A. et al., 2014. Extensive remodeling of DC function by rapid maturation-induced transcriptional silencing. Nucleic Acids Research 42(15) pp. 9641-9655. [DOI] [Web of Science] [Pubmed]
Thelemann C., Eren R.O., Coutaz M., Brasseit J., Bouzourene H., Rosa M., Duval A., Lavanchy C., Mack V., Mueller C. et al., 2014. Interferon-γ Induces Expression of MHC Class II on Intestinal Epithelial Cells and Protects Mice from Colitis. PLoS One 9(1) pp. e86844. [DOI] [Web of Science] [Pubmed]
von Burg N., Chappaz S., Baerenwaldt A., Horvath E., Bose Dasgupta S., Ashok D., Pieters J., Tacchini-Cottier F., Rolink A., Acha-Orbea H. et al., 2014. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proceedings of the National Academy of Sciences of the United States of America 111(35) pp. 12835-12840. [DOI] [Web of Science] [Pubmed]
Duraes F.V., Thelemann C., Sarter K., Acha-Orbea H., Hugues S., Reith W., 2013. Role of major histocompatibility complex class II expression by non-hematopoietic cells in autoimmune and inflammatory disorders: facts and fiction. Tissue Antigens 82(1) pp. 1-15. [DOI] [Web of Science] [Pubmed]
Kypriotou M., Rivero D., Haller S., Mariotto A., Huber M., Acha-Orbea H., Werner S., Hohl D., 2013. Activin a inhibits antigen-induced allergy in murine epicutaneous sensitization. Frontiers in Immunology 4(246) pp. 1-10. [DOI] [Pubmed]
Bär E., Gladiator A., Bastidas S., Roschitzki B., Acha-Orbea H., Oxenius A., LeibundGut-Landmann S., 2012. A novel Th cell epitope of Candida albicans mediates protection from fungal infection. Journal of Immunology 188(11) pp. 5636-5643. [DOI] [Web of Science] [Pubmed]
Chevrier S., Genton C., Malissen B., Malissen M., Acha-Orbea H., 2012. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Frontiers in Immunology 3 p. 27. [DOI] [Pubmed]
Ciarlo E., Lugrin J., dos Santos Pinheiro I., Le Roy D., Moulan N., Yamamoto H., Acha-Orbea H., Calandra T., Auwerx J., Roger T., 2012. Impact of Sirtuin 2 knockout on innate immune responses. p. 271 in European Congress of Immunology. Immunology 137(Suppl. 1). [Web of Science]
Fuertes Marraco S.A., Grosjean F., Duval A., Rosa M., Lavanchy C., Ashok D., Haller S., Otten L.A., Steiner Q.G., Descombes P. et al., 2012. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research. Frontiers in Immunology 3 p. 331. [DOI] [Pubmed]
Cheng J.M., Chee S.H., Knight D.A., Acha-Orbea H., Hermans I.F., Timmer M.S., Stocker B.L., 2011. An improved synthesis of dansylated α-galactosylceramide and its use as a fluorescent probe for the monitoring of glycolipid uptake by cells. Carbohydrate Research 346(7) pp. 914-926. [DOI] [Web of Science] [Pubmed]
Dunand-Sauthier I., Santiago-Raber M.L., Capponi L., Vejnar C.E., Schaad O., Irla M., Seguín-Estévez Q., Descombes P., Zdobnov E.M., Acha-Orbea H. et al., 2011. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 117(17) pp. 4490-4500. [DOI] [Web of Science] [Pubmed]
Fuertes Marraco S.A., Scott C.L., Bouillet P., Ives A., Masina S., Vremec D., Jansen E.S., O'Reilly L.A., Schneider P., Fasel N. et al., 2011. Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS One 6(6) pp. e20189. [DOI] [Web of Science] [Pubmed]
Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M. et al., 2011. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331(6018) pp. 775-778. [DOI] [Web of Science] [Pubmed]
Siegert S., Huang H.Y., Yang C.Y., Scarpellino L., Carrie L., Essex S., Nelson P.J., Heikenwalder M., Acha-Orbea H., Buckley C.D. et al., 2011. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 6(11) pp. e27618. [DOI] [Web of Science] [Pubmed]
Xu Y., Schnorrer P., Proietto A., Kowalski G., Febbraio M.A., Acha-Orbea H., Dickins R.A., Villadangos J.A., 2011. IL-10 controls cystatin C synthesis and blood concentration in response to inflammation through regulation of IFN regulatory factor 8 expression. Journal of Immunology 186(6) pp. 3666-3673. [DOI] [Web of Science] [Pubmed]
Ramelli G., Fuertes S., Narayan S., Busso N., Acha-Orbea H., So A., 2010. Protease-activated receptor 2 signalling promotes dendritic cell antigen transport and T-cell activation in vivo. Immunology 129(1) pp. 20-27. [DOI] [Web of Science] [Pubmed]
Chevrier S., Genton C., Kallies A., Karnowski A., Otten L.A., Malissen B., Malissen M., Botto M., Corcoran L.M., Nutt S.L. et al., 2009. CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the United States of America 106(10) pp. 3895-3900. [DOI] [Web of Science] [Pubmed]
Schmutz S., Bosco N., Chappaz S., Boyman O., Acha-Orbea H., Ceredig R., Rolink A.G., Finke D., 2009. Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells. Journal of immunology 183(4) pp. 2217-2221. [DOI] [Web of Science] [Pubmed]
Bossen C., Cachero T.G., Tardivel A., Ingold K., Willen L., Dobles M., Scott M.L., Maquelin A., Belnoue E., Siegrist C.A. et al., 2008. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 111(3) pp. 1004-1012. [DOI] [Web of Science] [Pubmed]
Steiner Q. G., Otten L. A., Hicks M. J., Kaya G., Grosjean F., Saeuberli E., Lavanchy C., Beermann F., McClain K. L., Acha-Orbea H., 2008. In vivo transformation of mouse conventional CD8alpha+ dendritic cells leads to progressive multisystem histiocytosis. Blood 111(4) pp. 2073-2082. [DOI] [Web of Science] [Pubmed]
Wang Y., Kissenpfennig A., Mingueneau M., Richelme S., Perrin P., Chevrier S., Genton C., Lucas B., DiSanto J.P., Acha-Orbea H. et al., 2008. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. Journal of Immunology 180(3) pp. 1565-1575. [Web of Science] [Pubmed]
Acha-Orbea H., Shakhov A.N., Finke D., 2007. Immune response to MMTV infection. Frontiers in Bioscience 12 pp. 1594-1609. [DOI] [Web of Science] [Pubmed]
Link A., Vogt T.K., Favre S., Britschgi M.R., Acha-Orbea H., Hinz B., Cyster J.G., Luther S.A., 2007. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunology 8(11) pp. 1255-1265. [DOI] [Web of Science] [Pubmed]
Luther S.A., Serre K., Cunningham A.F., Khan M., Acha-Orbea H., MacLennan I.C., Toellner K.M., 2007. Recirculating CD4 memory T cells mount rapid secondary responses without major contributions from follicular CD4 effectors and B cells. European Journal of Immunology 37(6) pp. 1476-1484. [DOI] [Web of Science] [Pubmed]
Meier D., Bornmann C., Chappaz S., Schmutz S., Otten L.A., Ceredig R., Acha-Orbea H., Finke D., 2007. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26(5) pp. 643-654. [DOI] [Web of Science] [Pubmed]
Genton C., Wang Y., Izui S., Malissen B., Delsol G., Fournié G.J., Malissen M., Acha-Orbea H., 2006. The Th2 lymphoproliferation developing in LatY136F mutant mice triggers polyclonal B cell activation and systemic autoimmunity. Journal of Immunology 177(4) pp. 2285-2293. [Web of Science] [Pubmed]
Gumy A., Aseffa A., Rachinel N., Breton M., Otten L., Tacchini-Cottier F., Röcken M., Doyen N., Acha-Orbea H., Locksley R.M. et al., 2006. LACK-reactive CD4+ T cells require autocrine IL-2 to mediate susceptibility to Leishmania major. European Journal of Immunology 36(6) pp. 1465-1473. [DOI] [Web of Science] [Pubmed]
Otten L.A., Leibundgut-Landmann S., Huarte J., Kos-Braun I.C., Lavanchy C., Barras E., Borisch B., Steimle V., Acha-Orbea H., Reith W., 2006. Revisiting the specificity of the MHC class II transactivator CIITA in vivo. European Journal of Immunology 36(6) pp. 1548-1558. [DOI] [Web of Science] [Pubmed]
Ingold K., Zumsteg A., Tardivel A., Huard B., Steiner Q.G., Cachero T.G., Qiang F., Gorelik L., Kalled S.L., Acha-Orbea H. et al., 2005. Identification of proteoglycans as the APRIL-specific binding partners. Journal of Experimental Medicine 201(9) pp. 1375-1383. [Document] [DOI] [Web of Science] [Pubmed]
Didierlaurent A., Ramirez J.C., Gherardi M., Zimmerli S.C., Graf M., Orbea H.A., Pantaleo G., Wagner R., Esteban M., Kraehenbuhl J.P. et al., 2004. Attenuated poxviruses expressing a synthetic HIV protein stimulate HLA-A2-restricted cytotoxic T-cell responses. Vaccine 22(25-26) pp. 3395-403. [DOI] [Web of Science] [Pubmed]
LeibundGut-Landmann S., Waldburger J.M., Krawczyk M., Otten L.A., Suter T., Fontana A., Acha-Orbea H., Reith W., 2004. Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes. European Journal of Immunology 34(6) pp. 1513-1525. [DOI] [Web of Science] [Pubmed]
LeibundGut-Landmann S., Waldburger J.M., Reis e Sousa C., Acha-Orbea H., Reith W., 2004. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nature Immunology 5(9) pp. 899-908. [DOI] [Web of Science] [Pubmed]
Finke D., Luther S.A., Acha-Orbea H., 2003. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development. Proceedings of the National Academy of Sciences of the United States of America 100(1) pp. 199-204. [DOI] [Web of Science] [Pubmed]
Mpandi M., Otten L.A., Lavanchy C., Acha-Orbea H., Finke D., 2003. Passive immunization with neutralizing antibodies interrupts the mouse mammary tumor virus life cycle. Journal of virology 77(17) pp. 9369-77. [DOI] [Web of Science] [Pubmed]
Otten L.A., Tacchini-Cottier F., Lohoff M., Annunziato F., Cosmi L., Scarpellino L., Louis J., Steimle V., Reith W., Acha-Orbea H., 2003. Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes. Journal of Immunology 170(3) pp. 1150-1157. [Web of Science] [Pubmed]
Ramirez J.C., Finke D., Esteban M., Kraehenbuhl J.P., Acha-Orbea H., 2003. Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Archives of virology 148(5) pp. 827-39. [DOI] [Web of Science] [Pubmed]
Waldburger J.M., Rossi S., Hollander G.A., Rodewald H.R., Reith W., Acha-Orbea H., 2003. Promoter IV of the class II transactivator gene is essential for positive selection of CD4+ T cells. Blood 101(9) pp. 3550-9. [DOI] [Web of Science] [Pubmed]
Cunningham A.F., Fallon P.G., Khan M., Vacheron S., Acha-Orbea H., MacLennan I.C., McKenzie A.N., Toellner K.M., 2002. Th2 activities induced during virgin T cell priming in the absence of IL-4, IL-13, and B cells. Journal of Immunology 169(6) pp. 2900-2906. [Web of Science] [Pubmed]
Finke D., Acha-Orbea H., Mattis A., Lipp M., Kraehenbuhl J., 2002. CD4+CD3- cells induce Peyer's patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity 17(3) pp. 363-373. [DOI] [Web of Science] [Pubmed]
Lens S.M., Kataoka T., Fortner K.A., Tinel A., Ferrero I., MacDonald R.H., Hahne M., Beermann F., Attinger A., Orbea H.A. et al., 2002. The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Molecular and Cellular Biology 22(15) pp. 5419-5433. [DOI] [Web of Science] [Pubmed]
Otten L.A., Finke D., Acha-Orbea H., 2002. Can MMTV exploit TLR4? Trends in Microbiology 10(7) pp. 303-306. [DOI] [Web of Science] [Pubmed]
Vacheron S., Luther S.A., Acha-Orbea H., 2002. Preferential infection of immature dendritic cells and B cells by mouse mammary tumor virus. Journal of Immunology 168(7) pp. 3470-3476. [Web of Science] [Pubmed]
Wirth S., Bille F., Koenig S., Wehrli N., Miconnet I., Lévy F., Diggelmann H., Romero P., Acha-Orbea H., 2002. Testing mouse mammary tumor virus superantigen as adjuvant in cytotoxic T-lymphocyte responses against a melanoma tumor antigen. International Journal of Cancer 99(2) pp. 201-206. [DOI] [Pubmed]
Wirth S., Vessaz A., Krummenacher C., Baribaud F., Acha-Orbea H., Diggelmann H., 2002. Regions of mouse mammary tumor virus superantigen involved in interaction with the major histocompatibility complex class II I-A molecule. Journal of Virology 76(21) pp. 11172-11175. [DOI] [Web of Science] [Pubmed]
Attinger A., MacDonald H.R., Acha-Orbea H., 2001. Lymphoid environment limits superantigen and antigen-induced T cell proliferation at high precursor frequency. European Journal of Immunology 31(3) pp. 884-893. [DOI] [Web of Science] [Pubmed]
Bachmann M.F., Gallimore A., Jones E., Ecabert B., Acha-Orbea H., Kopf M., 2001. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. European Journal of Immunology 31(2) pp. 450-458. [DOI] [Web of Science] [Pubmed]
Baribaud F., Wirth S., Maillard I., Valsesia S., Acha-Orbea H., Diggelmann H., 2001. Identification of key amino acids of the mouse mammary tumor virus superantigen involved in the specific interaction with T-cell receptor V(beta) domains. Journal of Virology 75(16) pp. 7453-7461. [DOI] [Web of Science] [Pubmed]
Finke D., Acha-Orbea H., 2001. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. European Journal of Immunology 31(9) pp. 2603-2611. [DOI] [Web of Science] [Pubmed]
Finke D., Baribaud F., Diggelmann H., Acha-Orbea H., 2001. Extrafollicular plasmablast B cells play a key role in carrying retroviral infection to peripheral organs. Journal of Immunology 166(10) pp. 6266-6275. [Web of Science] [Pubmed]
Klein M.A., Kaeser P.S., Schwarz P., Weyd H., Xenarios I., Zinkernagel R.M., Carroll M.C., Verbeek J.S., Botto M., Walport M.J. et al., 2001. Complement facilitates early prion pathogenesis. Nature Medicine 7(4) pp. 488-492. [DOI] [Web of Science] [Pubmed]
Maillard I., Launois P., Himmelrich H., Acha-Orbea H., Diggelmann H., Locksley R.M., Louis J.A., 2001. Functional plasticity of the LACK-reactive Vbeta4-Valpha8 CD4(+) T cells normally producing the early IL-4 instructing Th2 cell development and susceptibility to Leishmania major in BALB / c mice. European Journal of Immunology 31(4) pp. 1288-1296. [Web of Science] [Pubmed]
Waldburger J.M., Suter T., Fontana A., Acha-Orbea H., Reith W., 2001. Selective abrogation of major histocompatibility complex class II expression on extrahematopoietic cells in mice lacking promoter IV of the class II transactivator gene. Journal of Experimental Medicine 194(4) pp. 393-406. [DOI] [Web of Science] [Pubmed]
Wehrli N., Legler D.F., Finke D., Toellner K.M., Loetscher P., Baggiolini M., MacLennan I.C., Acha-Orbea H., 2001. Changing responsiveness to chemokines allows medullary plasmablasts to leave lymph nodes. European Journal of Immunology 31(2) pp. 609-616. [DOI] [Pubmed]
Attinger A., Acha-Orbea H., MacDonald H.R., 2000. Cutting edge: cell autonomous rather than environmental factors control bacterial superantigen-induced T cell anergy in vivo. Journal of Immunology 165(3) pp. 1171-1174. [Web of Science] [Pubmed]
Aude-Garcia C., Attinger A., Housset D., MacDonald H.R., Acha-Orbea H., Marche P.N., Jouvin-Marche E., 2000. Pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 superantigen. Molecular Immunology 37(16) pp. 1005-1012. [Web of Science] [Pubmed]
Chapuis A.G., Paolo Rizzardi G., D'Agostino C., Attinger A., Knabenhans C., Fleury S., Acha-Orbea H., Pantaleo G., 2000. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nature Medicine 6(7) pp. 762-768. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Finke D., Attinger A., Schmid S., Wehrli N., Vacheron S., Xenarios I., Scarpellino L., Toellner K.M., MacLennan I.C. et al., 1999. Interplays between mouse mammary tumor virus and the cellular and humoral immune response. Immunological Reviews 168 pp. 287-303. [DOI] [Web of Science] [Pubmed]
Ardavín C., Martín P., Ferrero I., Azcoitia I., Anjuère F., Diggelmann H., Luthi F., Luther S., Acha-Orbea H., 1999. B cell response after MMTV infection: extrafollicular plasmablasts represent the main infected population and can transmit viral infection. Journal of Immunology 162(5) pp. 2538-2545. [Web of Science] [Pubmed]
Astori M., Finke D., Karapetian O., Acha-Orbea H., 1999. Development of T-B cell collaboration in neonatal mice. International Immunology 11(3) pp. 445-451. [DOI] [Web of Science] [Pubmed]
Baribaud F., Maillard I., Vacheron S., Brocker T., Diggelmann H., Acha-Orbea H., 1999. Role of dendritic cells in the immune response induced by mouse mammary tumor virus superantigen. Journal of Virology 73(10) pp. 8403-8410. [Web of Science] [Pubmed]
Baribaud F., Shaw A.V., Scarpellino L., Diggelmann H., Acha-Orbea H., 1999. Preferential binding of mouse mammary tumor virus to B lymphocytes. Journal of Virology 73(9) pp. 7899-7902. [Web of Science] [Pubmed]
Schneider P., MacKay F., Steiner V., Hofmann K., Bodmer J.L., Holler N., Ambrose C., Lawton P., Bixler S., Acha-Orbea H. et al., 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. Journal of Experimental Medicine 189(11) pp. 1747-1756. [Document] [DOI] [Web of Science] [Pubmed]
Velin D., Fotopoulos G., Kraehenbuhl J.P., Acha-Orbea H., 1999. Systemic antibodies can inhibit mouse mammary tumor virus-driven superantigen response in mucosa-associated lymphoid tissues. Journal of Virology 73(2) pp. 1729-1733. [Web of Science] [Pubmed]
Finke D., Mortezavi L., Acha-Orbea H., 1998. Preactivation of B lymphocytes does not enhance mouse mammary tumor virus infection. Journal of Virology 72(9) pp. 7688-7691. [Web of Science] [Pubmed]
Maillard I., Launois P., Xenarios I., Louis J.A., Acha-Orbea H., Diggelmann H., 1998. Immune response to mouse mammary tumor virus in mice lacking the alpha/beta interferon or the gamma interferon receptor. Journal of Virology 72(4) pp. 2638-2646. [Web of Science] [Pubmed]
Maillard I., Xenarios I., Diggelmann H., Orbea H.A., 1998. Differential reactivity of TCR Vbeta10 alleles to a mouse mammary tumor virus superantigen. European Journal of Immunology 28(10) pp. 3075-3085. [DOI] [Web of Science] [Pubmed]
Toellner K.M., Luther S.A., Sze D.M., Choy R.K., Taylor D.R., MacLennan I.C., Acha-Orbea H., 1998. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. Journal of Experimental Medicine 187(8) pp. 1193-1204. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., 1997. Retrovirus-host interactions. The mouse mammary tumor virus model. Medicina 57(Suppl 2) pp. 43-52. [Web of Science] [Pubmed]
Acha-Orbea H., 1997. The role of superantigens in resistance to retroviral infection. Trends in Microbiology 5(10) p. 385. [DOI] [Web of Science] [Pubmed]
Ardavin C., Luthi F., Andersson M., Scarpellino L., Martin P., Diggelmann H., Acha-Orbea H., 1997. Retrovirus-induced target cell activation in the early phases of infection: the mouse mammary tumor virus model. Journal of Virology 71(10) pp. 7295-7299. [Web of Science] [Pubmed]
Launois P., Maillard I., Pingel S., Swihart K.G., Xénarios I., Acha-Orbea H., Diggelmann H., Locksley R.M., MacDonald H.R., Louis J.A., 1997. IL-4 rapidly produced by V beta 4 V alpha 8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6(5) pp. 541-549. [DOI] [Web of Science] [Pubmed]
Luther S.A., Acha-Orbea H., 1997. Mouse mammary tumor virus: immunological interplays between virus and host. Advances in Immunology 65 pp. 139-243. [DOI] [Web of Science] [Pubmed]
Luther S.A., Gulbranson-Judge A., Acha-Orbea H., MacLennan I.C., 1997. B cell response and histology of a retroviral infection in vivo. Annals of the New York Academy of Sciences 815 pp. 465-466. [DOI] [Web of Science] [Pubmed]
Luther S.A., Gulbranson-Judge A., Acha-Orbea H., MacLennan I.C., 1997. Viral superantigen drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production. Journal of Experimental Medicine 185(3) pp. 551-562. [DOI] [Web of Science] [Pubmed]
Luther S.A., Maillard I., Luthi F., Scarpellino L., Diggelmann H., Acha-Orbea H., 1997. Early neutralizing antibody response against mouse mammary tumor virus: critical role of viral infection and superantigen-reactive T cells. Journal of Immunology 159(6) pp. 2807-2814. [Web of Science] [Pubmed]
MacLennan I.C., Gulbranson-Judge A., Toellner K.M., Casamayor-Palleja M., Chan E., Sze D.M., Luther S.A., Orbea H.A., 1997. The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunological reviews 156 pp. 53-66. [DOI] [Web of Science] [Pubmed]
Maillard I., Luthi F., Acha-Orbea H., Diggelmann H., 1997. Role of the immune response induced by superantigens in the pathogenesis of microbial infections. Parasitology 115 Suppl pp. S67-S78. [DOI] [Web of Science] [Pubmed]
Vacheron S., Renno T., Acha-Orbea H., 1997. A highly sensitive in vitro infection assay to explore early stages of mouse mammary tumor virus infection. Journal of Virology 71(10) pp. 7289-7294. [Web of Science] [Pubmed]
Acha-Orbea H., 1996. Superantigens of mouse mammary tumour virus: implications for diabetes? Diabetes/Metabolism Reviews 12(2) pp. 111-119. [DOI] [Web of Science] [Pubmed]
Ardavín C., Waanders G., Ferrero I., Anjuère F., Acha-Orbea H., MacDonald H.R., 1996. Expression and presentation of endogenous mouse mammary tumor virus superantigens by thymic and splenic dendritic cells and B cells. Journal of Immunology 157(7) pp. 2789-2794. [Web of Science] [Pubmed]
Krummenacher C., Diggelmann H., Acha-Orbea H., 1996. In vivo effects of a recombinant vaccinia virus expressing a mouse mammary tumor virus superantigen. Journal of Virology 70(5) pp. 3026-3031. [Web of Science] [Pubmed]
Luther S.A., Acha-Orbea H., 1996. Immune response to mouse mammary tumour virus. Current Opinion in Immunology 8(4) pp. 498-502. [DOI] [Web of Science] [Pubmed]
Maillard I., Erny K., Acha-Orbea H., Diggelmann H., 1996. A V beta 4-specific superantigen encoded by a new exogenous mouse mammary tumor virus. European Journal of Immunology 26(5) pp. 1000-1006. [DOI] [Web of Science] [Pubmed]
Renno T., Acha-Orbea H., 1996. Superantigens in autoimmune diseases: still more shades of gray. Immunological Reviews 154 pp. 175-191. [DOI] [Web of Science] [Pubmed]
Velin D., Acha-Orbea H., Kraehenbuhl J.P., 1996. The neonatal Fc receptor is not required for mucosal infection by mouse mammary tumor virus. Journal of Virology 70(10) pp. 7250-7254. [Web of Science] [Pubmed]
Acha-Orbea H., MacDonald H.R., 1995. Superantigens of mouse mammary tumor virus. Annual Review of Immunology 13 pp. 459-486. [DOI] [Web of Science] [Pubmed]
Braun M.Y., Jouvin-Marche E., Marche P.N., MacDonald H.R., Acha-Orbea H., 1995. T cell receptor V beta repertoire in mice lacking endogenous mouse mammary tumor provirus. European Journal of Immunology 25(3) pp. 857-862. [DOI] [Web of Science] [Pubmed]
Claeys D., Karapetian O., Saraga E., Schreyer M., Louis J., Acha-Orbea H., Blum A.L., Kraehenbuhl J.P., 1994. Mouse mammary tumor virus superantigens and murine autoimmune gastritis. Gastroenterology 107(4) pp. 924-933. [Web of Science] [Pubmed]
Held W., Acha-Orbea H., MacDonald H.R., Waanders G.A., 1994. Superantigens and retroviral infection: insights from mouse mammary tumor virus. Immunology Today 15(4) pp. 184-190. [DOI] [Web of Science] [Pubmed]
Held W., Waanders G.A., Acha-Orbea H., MacDonald H.R., 1994. Reverse transcriptase-dependent and -independent phases of infection with mouse mammary tumor virus: implications for superantigen function. Journal of Experimental Medicine 180(6) pp. 2347-2351. [DOI] [Web of Science] [Pubmed]
Held W., Waanders G.A., MacDonald H.R., Acha-Orbea H., 1994. MHC class II hierarchy of superantigen presentation predicts efficiency of infection with mouse mammary tumor virus. International Immunology 6(9) pp. 1403-1407. [DOI] [Web of Science] [Pubmed]
Karapetian O., Shakhov A.N., Kraehenbuhl J.P., Acha-Orbea H., 1994. Retroviral infection of neonatal Peyer's patch lymphocytes: the mouse mammary tumor virus model. Journal of Experimental Medicine 180(4) pp. 1511-1516. [DOI] [Web of Science] [Pubmed]
Luther S., Shakhov A.N., Xenarios I., Haga S., Imai S., Acha-Orbea H., 1994. New infectious mammary tumor virus superantigen with V beta-specificity identical to staphylococcal enterotoxin B (SEB). European Journal of Immunology 24(8) pp. 1757-1764. [DOI] [Web of Science] [Pubmed]
MacDonald H.R., Acha-Orbea H., 1994. Diabetes. Superantigen as suspect. Nature 371(6495) pp. 283-284. [DOI] [Web of Science] [Pubmed]
Nishio M., Xu L., Sasaki M., Haga S., Okumoto M., Mori N., Sarkar N.H., Acha-Orbea H., Enami J., Imai S., 1994. Complete Nucleotide Sequence of Mouse Mammary Tumor Virus from JYG Chinese Wild Mice: Absence of Bacterial Insertion Sequences in the Cloned Viral gag Gene. Breast Cancer 1(2) pp. 89-94. [Pubmed]
Acha-Orbea H., 1993. Anti-T-cell receptor V beta antibodies in autoimmunity. Immunology Series 59 pp. 193-202. [Pubmed]
Acha-Orbea H., 1993. Bacterial and viral superantigens: roles in autoimmunity? Annals of the Rheumatic Diseases 52 Suppl 1 pp. S6-16. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., 1993. Roles of superantigens in microbial infections? Research in Immunology 144(3) pp. 198-201; discussion 214-22. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., 1993. T-cell receptors in autoimmune disease. Immunology Series 59 pp. 131-142. [Pubmed]
Acha-Orbea H., Held W., Waanders G.A., Shakhov A.N., Scarpellino L., Lees R.K., MacDonald H.R., 1993. Exogenous and endogenous mouse mammary tumor virus superantigens. Immunological Reviews 131(1) pp. 5-25. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., MacDonald H.R., 1993. Subversion of host immune responses by viral superantigens. Trends in Microbiology 1(1) pp. 32-34. [DOI] [Pubmed]
Hauser C., Orbea H.A., 1993. Superantigens and their role in immune-mediated disease. Journal of Investigative Dermatology 101(4) pp. 503-505. [DOI] [Web of Science] [Pubmed]
Held W., Shakhov A.N., Izui S., Waanders G.A., Scarpellino L., MacDonald H.R., Acha-Orbea H., 1993. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. Journal of Experimental Medicine 177(2) pp. 359-366. [DOI] [Web of Science] [Pubmed]
Held W., Waanders G.A., Shakhov A.N., Scarpellino L., Acha-Orbea H., MacDonald H.R., 1993. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74(3) pp. 529-540. [DOI] [Web of Science] [Pubmed]
Lambert J.F., Acha-Orbea H., Kolb E., Diggelmann H., 1993. The 3' half of the mouse mammary tumor virus orf gene is not sufficient for its superantigen function in transgenic mice. Molecular Immunology 30(16) pp. 1399-1404. [DOI] [Web of Science] [Pubmed]
Parish N.M., Acha-Orbea H., Simpson E., Qin S.X., Lund T., Cooke A., 1993. A comparative study of T-cell receptor V beta usage in non-obese diabetic (NOD) and I-E transgenic NOD mice. Immunology 78(4) pp. 606-610. [Web of Science] [Pubmed]
Shakhov A.N., Wang H., Acha-Orbea H., Pauley R.J., Wei W.Z., 1993. A new infectious mammary tumor virus in the milk of mice implanted with C4 hyperplastic alveolar nodules. European Journal of Immunology 23(11) pp. 2765-2769. [DOI] [Web of Science] [Pubmed]
Waanders G.A., Shakhov A.N., Held W., Karapetian O., Acha-Orbea H., MacDonald H.R., 1993. Peripheral T cell activation and deletion induced by transfer of lymphocyte subsets expressing endogenous or exogenous mouse mammary tumor virus. Journal of Experimental Medicine 177(5) pp. 1359-1366. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., 1992. Retroviral superantigens. Chemical Immunology 55 pp. 65-86. [Web of Science] [Pubmed]
Acha-Orbea H., Held W., Scarpellino L., Shakhov A.N., 1992. Mls: a link between immunology and retrovirology. International Reviews of Immunology 8(4) pp. 327-336. [Pubmed]
Acha-Orbea H., Scarpellino L., Shakhov A.N., Held W., MacDonald H.R., 1992. Inhibition of mouse mammary tumor virus-induced T cell responses in vivo by antibodies to an open reading frame protein. Journal of Experimental Medicine 176(6) pp. 1769-1772. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Waanders G.A., Shakhov A.N., Held W., 1992. Infectious minor lymphocyte stimulating (Mls) antigens. Seminars in Immunology 4(5) pp. 297-303. [Pubmed]
Held W., Shakhov A.N., Waanders G., Scarpellino L., Luethy R., Kraehenbuhl J.P., MacDonald H.R., Acha-Orbea H., 1992. An exogenous mouse mammary tumor virus with properties of Mls-1a (Mtv-7). Journal of Experimental Medicine 175(6) pp. 1623-1633. [DOI] [Web of Science] [Pubmed]
Koh D.R., Fung-Leung W.P., Ho A., Gray D., Acha-Orbea H., Mak T.W., 1992. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science 256(5060) pp. 1210-1213. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., 1991. Limited heterogeneity of autoantigens and T cells in autoimmune diseases? Research in Immunology 142(5-6) pp. 487-490. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Palmer E., 1991. Mls--a retrovirus exploits the immune system. Immunology Today 12(10) pp. 356-361. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Scarpellino L., 1991. Nonobese diabetic and nonobese nondiabetic mice have unique MHC class II haplotypes. Immunogenetics 34(1) pp. 57-59. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Shakhov A.N., Scarpellino L., Kolb E., Müller V., Vessaz-Shaw A., Fuchs R., Blöchlinger K., Rollini P., Billotte J. et al., 1991. Clonal deletion of V beta 14-bearing T cells in mice transgenic for mammary tumour virus. Nature 350(6315) pp. 207-211. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., McDevitt H.O., 1990. The role of class II molecules in development of insulin-dependent diabetes mellitus in mice, rats and humans. Current Topics in Microbiology and Immunology 156 pp. 103-119. [Web of Science] [Pubmed]
Acha-Orbea H., Scarpellino L., Hertig S., Dupuis M., Tschopp J., 1990. Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO Journal 9(12) pp. 3815-3819. [Web of Science] [Pubmed]
Jacob C.O., Aiso S., Michie S.A., McDevitt H.O., Acha-Orbea H., 1990. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proceedings of the National Academy of Sciences of the United States of America 87(3) pp. 968-972. [DOI] [Web of Science] [Pubmed]
Jongeneel C.V., Acha-Orbea H., Blankenstein T., 1990. A polymorphic microsatellite in the tumor necrosis factor alpha promoter identifies an allele unique to the NZW mouse strain. Journal of Experimental Medicine 171(6) pp. 2141-2146. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Steinman L., McDevitt H.O., 1989. T cell receptors in autoimmune disease as targets for immune intervention. Genome / National Research Council Canada = Génome / Conseil National de Recherches Canada 31(2) pp. 656-661. [Web of Science] [Pubmed]
Acha-Orbea H., Steinman L., McDevitt H.O., 1989. T cell receptors in murine autoimmune diseases. Annual Review of Immunology 7 pp. 371-405. [DOI] [Web of Science] [Pubmed]
Heber-Katz E., Acha-Orbea H., 1989. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunology Today 10(5) pp. 164-169. [DOI] [Web of Science] [Pubmed]
Wraith D.C., McDevitt H.O., Steinman L., Acha-Orbea H., 1989. T cell recognition as the target for immune intervention in autoimmune disease. Cell 57(5) pp. 709-715. [Web of Science] [Pubmed]
Acha-Orbea H., Mitchell D.J., Timmermann L., Wraith D.C., Tausch G.S., Waldor M.K., Zamvil S.S., McDevitt H.O., Steinman L., 1988. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54(2) pp. 263-273. [DOI] [Web of Science] [Pubmed]
MacDonald H.R., Schneider R., Lees R.K., Howe R.C., Acha-Orbea H., Festenstein H., Zinkernagel R.M., Hengartner H., 1988. T-cell receptor V beta use predicts reactivity and tolerance to Mlsa-encoded antigens. Nature 332(6159) pp. 40-45. [DOI] [Web of Science] [Pubmed]
Payne J., Huber B.T., Cannon N.A., Schneider R., Schilham M.W., Acha-Orbea H., MacDonald H.R., Hengartner H., 10-1988. Two monoclonal rat antibodies with specificity for the beta-chain variable region V beta 6 of the murine T-cell receptor. Proceedings of the National Academy of Sciences of the United States of America 85(20) pp. 7695-7698. [DOI] [Web of Science] [Pubmed]
Todd J.A., Acha-Orbea H., Bell J.I., Chao N., Fronek Z., Jacob C.O., McDermott M., Sinha A.A., Timmerman L., Steinman L. et al., 1988. A molecular basis for MHC class II--associated autoimmunity. Science 240(4855) pp. 1003-1009. [DOI] [Web of Science] [Pubmed]
Zamvil S.S., Mitchell D.J., Lee N.E., Moore A.C., Waldor M.K., Sakai K., Rothbard J.B., McDevitt H.O., Steinman L., Acha-Orbea H., 1988. Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis. Journal of Experimental Medicine 167(5) pp. 1586-1596. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., McDevitt H.O., 1987. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proceedings of the National Academy of Sciences of the United States of America 84(8) pp. 2435-2439. [DOI] [Web of Science] [Pubmed]
Schilham M.W., Lang R., Acha-Orbea H., Benner R., Joho R., Hengartner H., 1987. Fine specificity and T-cell receptor beta-chain gene rearrangements of five H-2Db-specific cytotoxic T-cell clones. Immunogenetics 25(3) pp. 171-178. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Zinkernagel R.M., Hengartner H., 1985. Cytotoxic T cell clone-specific monoclonal antibodies used to select clonotypic antigen-specific cytotoxic T cells. European Journal of Immunology 15(1) pp. 31-36. [DOI] [Web of Science] [Pubmed]
Podack E.R., Konigsberg P.J., Acha-Orbea H., Pircher H., Hengartner H., 1985. Cytolytic T-cell granules: biochemical properties and functional specificity. Advances in Experimental Medicine and Biology 184 pp. 99-119. [Web of Science] [Pubmed]
Rupp F., Acha-Orbea H., Hengartner H., Zinkernagel R., Joho R., 1985. Identical V beta T-cell receptor genes used in alloreactive cytotoxic and antigen plus I-A specific helper T cells. Nature 315(6018) pp. 425-427. [DOI] [Web of Science] [Pubmed]
Acha-Orbea H., Groscurth P., Lang R., Stitz L., Hengartner H., 1983. Characterization of cloned cytotoxic lymphocytes with NK-like activity. Journal of Immunology 130(6) pp. 2952-2959. [Web of Science] [Pubmed]
Imhof B.A., Acha-Orbea H.J., Libermann T.A., Reber B.F., Lanz J.H., Winterhalter K.H., Birchmeier W., 1980. Phosphorylation and dephosphorylation of spectrin from human erythrocyte ghosts under physiological conditions: autocatalysis rather than reaction with separate kinase and phosphatase. Proceedings of the National Academy of Sciences of the United States of America 77(6) pp. 3264-3268. [DOI] [Web of Science] [Pubmed]
Phd thesis
Haller S., 04-2015. Between Immunology And Tolerance: Controlling Immune Responses Employing Tolerogenic Dendritic Cells. Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.). [Document]
Ashok D., 2013. The role of dentritic cells in leishmania infection : use of novel DC lines for the development of monoclonal antibodies. 153 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea, H. (dir.).
Thelemann C., 2013. The role of nonhematopoietic MHC class II expression in immune responses and tolerance. 135 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea, H. (dir.).
Duval A., 2012. Tolerogenic dendritic cells and their role in induction of immune tolerance. 166 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea, H. (dir.).
Fuertes Marraco S. A., 2009. Type I interferon drives splenic Cdc apoptosis via BH3-only proteins in response to PolyIC : use of novel DC lines for the study of DC biology. 168 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Zencak D., 2009. The role of Bmi1 in CNS development and in retinal degeneration. 148 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Guarda G., 2007. Generation and function of mouse central memory and effector memory T cells. 47 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Genton C., 2006. T-dependent B cell activation and differentiation in Lat Y136F mice : polyclonal response leading to autoimmune disease. 108 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Wagner R.J., 2006. New genetic models and mesenchymal cells as tools to ameliorate anti-tumor immunity. 151 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Meier D., 2005. Role of cytokines in secondary lymphoid organ development. 159 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Steiner Q.-G., 2005. New insights into dendritic cell biology and histiocytosis through a transgenic tumor model. 198 p., Université de Lausanne, Faculté de biologie et médecine, Acha-Orbea H. (dir.).
Person Position Contact
Driss Ehirchiou Research Associate Unisciences
Sahar Ghassem Zade MD/Ph.D student Unisciences
Sergio Haller Postdoctoral fellow Unisciences
Christine Lavanchy Technician Unisciences
Vanessa Mack Technician Unisciences
Muriel Manzoni Technician Unisciences
Matteo Pigni Ph.D student Unisciences
Mathias Stevanin Ph.D student Unisciences





Hans Acha-Orbea


Tel: +41 21 692 5732

Chemin des Boveresses 155 - CH-1066 Epalinges  - Switzerland  -  Tel. +41 21 692 5700  -  Fax +41 21 692 5705
Swiss University