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Modeling Habitat Suitability for Moose in
Coastal Northern Sweden: Empirical vs
Process-oriented Approaches

Habitat models may provide viable tools for co-management
of large ungulates and forest resources, yet their applicabi-
lity has not been comprehensively evaluated in managed
forest. We examined 2 inherently different approaches to
model the relative winter habitat suitability for moose
(Alces alces) in the coastal area of northern Sweden.
An empirical approach based on GPS positions of 15
female moose was used to scrutinize the assumptions and
functional mechanisms of a process-oriented, conceptual
approach, based on published material on the species’
preferences for habitat components related to food and
cover. For both model approaches habitat was described
using estimates of forest-stand characteristics based on
satellite imagery. The empirical model also included
variables relating to topographic properties of the landscape
as well as distances to landscape features. The output
from both models was a habitat suitability index (HSI)
score, enabling the models to be compared with each
other. The models showed different results, highlighting
the need to include the spatially explicit distribution of
environmental variables in future conceptual, process-

oriented models.

INTRODUCTION

The moose (4lces alces) has a circumpolar distribution
largely coinciding with the boreal forest biome. Of the
9 subspecies of moose distinguished, 4. alces alces is
indigenous to western Eurasia. In Fennoscandia, moose
feed primarily on woody plants, particularly during
winter when Scots pine (Pinus sylvestris), birch (Betula
pendula and B. pubescens) and willows (Salix spp.) are
staple food (1). Moose are charismatic animals with high
aesthetic value, and, further, have high socioeconomic
value as a game species (2). The post-World War II era has
seen a dramatic increase in population numbers of moose
in Fennoscandia, coinciding with the introduction of
large-scale clearcutting practices. As a consequence,
conflicts and problems have emerged in terms of elevated
levels of traffic accidents and damage to forest regenera-
tion. Moose is nowadays considered the major damage
agent to commercially valuable woody plant species in
Sweden (3), and of great concern for fulfilment of
production goals in forestry. Combining large populations
of ungulates such as the moose and sustainable forest
management is thus a challenging task.
Natural-resource management should be served by
efficient and accurate methods to quantify relationships
between amounts and distribution of forest resources
and their use by moose. Such knowledge would, for
example, be useful as a tool for evaluating aspects other
than timber production, e.g. species conservation, in
harvest programs (4). To achieve this, management
programs need to include the specific needs of animals.
With respect to impact on habitat components like
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food and cover for ungulates, habitat models could be used
for evaluating different forest scenarios. Incorporating habitat
use by ungulates in these models would allow evaluation of
damage risk due to browsing, which in turn, could be used
to set targets for ungulate harvesting programs. Most habitat
models are simplified representations of the real world
focussing only on a fraction of the factors that determine
fitness or population size of targeted species. More specific-
ally, habitat models are practical operational tools based on
assessment of physical and compositional attributes of the
habitat (5). Habitat models thus estimate the suitability or
capacity of targeted areas to provide the needs of a species.
Development of wildlife-habitat models is facilitated by
increased availability and coverage of remote sensing data,
e.g. satellite imagery, allowing detailed assessment of
amounts and distribution of resources over large areas.
Application of GPS-technique in animal habitat-use studies
brings forward large amounts of positional data with
unprecedented accuracy (6, 7). Together with new GIS-
software, these improvements open up for rapid develop-
ment of habitat models. Hitherto, little work has been carried
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Fig. 1. The distribution of resources may differ between the resource
space predicted by a process-oriented model and the observed
resource space calculated by an empirical model. The relative position
and shape of the observed resource space compared with the predicted
resource space may indicate the use of the correct functions but
low precision of the process-oriented model (observed resource
space 1) or wrong or missing functions (observed resource space 2).
Differences between the means of the total resource space in the
landscape m,, and the means of the observed resource space m,, are
used to calcufate the marginality; differences of the standard deviations
(o,, # 0,,.) allow calculation of specialization.
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out on animal habitat modeling in managed forests in
Fennoscandia (but see 8). Much work has been done in
North America, but many of these models cannot directly be
transferred to managed forests such as those found in
Sweden since vegetation, climate, landownership, intensity
and history of land management, etc. are different.

Concept of Resource Space

A habitat can be described as the resources and conditions
present in an area that produce occupancy — including
survival and reproduction — by a given organism. The habitat
concept thus is organism-specific as it relates the presence
of a species, population or individual (animal or plant) to
an area’s physical and biological characteristics (9). For
each habitat resource variable we can define the total
resource space in the landscape (Fig. 1). Most species are
expected to be nonrandomly distributed in regard to related
environmental variables, i.e. they show selection behavior
(10). The distribution of habitat resources can be predicted
using a process-oriented, conceptual model based on
expert knowledge. This type of model can be seen as a
mechanistic ‘black box’, where the specific physical, causal
relations leading to the modeled, plausible processes,
remain unspecified. Thus, we use the terms ‘process-oriented’
or ‘conceptual model’ as synonyms for terms such as ‘theo-
retical’ or ‘mechanistic’ models used by other authors (e.g.
11-13). The distribution described by such a model is defined
as the ‘predicted resource space’ (Fig. 1). In contrast, with an
empirical approach (14), the distribution of the species in the
resource space is derived from observations of the species in
the field. We refer to this distribution as the ‘observed
resource space’ (Fig. 1).

The predicted resource distribution of a species should be
as close as possible to the observed resource use when there
are no restrictions in habitat accessibility. If this is the case,
we expect to find the observed resource space for a variable
entirely contained within the predicted resource space
(observed resource space 1 in Fig. 1). This would mean that
our conceptual model is predicting the correct functional
processes. If, however, the observed resource space is located
partly or entirely outside the predicted one (observed
resource space 2 in Fig. 1), it would be an indication that the
conceptual model is using the wrong or incomplete functional
responses when describing the predicted resource space of
the focal species. It is thus possible to use an empirical
model to scrutinize the functional processes and model
assumptions used in a related conceptual model.

A great deal of work has been devoted to analyzing
interactions between forestry and moose in Fennoscandia.
Whereas much has been done on the level of individual
animals and plants, comparatively little work has been done
on relating moose habitat use and forest resources at larger
spatial scales (15, 16). The experiences from the work already
carried out in Fennoscandia are crucial in the building of
habitat models designed for managed forest. The aim of this
paper is to examine 2 different approaches to model habitat
suitability for winter habitat for moose based on expert
knowledge on limiting habitat resources, and empirical data
on habitat use by moose in managed forest. The primary
objective is to outline and discuss the different modeling
approaches with respect to scope, limitations and future
prospects. We present an approach to scrutinize the
assumptions and functional processes of a conceptual model
based on the literature and on expert knowledge using a
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model based on empirical data. To achieve this we adopted a
common standard in terms of a habitat suitability index
(HSI; 17), i.e. the rating of a landscape’s relative habitat
quality, which is its capacity to ensure the persistence of an
animal species.

MATERIAL AND METHODS
Study Area

The study was conducted in the coastal area of Visterbotten,
Sweden (Fig. 2), near Umed (64°12°N, 20°45’E [WGS
84]) in the middle boreal zone (18). Most (62%) of the
study landscape (9077 km?) consists of productive forest
land (annual production > 1 m? ha'!), followed by open mires
and lakes (24%). The remaining vegetation cover types
consist mainly of forest impediments, agricultural land and
settlements. The dominating tree species are Scots pine and
Norway spruce (Picea abies) with deciduous tree species
such as aspen (Populus tremula), birch (Betula spp.), rowan
(Sorbus aucuparia) and willows interspersed. The age of
productive forest stands varies between 0 and 163 years, and
the normal rotation period in this area is 80 — 100 years.
The field layer varies from dry Vaccinium vitis-idea and
Cladonia spp. dominated stands to mesic Vaccinium myrtillus
type stands. While on clearcuts, grasses such as
Deschampsia flexuosa and Calamagrostis purpurea dominate,
on mires both grasses of the family Poaceae, sedge (Carex
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Fig. 2. The county of Vasterbotten (hatched area) in Fennoscandia
is shown with the study area (rectangle) and the Arctic circle
(dashed line) indicated.
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spp.) and woody plants such as willow and
dwarf birch (Betula nana) are common. The

Life requisites

Functional processes Suitability values

elevation varies between 0 and 431 m a.s.l.
Along the coast, the ground is covered by
snow for 140 to 160 days yr' (19), with a
median snow depth in January of ca 40 cm. In
interior areas the snow-cover period is slightly
longer (160-180 days) with a median snow
depth of 50-60 cm (19). The moose density in
the area varies between 0.4 and 1.2 individuals
km? during the winter (Swedish Hunters’
Association, pers. comm.).

‘ Food

Moose Data

Between 1995 and 1998, 15 female moose
were equipped with GPS-collars (Lotek
GPS_1000) scheduled for taking at least 1
position (fix) per hour. GPS fixes were
corrected to better than 20 m by differential
post-processing. This resulted in a total of
17 036 fixes, whereof 86% had a precision
better than 20 m. Seventy percent of all fixes
were taken during the winter season from
December to May. In 1998, 6126 fixes were
recorded whereof 98% with a precision better
than 20 m.

Vegetation and Geographical Data

The vegetation datasets based on forest-stand data (Tables 1
and 2) were obtained by processing Landsat TM satellite
images from 1994, 1996, and 1998 together with data from
the National Forest Inventory (NFI) using the k-
Nearest—Neighbour (KNN) algorithm (20-22). The ANN
estimation method is essentially an inverse-distance weighted
average method, commonly used for spatial interpolation (23).
Here, the forest variable values (Tables 1 and 2) are calculated
as weighted averages of the & spectrally nearby samples.
Such nearby samples are defined as the sample plots used
within the NFI with shortest spectral distance to the pixel for
which the variable is to be estimated. As spectral distance,
Euclidean distance is used, and the weight is proportional to
the inverse squared Euclidean distance. Thus, the interpolation
is done in a spectral space defined by the 6 TM bands (22).
For a more detailed description of this method, see also
Nilsson et al. (24). As a result we obtained 3 raster data maps
(cell size 25 x 25 m?) for each year (1994, 1996, and 1998)
and vegetation variable in Table 2 for the landscape.

The geographical datasets (Table 2) including distance
measurements to geographical objects such as railroads or
water surfaces were obtained from digital topographical
maps (original scale 1:100 000) from the Swedish National
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Fig. 3. A flow diagram describing the live requirements, the variables used in the
functional processes of the conceptual, process-oriented model and combinational
processes to calculate the habitat suitability index (HSI) for moose.
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more general conceptual framework for assessing wildlife-
habitat relationships than empirical models.

For both modeling approaches, i.e. the conceptual and the
empirical model, we used the habitat suitability index (HSI)
to evaluate the aptness of the study area for moose. The
HSI is used for assessing the suitability of an area for the
species of interest as a function of several environmental
variables, which most affect species presence, abundance
and distribution (4). The relative measures of suitability
prohibit exact population estimates and only allow areas to
be compared to each other. HSI scores are on a standard
scale between 0 and 1, where 0 indicates unsuitable habitat
and 1 indicates optimum conditions and optimum quality
and availability of resources.

Process-oriented Model

A process-oriented species-habitat model aims at modeling
the relative suitability of an area for the focal species. It is
using known or plausible causal relationships as the base for
predictions of an area’s relative quality. This approach can also
be used to model habitat use or species distribution. It predicts
the distribution of a species on the basis of environmental
parameters that are believed to be the causal, driving forces
for the distribution and abundance of the target species (13).
Process-oriented HSI models are based on the assumption

Land Survey in Sweden. Calculation of altitude, slope and
aspect were based on a digital elevation model (DEM) from Table 1. Vegetation variables used in process-oriented
he Swedish National Land S The cell size in all rast model in alphabetical order. The abbreviations indicated are
the Swedish National Land Survey. The cell size 1 all raster used in Eq. 1-11 (Box 1). Only kNN estimates based on the
data maps was 25 x 25 m?. Landsat TM satellite image from 1998 were used in the model.
. . . . Variable Abbrev.

Habitat Suitability Modeling

o . . o Canopy cover of all trees (%) cct
Approaches to assess wildlife-habitat relationships include Canopy cover of coniferous trees (%) o5s
empirical and process-based models (13). Empirical models Mean stand height (m) msh
analyze data on habitat use and habitat characteristics collected Proportion stem volume of deciduous species (%) pvd
at specific sites. In contrast, process-oriented models aim Proportion stem volume of Pinus sylvestris (%) pvp
at assessing plausible causal relationships or functional Stand density (no. trees ha1) sde
processes underlying habitat use, and therefore provide a
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Fig. 4. The suitability index value maps are shown for both the process-
oriented model (a-c) and the empirical model (ENFA results; d-f).
While (a) and (d) show the resulting HSI map for each model, (b) and
(c) show the intermediate suitability maps for food (SI Food) and
cover (Sl Cover) as calculated by the process-based model. For the
calculation of (e) only geographical variables (DEM & Topo in Table 2)
were used in the empirical model (ENFA), while for (f) only vegetation
variables (kNN in Table 2) were used.

that a species will select and use areas that are best able to satisfy
its life requisites, and thus greater use should occur in higher
quality habitat (5). The fundamental components of such HSI
models are the environmental variables (independent variables),
the resulting habitat suitability values (dependent variables)
and the classification functions or functional processes that
link the two (25).

The process-oriented, conceptual HSI model for moose-
habitat assessment presented in this paper builds on a habitat
modeling framework described by Lofstrand et al. (26).
Habitat is modeled as a function of variables (Table 1) known
or perceived to be important components of the life requisites
cover and food during winter (Fig. 3), using functions from
Allen et al. (27) and Kurtilla et al. (8), respectively. Despite ear-
lier mentioned potential difficulties to apply models developed
in North America in Fennoscandia, we used functions from
Allen et al. (27) for the calculation of suitability indices for
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cover in Fennoscandia, as the variables used in these
functions (Fig. 3) are applicable to Swedish conditions.
The calculated suitability indices for food and cover, SI,
and SI., were combined into the habitat suitability
index (HSI). For a detailed description of the functional
relationships, see Box 1.

Empirical Model

The second approach to predict winter habitat suitability
for moose used an empirical model. Empirical models
are often based on field observations in a specific area and
thus usually sacrifice the generality of their predictions
for the precision under realistic conditions (13). Hence,
such a model is not expected to provide any information
about the underlying ecological functions and mechanism
or to describe in a realistic way the correlations between
model parameters and predicted responses (28). However,
it can be used to identify and rank the most important
variables for the predicted responses. In this study, we
use an empirical model based on the Ecological-Niche
Factor Analysis (ENFA; 14). The method builds on the
concept of the ecological niche, assuming that species are
nonrandomly distributed regarding their physiological
preferences. ENFA compares the distribution of inde-
pendent environmental variables for a presence dataset, i.e.
the locations where the species was observed, with the
distribution of the same variables for the whole area. The
method is basically a multivariate approach which does
not require absence data of the focal species such as, e.g.
logistic regression models do. Further, using ENFA
spatial and nonspatial variables can be combined. A key
feature of ENFA is that it summarizes, like a Principle
Component Analysis, the environmental variables into
a few, uncorrelated, but ecologically meaningful factors.
Hirzel et al. (14) labelled the first factor reported by
ENFA as the ‘marginality’ of the model species, i.e. the
ecological distance between the species optimum and the
global mean (Fig. 1). It represents the differences
between the means of the global distribution m, ,, i.e. the
total resource space, and the observed resource space
m,, . The following factors extracted by the method
representing the specialization of the species, resemble
the ratio of environmental variance in the habitat of the
whole landscape and the observed positions of the species.
It is calculated using differences of the standard deviations
o, and o, to describe the species specialization.
Based on the importance of the factors, a habitat map
is calculated scaled to a suitability range between 0 and
1. For a detailed description of ENFA, the mathematical
methods and their implementation in the software program
Biomapper, see Hirzel et al. (14).

In this study, ENFA is based on presence data for
moose in the landscape, i.e. the positions of moose as
recorded by GPS-collars, ANN-derived forest-stand
variables, distance measurements to different landscape
features from topographical maps and a digital elevation
model (DEM; Table 2). We used 3 different sets of eco-
logical variables, thus producing 3 different habitat maps
(Fig. 4d-f). The sets were composed of i) vegetation
variables, i.e. forest data obtained from satellite and
ancillary data using the kNN method (Fig. 4f); ii) geo-
graphical variables, i.e. data obtained from a DEM and
topographical maps (Fig. 4e); and iii) a combination of
both (Fig. 4d). As software implementation of ENFA the
software package Biomapper (14) was used.
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Dataset Preparation

In this study, we used positional data for moose over a period
of 4 years (1995 — 1998) in the empirical model. We matched
each year’s positional data to the nearest vegetation dataset
(Table 2) in time (1994, 1996, or 1998). The geographic
datasets (DEM and Topo; Table 2) were regarded as constant
over time. To be able to use the datasets for the 3 different
years simultaniously in the empirical model, for each variable
we artificially moved the 3 maps representing different years
in space until they were adjacent to each other. We then
merged the 3 ‘annual’ maps to one artificial, single large
map and used these new variable maps during the empirical
model approach. After the resulting habitat maps were derived,
only the parts of the maps corresponding to the map extent
of the original 1998 maps were extracted for subsequent
analysis. The habitat maps derived from the process-oriented
model are based on vegetation datasets from 1998.

Ambio Vol. 32 No. 8, Dec. 2003

RESULTS AND DISCUSSION

When applying the process-oriented model to the study
landscape, we found an almost uniform distribution of HSI
pattern throughout the landscape with a small scale variation
only (Fig. 4a). The same results were obtained for both the
suitability index calculated for cover (SI_; Fig. 4b) and the
suitability index calculated for food (SI;; Fig. 4c). However,
the suitability index levels for food were generally lower
than the levels for cover, resulting in a generally low total
HSI due to the multiplicative combination of these 2 factors.

In comparison to the process-oriented model, the empirical
model showed a distinct spatial pattern, with high values of HSI
along the coast (Fig. 4d), while HSI values in the inland are
generally lower. One explanation for this pattern may be found
in the predicted preferences of moose to the additionally
included environmental variables (Table 2). An analysis of
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the marginality values showed that moose location data were
linked to low-altitude, flat areas close to larger roads and
settlements, like those found in the coastal area. In contrast,
moose seemed to avoid areas close to railroads and smaller
roads. Ball and Dahlgren (29) found that browsing pressure
on Scots pine was inversely related to distance to a major
road in the area, suggesting that larger roads function as
barriers for moose movement.

One of the most interesting findings in this study is the
result of the ranking of the variables explaining moose
habitat preferences from ENFA: of the first 10 most important
variables only 1 forest vegetation variable (Stem volume of
Norway spruce) was found, but first at the 9th position
(Table 2). All prior, more important variables related moose
habitat selection to spatially explicit features, suggesting that
geographical factors had a decisive influence on habitat
selection. When we used only vegetation variables in ENFA
(Fig. 4f), the HSI values were spatially evenly distributed
similar to the results of the process-oriented model (Fig. 4a),
based on forest vegetation variables.

The generally higher level of HSI values in the empirical
model may imply that the assumptions made for the process-
oriented model were too conservative or incomplete. Judged
by the empirical results, moose used habitat with lower quality
or quantity of forest vegetation variables than predicted by
the process-oriented model. A sensitivity analysis for the
process-oriented model revealed that tree height > 5 m was
a restricting resource, as only trees below this height were
modeled as food. In contrast, suitability index values for
cover were almost always high throughout the landscape
(Fig. 4b), and thus did not represent a limiting factor in this
model. However, the HSI values of both models are difficult
to compare directly, using their absolute numbers, as the
foundations of the models are different.

In many models, much emphasis is put on the assessment
of vegetation distribution in the landscape to explain habitat
suitability for moose (27, 30, 31). All of them are habitat
suitability index (HSI) models or expert systems, describing
the predicted resource space for moose in the landscape. These
models have the potential to be of a general and mechanistic
nature and can be extrapolated over a relatively wide spatial
range. They therefore belong to the mechanistic or process-
based group of models based on cause-relationships. Such a
model is not judged primarily on predicted precision, but
rather on the theoretical correctness of the predicted response
(13, 32). One potential advantage with a process-based
approach is that it is ecologically meaningful since the
variables are selected based on habitat requirements of the
species (33). The used variables represent conditional
habitat factors with an explicit causal relationship.
Furthermore, the process-based approach commonly uses
a limited number of variables (33), which, if correctly
identified, enables us to understand the effects of changes
in the landscape to the model outcome. On the other hand,
a drawback with process-based models is that they are
cumbersome to parameterize, thereby potentially reducing
their applicability as management tools (34). Further,
validation of any HSI model requires demographic data
which often are not available for most habitat models (35).
Animals may be absent from the study area or one may lack
data for particular areas.

A different approach pursued by wildlife managers, sci-
entists and foresters is to monitor moose movement using GPS
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or conventional VHF transmitter techniques. This data can be
analyzed to build an empirical model describing the actual
movement or home-range size of moose. By this method, the
observed resource space for moose in the landscape can be
assessed. The empirical model usually represents a statistical
model as defined by Guisan and Zimmermann (13), which
means the predictive power is limited by the low ability to
extrapolate. Thus, these models have a tendency to be static
and site specific. On the other hand, this type of model is
easier to evaluate from a habitat utilization perspective as
one can use a different data set or boot-strapping techniques
of the same data set used to construct the model in model
evaluation (14).

As our results show, it is likely that the assumptions and
functional processes behind the presented mechanistic HSI
model for moose, based on expert knowledge, did not
reflect the complexity of reality. In addition, the present
process-oriented model neither included any geographical
relationships describing the spatially explicit distribution of
resources in the landscape nor did it account for the varying
accessibility of resources to moose. The importance of
including such spatially explicit resource distribution was
also discussed by Allen et al. (27). Current process-oriented
HSI models used in practical wildlife management have
hitherto mainly focused on variables which are relatively
simple to quantify with only few attempts to determine the
spatial distribution of the resources (27, 30, 31). With the
development of more sophisticated GIS analysis tools and
the availability of geographical and vegetation data in
digital form, the models used in wildlife management
could be refined to include geographical factors in a spatially
explicit way.

Based on the results from the empirical approach we
hypothesize that moose is selecting its habitat on at least 2
different spatial scales (see also 36, 37). At the landscape
level, geographical conditions such as altitude and distances
to, e.g. railroads, large roads or settlements (Table 2) appear
to be important for habitat selection. On a finer scale, e.g.
the forest stand level, vegetation variables such as stem
volumes of spruce and pine or the degree of stocking (Table
2) may influence local habitat selection. Scale-dependent
food selection was reflected in patterns of moose browsing
on aspen in the same area (38, 39). Scale-dependencies are
also reflected in Figure 4d-f in combination with Table 2. For
example, altitude seemed to be the single most important
factor, separating the high HSI values along the coastal
lowland from lower HSI values in the inland at a generally
higher altitude.

Further, the process-oriented model may have been too
conservative with reference to the functional relations of
environmental variables. Habitats which were classified to
low suitability values by this model were frequently used by
moose resulting in higher HSI values in the empirical model
(Fig. 4a vs Fig. 4f), especially along the coast (Fig. 4d). This
can have 2 different causes. First, the assumptions of the
process-oriented model are too strict, meaning that moose
did explore a broader resource space than predicted, i.e.
the observed resource space for a specific variable
exceeds the predicted resource space. However, this may
be a consequence of the emphasis of conceptual, process-
oriented models on causal relationships rather than precision.
Second, not all habitats may be equally accessible to moose,
resulting in a higher actual usage of low quality-habitat than
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predicted by the mechanistic model (Fig. 4d). This may arise,
e.g. from social behavior, as moose usually avoid aggregating.
Some individuals may then be forced into low quality areas
as high quality areas are occupied. Hence, this might be an
example for a missing factor describing accessibility in the
process-oriented model, which places the predicted resource
space partly outside the observed resource space.

CONCLUSIONS

Habitat modeling may help to mitigate or resolve complex
issues in co-management of large ungulates and forest
resources. In this study we examined 2 approaches to model
moose-forest-relationships. Our aim was not to perform a
formal model evaluation of neither of both approaches, but
used the empirical HSI model based on presence data of
moose to explore the assumptions of a conceptual, process-
oriented HSI model based on expert knowledge. We could
show that the empirical approach can be used to set the
assumptions of the process-oriented model in perspective
using the concept of overlapping resource spaces.

The process-oriented model did not take spatially explicit
features of landscape structure into account, but calculated
habitat suitability based on stand-level vegetation estimations.
The empirical model approach, however, ranked the
importance of the surrounding landscape structure for
moose movement and habitat selection higher than the
vegetation distribution alone. To further improve the process-
oriented HSI model, these findings suggest that it is necessary
to include spatially explicit landscape structure and con-
figuration variables in the model.

Conceptual, process-oriented models designed to steer
browsing damage have thus to focus on a broader scale than
single forest stand variables. Further research will be needed
to construct the mechanistic functions which take the spatially
explicit distribution and juxtaposition of resources for moose
into account. Empirical data are important to fine-tune
parameters of the functional processes to local conditions.
Further, the scale dependency of different ecological and
geographical variables for moose movement and habitat
selection must be carefully evaluated. Future decision
making systems for wildlife managers to control moose
population density must thus be based on both forest stand
scale variables as today, and new functions of spatially expli-
cit landscape structure and resource distribution.
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Box 1.

Habitat is modelled as a function of variables (Table 1) known or
perceived to be important components of the life requisites food
and cover during winter (Fig. 3). A food suitability index, Si. was
calculated based on 4 variables (Fig. 3): proportion of pine (pvp; Eq.
1), proportion of deciduous trees (pvd; Eq. 2), stand density (sde;
Eqg. 4) and mean stand height (msh; Eq. 5) using the functions
presented by Kurtilla et al. (8).

(pvp < 0.45) Sl ,,=2xpvp+0.1 Eqg. 1
(pvp > 0.45) S/ o= 1
(pvd < 0.45) Sl = % +05 Eq.2
(pvd > 0.45) Sl =1

For the food component the first 2 variables, pvp and pvd were
given equal relative importance as they were combined to form a new
suitability index for proportion of pine and deciduous species, S/
(Eq. 3). As we assume that for a limited time one component can
substitute the other, an additive approach was chosen.

(Sh,,+ Sl,,,<1.0) Sl =8l +5l, Eq.3
(St,,+ SI,>1.0) Sl,=1

(sde < 4000) Sl = 28’30 Eq. 4
(sde > 4000) Sl =1

(msh < 2.5) Sl ., = 0.4 x msh Eq.5
(2.5 < msh < 4.0) Sl =1

(4.0 < msh<5.0) Sl ., =—msh+5.0

(msh > 5.0) Sl,,=0

In the overall food suitability index, S/, (Eq. 6) the 3 S/ components
for proportion of pine and deciduous trees S/, stand density S,
and mean stand height S/_, all received equal relative importance
(i.e. 1/3). The 3 model components are regarded obligate, thus, the
multiplicative approach of the geometric means is used which

means that S/ equals 0 if one of the indices equals 0.

Sl_= SIS/p X Slm X S/msh Eq.6

A cover suitability index, SI, was calculated in a similar way as the
Sl and was based on three variables (Fig. 3; (27)): canopy cover of
all trees (cct; Eq. 7), canopy cover of coniferous trees (ccc; Eq. 8)
and mean stand height (msh; Eq. 9).

(cct< 75) Sl = % Eq.7
(cct > 75) Sl =1

(ccc < 60) Sl =0.015x ccc + 0.1 Eq.8
(cce > 60) Sl .= 1

(msh < 3.0) S, = ms—%” +0.1 Eq.9
30< ., <10.6) S, = ’;%’t 0.116

(msh > 10.6) Sl =1

In the overall cover suitability index Sl (Eq. 10) the 3 components
all received equal relative importance (i.e. 1/3). The 3 model
components are regarded obligate the same way as for the food
index thus the multiplicative approach of the geometric means is
used which means that S/, equals 0 if one of the cover indices

equals 0.
SIC: SV Slccl X Slccc X Slmsh Eq 10

Prior to combining the 2 indices S/ and Sl into a composite index
of overall habitat suitability HSI, we averaged pixel values within a
circular moving window which equalled the size of a daily home
range of moose in this region. The size of this circle was set to 32
ha (H. Dettki, unpubl. data). As for moose in the study area food
SI_ was considered the most important factor for winter habitat,
SI received the weight 0.9 compared to 0.1 for cover, S/.. Both
food and cover are perceived as requirements of habitat and a
multiplicative approach was used when combining both indices.
The HSI is thus calculated as a weighted geometric mean of the
pixel-level indices S/.and SI.

HSI = (SI.)°° x (S, )° Eq. 11
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