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Abstract

Habitat suitability (HS) modeling relates a species’ potential presence/ab-
sence to a set of environmental variables. Because of stochastic or demo-
graphic population fluctuations, relating abundance to environment is difficult 
and generally requires time-series of population-density data. Here, I propose 
an approach to compute relative capacity of a set of habitat classes. I defined 
relative capacity of a habitat class as being proportional to its carrying capac-
ity, and replaced time-series of density measures with spatial replicates. A 
hypothetical environment was first divided into several habitat classes and 
population densities were measured in a sample of these habitats. Three meth-
ods of computing relative capacity were compared: (1) maximum density per 
habitat class, (2) coefficients of a Generalized Linear Model (GLM) of the 
habitat densities, and (3) slopes of isodars computed for all pairs of habitat 
classes. Accuracy of these methods was evaluated using spatially-explicit 
demographic simulations. I investigated biological assumptions (species’ 
sensitivity, reactivity and selectivity, regional stochasticity) and sampling de-
sign (sample size, distance between pairs of habitat classes, number of habitat 
classes, uncertainty over abundance). GLM and maximum-density methods 
provided accurate results when at least five site-pairs were available. Isodars 
outperformed other methods in landscapes with many habitat classes, but are 
best suited to large or noise-free data sets. Optimal performance was reached 
with more than 50 site-pairs and five habitat classes.

Keywords: habitat suitability, ideal free distribution, isodar theory, population 
dynamics, simulated data, spatial ecology, virtual species

Introduction

Habitat suitability (HS) modeling relates a species’ occurrence to a set of environmental 
variables to model its ecological niche and predict its potential distribution (Soberón, 
2007; Hirzel and Le Lay, 2008). One of the main outputs of these models is the predic-
tive HS map, which can be used to delineate the spatial distribution of a species, to 
predict potential range of an invader or a disease, to delineate protected areas for an 
endangered species, or to map biodiversity hotspots (Guisan and Thuiller, 2005; Peter-
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son, 2006). The field of HS modeling has developed quickly during the last 15 years, 
generating a large number of methods and applications (Guisan and Zimmermann, 2000; 
Pearce and Boyce, 2006).

But what does HS represent exactly? As the input data are occurrences of a species, 
i.e., a binary variable, it cannot be a number or density of individuals. While methods 
based on presence and absence data (e.g., logistic regression) claim to compute “proba-
bilities of occurrence” (Guisan and Zimmermann, 2000), this term refers correctly to the 
probability of finding the species, given the entire sample. As such, it depends strongly 
on the ratio between detected presences and absences, which itself depends on the extent 
of the study area. Thus, rare species have low probabilities of occurrence, even in those 
places where all of their environmental requirements are fulfilled. Resource Selection 
Function theory (Manly et al., 2002) more correctly uses the term “relative probability 
of occurrence”. The value computed by HS models should be thought of as a measure 
of environmental similarity between the focal area and a hypothetical species’ optimal 
habitat. Thus, it is a combination of resource, resting site, and breeding site availability, 
which directly affects survival, reproduction, colonization, and extinction risk (Jaquiéry 
et al., 2008).

In some cases, wildlife managers require estimates of population density rather 
than HS. Although many HS techniques can theoretically predict species’ abundances 
(Guisan and Zimmermann, 2000), it generally proves difficult (Potts and Elith, 2006), 
especially for animal species (e.g., Olivier and Wotherspoon, 2005). This is because 
environmental and demographic stochasticity may drive populations far below their car-
rying capacity. The problem is analogous to the HS vs. presence prediction. Predicting 
HS is different from predicting presence because the latter involves population dynam-
ics (dispersal, stochastic extinctions, history), which the former can ignore (Soberón and 
Peterson, 2005; Soberón, 2007; Hirzel and Le Lay, 2008). Similarly, it is easier to predict 
carrying capacity than abundance.

Carrying capacity cannot be measured with a snapshot survey. Instead, it usually re-
quires a time series of density and growth rate measurements on a fluctuating population 
(Freckleton et al., 2006). Although possible to obtain on a limited number of sites, such 
long-term studies are not typically feasible given the large sample sizes required by the 
usual HS methods. Moreover, time series require several years before providing usable 
data. Because some ecosystems change rapidly, time is often what we lack most.

I propose an alternative approach based on finding the conversion function from HS 
to a discrete area’s carrying capacity (see also Discussion). This approach replaces time 
series by a snapshot density survey over a sufficiently large area and provides a rapid 
way to evaluate potential population sizes. I explore three analytical methods, with con-
trols, and test their sensitivity to various sampling and biological conditions by applying 
them to simulated virtual species (Hirzel et al., 2001; Austin et al., 2006).

Relative capacity analyses

The carrying capacity of an area represents the population size that its resources and 
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conditions can maintain at equilibrium (Begon et al., 1996). As it depends only on the 
prevailing environment, it is a function of HS. According to this definition, the area need 
not be homogeneous; rather, environmental heterogeneity may be a component of HS. 
The area may also not be clearly delimited and can be any arbitrary partitioning of the 
landscape (e.g., a grid). In this way, this definition of carrying capacity is well-suited to 
GIS raster structure.

For my purpose, I define “relative carrying capacity”, K¢, as a value directly pro-
portional to carrying capacity, K. There is an unknown coefficient α that verifies K¢ = 
α K. By convention, relative capacity is scaled to range from 0 to 1. Relative capacity 
facilitates comparisons among quantitatively different environments in a study area 
(e.g., environment A can harbor a population twice as large as environment B). While 
the focus here involves computation of K¢, evaluation of the proportionality coefficient 
α may be conducted by standard time-series analyses.

Relative capacity analyses are based on a HS map and a snapshot density survey of 
an area large enough for regional stochasticity to occur, where regional stochasticity is 
the spatially autocorrelated component of environmental stochasticity (Hanski, 1991, 
1998): close populations experience similar conditions, while the dynamics of popula-
tions located far apart are decoupled. Thus, a sufficiently large study area would have 
specific regions experiencing various levels of crowding at the same time. As regions 
may be composed of diverse environmental conditions, it is possible to compare the en-
vironment-dependent density at various crowding levels. In other words, spatial replaces 
temporal variability. The methods then proceed as described below.

For a set of sites, assume that we have habitat suitability values and standardized 
measurements of population density. The HS values could stem from either a statistical 
HS model or expert knowledge. Sites are classified to k classes according to environ-
mental conditions. Some of the sites must be sufficiently far apart for their population 
dynamics to be independent. I propose three methods (and a randomly-selected control 
sample) to assess the relative capacity of these HS classes, as described below.

The “Maximum” method assumes that, although populations are fluctuating, at least 
one of each suitability class is, probabilistically, at its highest density. The method con-
sists of recording, for each HS class s (1 ≤ s ≤ k), the maximum observed density NM,s. 
Then, relative capacities are obtained by K¢ = NM,s/max(NM,s).

The second method is based on fitting a Generalized Linear Model (GLM) relating 
population density, N, to habitat suitability, S, using the equation: N = α0 + α1 S + α2 S

2. 
The fitted model is then used to compute a predicted value NG,s for each HS class s. The 
relative capacities are finally obtained by K¢= NG,s/max(NG,s). This model assumes that 
there is a linear or quadratic relationship between abundance and HS.

The third method is based on the theory of isodars (Morris, 1988, 2003). This theory 
assumes that, given the choice among a set of sites differing by their suitability and 
crowding, individuals select the site(s) that maximizes their fitness (Ideal Free Distri-
bution, IFD, Fretwell and Lucas, 1969; Krivan et al., 2008). The basic assumptions of 
IFD are that individuals have a global knowledge of the crowding and suitability of all 
available sites, are free to settle in any site, and there is no dispersal cost. However, 
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the IFD appears even when those conditions are not completely met (Cressman and 
Krivan, 2006). As negative density-dependence counterbalances the benefits of habitat 
suitability, this tends to homogenize the individual average fitness across all close sites 
(Emlen et al., 2003). The Isodar method requires a set of density measures taken in pairs 
of neighboring sites that differ by their environment, and at several levels of crowding. 
Plotting the population densities in the two sites on the same graph reveals how the 
individuals distribute themselves at various levels of crowding (Fig. 1). If the IFD as-
sumption is verified, the density pairs define a curve of equal fitness (called “isodar”, in 
homage to Darwin). The shape of the isodar reveals the relative suitability of the studied 
habitats (Fig. 1). Often, the density measurements come from time-series monitored on 
a few pairs of study sites (e.g., Morris, 1992; Lin and Batzli, 2002; Shochat et al., 2002). 
In the present case, all densities are measured simultaneously in a large number of paired 
sites and pairs are chosen to minimize the distance within pairs, while maximizing the 
distance between pairs (e.g., Knight and Morris, 1996). Thus, the sites within a pair are 
assumed to experience the same level of crowding, which may differ from the crowding 
of other pairs.

Fig. 1. Isodar plot. Each dot represents densities in pairs of nearby sites, having habitats H1 and 
H2, respectively, at various levels of crowding. According to the ideal free distribution hypothesis, 
individuals distribute themselves among the two habitats to equalize average fitness. The slope of 
the isodar curve (black line), which passes through the data centroid (crossed circle), represents 
the relative suitability of the two habitats. In this example, the 2:1 slope indicates that habitat H2 
is two times more suitable than is habitat H1.
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The “isodar” method proceeds as follows: (1) For each combination of habitat classes 
(say, for k = 3: H1-H2, H1-H3, H2-H3), a list is made of geographically-close pairs of 
sites belonging to this set of classes. (2) for each list, pairwise densities are plotted to 
fit an isodar model. Preliminary simulations showed that the best results were given 
by the straight line linking the origin (0, 0) to the centroid of the distribution (Fig. 1). 
(3) This step provides an isodar slope for each habitat class combination, which can be 
represented within a triangular slope matrix (Table 1). Let aij be the relative suitability 
of habitat Hj in reference to habitat Hi (Hj is aij times more suitable than Hi). When k 
is large, some combinations may not be represented; these are ignored for remaining 
analyses. (4) Integrate the information contained in the slope matrix into relative capac-
ity as follows: Assign to H1 a reference relative capacity of f(H1) = 1. From it, compute 
the relative capacity of H2 by f(H2) = a12 f(H1). For H3, relative capacity can be computed 
by f¢(H3) = a13 f(H1) or f¢¢(H3) = a23 f(H2). The two ways usually provide similar but not 
identical relative capacities. Take the mean of these two values. All remaining relative 
capacities are computed in a similar way. (5) Finally, the relative capacities are rescaled 
as in the two previous methods by dividing them by the maximum values. Table 1 pro-
vides a numerical example of these computations.

Methods

To test and compare the domain of application of these methods, I used a virtual-species 
approach as it allows for a variety of computer experiments and provides a framework 
for objectively evaluating results (Hirzel et al., 2001; Austin et al., 2006).

Simulating population dynamics
The program HEXASPACE (Hirzel, 2001; Hirzel et al., 2007) was used for modeling 

population dynamics. It consists of a virtual landscape composed of 200-by-200 hexago-

Table 1
Example of an isodar slope matrix. Each coefficient is computed as the slope of linear isodar with 
null intercept, for all combinations of habitats (here, four habitat classes, H1 to H4). In this ex-
ample, H4 is 2 times more suitable than H3, which is 1.5 times more suitable than H2, etc. Because 
relative suitability is evaluated pairwise, inconsistencies may arise (e.g., H4 may be 2 ´ 1.5 = 3 
times more suitable than H2, or 2.9 times more suitable). These weights are compiled to provide 
capacities relative to H1. The last row provides the relative capacity of each habitat class, after 

rescaling to a maximum value of 1
	 H1	 H2	 H3	 H4

H1		  1.2	 1.7	 3.5
H2			   1.5	 2.9
H3				    2.0
Relative capacity	 1.00	 1.20	 1.75	 3.49
Scaled relative capacity	 0.287	 0.344	 0.501	 1.000



426	 a.H. hirzel	 Isr. J. Ecol. Evol.

nal cells. Each cell is characterized by a continuous HS value ranging from 0 to 1 and 
by a carrying capacity (K) ranging from 1 to 50 individuals. For all subsequent analyses, 
the HS is known to the virtual ecologist, while carrying capacity is not. I arbitrarily 
chose an exponential (nonlinear) relationship between HS and K, so as to have a patchy 
landscape (Fig. 2A,B). However, my reasoning would hold for any positive, monotonic 

Fig. 2. The virtual landscape used in the simulations. Habitat suitability (A) is assumed to be 
known to the virtual ecologist, while carrying capacity (B) is unknown. For the analyses, HS was 
reclassified into 2, 3, 5, 8, or 10 classes (C2–C10). In panels A and C, darker shades represent higher 
suitability whereas, in panel B, it represents higher carrying capacity.



Vol. 54, 2008	relative  capacity analysis	 427

relationship. The initial abundance of each cell was set to its carrying capacity. Because 
of regional and demographic stochasticity, abundances varied between 0 and 2 K, with 
a tendency to go back to K.

At each time step, the population of each cell followed two phases. During the first 
phase, the population reproduced according to the logistic model:
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where Ni(t) is population density of the ith cell at time t; r is the intrinsic growth rate of 
the population, fixed to 0.3; Ki is the carrying capacity of the ith cell; and εi(t) is a coef-
ficient of environmental stochasticity. This stochasticity coefficient is a random deviate 
obeying a Gaussian distribution with mean 0 and standard deviation either 0.2 (unstable 
environment) or 0.05 (stable environment). It has a spatial autocorrelation of 0.05 at a 
distance of 10 cells (following a Gaussian correlogram; see Hirzel et al., 2007). There 
was no temporal autocorrelation.

After the growth phase, a density-dependent proportion of the population left the cell 
and distributed itself uniformly among the six adjacent cells. The density dependence 
followed a sigmoid model. There was always a minimum of 1% migrants, while the 
maximum could be either 10% (philopatric species) or 30% (disperser species). Alter-
natively, the species could have density-independent dispersal, with proportions fixed 
to 10% or 30%. There could be one, five, or ten subsequent dispersal phases, depending 
on the species’ vagility. Individuals of the most vagile species could thus explore up to 
10 cells before the next reproductive phase. A higher number of dispersal phases gives 
species a better chance of finding the cell with highest suitability and, for density-depen-
dent dispersal, lowest crowding (i.e., IFD). The system ran for 20 generations and the 
population density of each cell was recorded at the last time step.

In summary, the environment could be stable or unstable, dispersal was either den-
sity-dependent or not, the species could be philopatric or a disperser, and there were 
three levels of dispersal range. In total, I ran 24 different simulations to investigate all 
combinations of these parameters.

Sampling
As the relative capacity analyses require discrete classes of suitability, the HS map 

was reclassified into 2, 3, 5, 8, or 10 classes (Fig. 2C2–C10). Then, a fixed number of 
cells (50, 100, 500, or 1000) were randomly sampled to estimate population density. As 
the Maximum and GLM relative capacity analyses only require the HS class and the 
observed density, they were readily applied to this dataset. However, the isodar analysis 
requires that cells be grouped by pairs of different suitability combinations. Ideally, cells 
should be close together and subjected to similar regional stochasticity, i.e., experience 
the same level of crowding. I tested various distance thresholds for the pairing (1, 2, 5, 
10, 200 cells). Of course, lower thresholds resulted in lower numbers of pairs. Accord-
ingly, I also recorded the number of pairs for further analysis and the largest distance 
among the retained pairs. This “random” sampling necessitates no prior knowledge of 
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the HS map, which probably corresponds to the most frequent situation. The same data 
set could thus be used for calibrating the HS model, and then for conducting the relative 
capacity analysis.

There were 20 replicates of each sampling so as to parry against any sampling ef-
fect. To simulate sampling uncertainty, I added four levels of noise to the sampled 
abundances, i.e., the actual abundance in a cell was multiplied by a random coefficient 
drawn from a uniform distribution between –ε and +ε (where ε = 0, 0.05, 0.1, or 1). All 
in all, for each of the 24 demographic scenarios, reclassified into five numbers of classes, 
there were five distance thresholds and five sample sizes, replicated 20 times, at four 
noise levels, totalling 240,000 samples. They were input into the three relative capacity 
analyses, providing 720,000 analyses. Each method was applied to identical data sets. 
Moreover, for each of the 240,000 samples, I also drew an ordered set of random relative 
capacities (drawn from a uniform distribution between 0 and 1) as a control, to provide 
a baseline against which to compare the three methods.

All analyses were conducted in R (R Development Core Team, 2006) and Tinn-R 
(Faria et al., 2008).

Evaluation
As the relationship between HS and carrying capacity was known, it was possible 

to compute true relative capacities F*i (1 ≤ i ≤ k). The results were compared to these 

values and a mean error coefficient (MEC) calculated as MEC = 
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The last class was not included in the computation because it was, by convention, fixed 
to 1. This provided four MECs for each of the 240,000 samples (i.e., for three methods 
and the control).

Results

Globally, all three methods provided satisfactory assessments of relative capacities. The 
Isodar method was the most sensitive to noise in the data, in particular at low sample 
sizes.

Over all samples, median MECs were 0.03 (ranging = 0.0001–0.78) for the Isodar 
method, 0.05 (from 0.002 to 1.38) for the Maximum method, and 0.04 (0.0001–5.31) 
for the GLM method, while the median control MEC was 0.27 (0.0001–0.75). The most 
crucial parameter was sample size; below five cell pairs, model performance was no bet-
ter than chance. As the number of cell pairs increased, the median MEC decreased for all 
three methods, reaching a plateau around 0.05 beyond 50 pairs (Fig. 3A). The proportion 
of analyses with MEC < 0.1 increased up to 50 pairs, beyond which Maximum and GLM 
reached a plateau at 80% while isodar kept increasing (Fig. 3B).

The three analysis methods produced different results in response to varying number 
of habitat classes, k. For k = 2, all three methods were roughly equivalent. For k = 3, 5, 
and 8, the GLM analysis provided better results. However, the GLM was not able to fit 
the exponential relationship that began to appear at k = 10 (Fig. 4). The maximum al-



Vol. 54, 2008	relative  capacity analysis	 429

Fig. 3. Effect of sample size on the analysis performances. The main trend line is the median value 
of the mean error coefficient median, and the interquartile range is represented by gray vertical 
lines. The horizontal axis is logarithmic.

Fig. 4. Distribution of mean error coefficient of the three analyses and control for varying number 
of predefined habitat suitability classes. The boxes show the interquartile range (IQR) around the 
black line of the median. The whiskers extend to the most extreme data point, which is no more 
than 1.5 times the IQR away from the box.
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lowed distance between sampled cell pairs had no effect per se. With short distances, it 
was often impossible to get large sample sizes, or to sample all pairs of habitat classes. 
This in turn affected the results.

The biology of the virtual species had little influence on analysis performance. At 
low sample sizes, the analyses worked best with disperser rather than philopatric spe-
cies; however, beyond 50 cell pairs this was no longer important. Density dependence, 
dispersal distance, and stochasticity also had little effect on results (Fig. 5).

Fig. 5. Box-plots showing the interquartile range (IQR, boxes) around the median (black line) 
of the mean error coefficients. The panels compare simulations with and without density depen-
dence, and different degrees of dispersal rates, dispersal distances, and regional stochasticity. The 
whiskers extend to the most extreme data point, which is no more than 1.5 times the IQR away 
from the box.
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Discussion

These simulations showed that it was indeed possible to reliably compute relative ca-
pacities for habitat classes by means of density data. As collecting density information 
is often difficult, it is promising that tolerable results can be reached with measures of 
density in 5–10 habitat classes. As well, the results showed that 50 samples sufficed 
to provide almost as good a model as possible. Globally, the three proposed analyses 
provided equivalent results, with GLM having a slight edge for fewer classes and isodar 
being better for greater numbers of classes.

When devising the demographic simulations, my expectations were that analyses 
would depend on the individuals’ ability to assess their surrounding environment and 
crowding and to settle in cells that would provide them with the best fitness. Unexpect-
edly, none of the parameters I used to influence species’ behavior affected analytical 
results. Even the isodar approach, which is based on the premise that individuals actively 
select one of several known sites, was not affected. It appears then that the carrying-ca-
pacity signal persisted in spite of strong regional stochasticity.

Overall, the methods tended to perform best with a moderate number of habitat class-
es. This probably stems from the exponential relationship between habitat suitability and 
carrying capacity. Because classes had equal width on the HS scale, the higher number 
of habitat classes grouped cells that had a more diverse relative capacity than the lower 
classes (e.g., compare panels C2 and C5 with panel B in Fig. 2). Thus, as the number of 
classes increased, each one grouped more homogeneous cells and thus allowed a higher 
accuracy to be reached. With real data, the relationships between HS and carrying capac-
ity would not always be linear, which would create the same problem. Therefore, HS 
classes should be defined carefully. The common practice of defining equal-sized classes 
should be avoided whenever possible and data-driven reclassification used instead (e.g., 
see Hirzel et al., 2006; Hirzel and Le Lay, 2008).

The GLM analysis failed with 10 habitat classes. This was due to the quadratic model 
being unable to fit the exponential HS-carrying capacity relationship. This relationship 
was masked at low class numbers, likely for reasons suggested above, and it could be 
sufficiently well approached by linear or parabolic curves (although an increase in the 
MEC was evident with five and eight classes, Fig. 4). Of course, it would have been 
possible to fit an exponential curve with the GLM. Indeed, with real data, the actual HS-
carrying capacity link would be unknown and thus the GLM could suffer from the same 
problem because it tries to fit a parametric curve to the whole series of densities, while 
the isodar works on individual pairs of habitats.

In contrast, the Maximum approach takes each habitat class in isolation. This ap-
proach appears slightly less accurate than the GLM and the Isodar methods with large 
numbers of habitat classes. It is too sensitive to extreme events of stochastic density 
variations. During preliminary analyses, I tested a similar approach that was based on 
the 90th percentile but it performed in a manner similar to the Maximum method (data 
not shown).

The GLM and Maximum methods were highly robust to uncertainty in the recorded 
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abundances. This is because these methods are based on relative rather than absolute 
values. Adding noise does not change the relationships statistically and thus had little 
effect. Only environment-dependent sampling efficiency (e.g., if the species is easier to 
observe or trap in meadows than in forests) could change the results as it would distort 
the relationships among the suitability classes. The Isodar method was more sensitive to 
noise, in particular at low sample size (<100 site pairs), because it is based on the rela-
tion between pair abundances. If the noise affects both elements of a pair independently 
(as it was implemented here) the relationship may be strongly disturbed. In reality, the 
noise may not be independent. For instance, the two sites of a close pair may have been 
investigated by the same observer, or under the same sampling conditions. Nevertheless, 
I would recommend using the Isodar method only with large or noise-free data sets.

Some issues require further investigation. In this study, the HS map was supposed 
to be perfectly known. However, in real situations, it would suffer from some level of 
uncertainty. The main effect would be to prevent the use of a high number of habitat 
classes. With few, wide HS classes (e.g., two to four classes), the uncertainties would be 
negligible. Therefore, I expect that using real HS maps would not change the outcome 
predicted by the simulations with low class numbers. Determining how relative capacity 
is related to carrying capacity and how regional stochasticity affects relative capacity 
also warrant additional assessment. Finally, it remains to test these analyses on real data, 
for instance, by comparing populations of flying versus crawling insects.

The relative capacity approach requires two independent surveys. First, a broad-scale 
survey of species’ occurrences over the whole study area provides data needed to build 
an accurate HS map. Second, this map is used to define a smaller-scale survey of spe-
cies density in various habitat classes, providing data for the relative capacity analysis. 
The computation of HS maps on the basis of occurrence data—either presence/absence 
or presence only—is a mature field, and numerous HS modeling methods have been 
devised and tested (Guisan and Zimmermann, 2000; Pearce and Boyce, 2006; Peterson, 
2006; Soberón, 2007). It is comparatively much easier to collect occurrence data than 
abundance/density data over broad, heterogeneous areas. Occurrence data could even 
come from museums, atlases, or online databases (Reutter et al., 2003; Soberón and 
Peterson, 2004; Gaubert et al., 2006). This approach can be thought of as a hierarchical 
process: the HS model provides a first assessment, which is then refined by collecting 
more-focused data. As for the isodar approach, replacing time series by spatial data also 
allows for shorter studies that could be completed in one or two seasons. An alternative 
approach would consist of dividing the study area into expert-based habitat classes, and 
conducting abundance/density surveys in each class. Then, density data could be used 
in a relative capacity analysis.

Relative capacity may be a useful measure for allowing ecologists to compare quan-
titatively the demographic value of different habitat classes. Moreover, as it is in effect 
an areal unit (expressed in m–2), it can be added up over all cells of a region to estimate 
regional relative carrying capacity. Eventually, the third step of the hierarchical process 
would consist of measuring precisely the absolute areal carrying capacity (measured in 
individuals/m2 or territories/m2) of a few habitat classes. If relative capacity is linearly 
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related to actual carrying capacity, then it would be theoretically sufficient to compute 
the proportionality coefficient (α). In practice, it would be safer to measure it over 
several habitat classes to get several estimations of this coefficient, and to verify the 
linearity of the relationship.

Relative capacity analyses proposed here provide a promising way of predicting 
habitat quality using habitat suitability maps and a limited number of focused abun-
dance/density surveys. It should thus provide a valuable tool to field ecologists and 
wildlife managers. However, to determine their full utility, these approaches should be 
tested against field data and linked with direct measures of fitness (e.g., survival, repro-
ductive success).
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