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Abstract

This paper investigates whether an overconfident player is more likely to win a

competition against a rational player. The two players are identical, except that the

overconfident player overestimates his productivity of effort and, as a consequence,

his probability of winning. The competition can take the form of either a tournament

or a contest. The paper shows that the overconfident player is the Nash winner (loser)

of a tournament with monotonic best responses when his effort and overconfidence

are complements (substitutes). The overconfident player is the Nash winner (loser) of

a tournament with non-monotonic best responses when he is slightly (significantly)

overconfident. In contrast, the overconfident player is always the Nash loser of a

contest. The paper also discusses the welfare implications of overconfidence.
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1 Introduction

This paper investigates whether overconfident players are more likely to win compet-

itions. This question is of relevance since evidence from psychology and economics

shows that humans tend to be overconfident. A majority of people believe they are

better than others in a wide variety of positive traits and skills (Myers 1996, Santos-

Pinto and Sobel 2005). Examples include car drivers (Svenson 1981), entrepreneurs

(Cooper et al. 1988), judges (Guthrie et al. 2001), CEOs (Malmendier and Tate

2005, 2008), fund managers (Brozynski et al. 2006), currency traders (Oberlechner

and Osler 2008), poker and chess players (Parker and Santos-Pinto 2010), CFOs

(Ben-David et al. 2013), marathon runners (Krawczyk and Wilamowski 2017), free-

divers (Lackner and Sonnabend 2020), and truck drivers (Hoffman and Burks 2020).

Competitions often take the form of tournaments and contests. For example,

sports like soccer, tennis, chess, and poker are organized as tournaments. In labor

markets, firms often use tournaments to incentivize effort provision—a bonus or free

vacation for the top salesperson—and to promote employees—workers compete to be-

come managers and managers to become CEOs (Malcomson 1986, Gibbons and

Murphy 1990, Baker et al. 1994, Murphy et al. 2004, Harbring and Lünser 2008).

An R&D race to be the first to develop or get a patent in new product or technology,

election campaigns, rent-seeking games, competitions for monopolies, litigation, and

wars, are examples of contests.1 Overconfidence matters for entry and performance

in competitions and for labor markets (Camerer and Lovallo 1999, Niederle and

Vesterlund 2007, Moore and Healy 2008, Malmendier and Taylor 2015, Huffman et

al. 2019, Santos-Pinto and de la Rosa 2020). Overconfidence also seems to play a

1The main difference between a tournament and a contest is that the winning probabilities in

a contest are defined by a contest success function. For example, in a standard two player Tullock

(1980) contest, player i’s winning probability is Pi(ai, aj) = ari /(a
r
i+a

r
j), with r > 0. The parameter

r captures the degree of noise in the Tullock contest. The higher is r, the more sensitive is the

success probability to effort. When r = 0 effort plays no role and each player always has a success

probability of 1/2. The most popular versions of the Tullock contest are the lottery (r = 1) and

the first-price all-pay auction (r =∞).
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role in mate competition and acquisition (Waldman 1994, Murphy et al. 2015).

To determine whether overconfident players are more likely to win competitions I

consider tournaments and contests where an overconfident player competes against a

rational player. Each player chooses an effort level independently and simultaneously.

Effort plus random factors determine who produces the highest output or who at-

tains the best performance. The overconfident player overestimates his productivity

of effort and, as a consequence, his winning probability. The rational player knows

about the overconfident player’s bias and optimally reacts to it. Both players have

identical productivity, preferences, outside options, and face identical random shocks.

These symmetry assumptions allow me to focus exclusively on the role that the het-

erogeneity in beliefs plays in determining the winner of the competition. Moreover,

they imply that the player who exerts the highest effort has the highest winning

probability. I define as the Nash winner (loser) the player with the highest (lowest)

probability of winning at the pure-strategy equilibrium.

I distinguish two kind of tournaments: monotone and non-monotone. The former

describe situations where best responses are monotonic. For example, when efforts

are strategic complements, each player best responds in a monotone increasing way

to an increase in the rival’s effort (e.g., Nalebuff and Stiglitz 1983, Santos-Pinto

2010). Similarly, when efforts are strategic substitutes, each player best responds in

a monotone decreasing way to an increase in the rival’s effort. Non-monotone tour-

naments describe situations where best responses are non-monotonic. For example,

given low effort of the rival, a player reacts to an increase in effort of the rival by

increasing effort but, given high effort of the rival, a player reacts to an increase

in effort of the rival by decreasing effort (e.g., Lazear and Rosen 1981, Green and

Stokey 1983, Akerlof and Holden 2012).

I start by considering monotone tournaments. Proposition 1 shows that the

overconfident player is the Nash winner of a monotone tournament when his effort and

overconfidence are complements. In this case, the overconfident player overestimates

his marginal probability of winning the tournament and hence exerts higher effort
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than the rational player. In contrast, Proposition 2 shows that the overconfident

player is the Nash loser of a monotone tournament when his effort and overconfidence

are substitutes. In this case, the overconfident player underestimates his marginal

probability of winning the tournament and hence exerts lower effort than the rational

player. These two results hold regardless of whether players’ efforts are strategic

complements or substitutes.

Propositions 1 and 2 carry welfare implications. Overconfidence makes the prin-

cipal better off in monotone tournaments where efforts are strategic complements

and where there is complementarity between effort and overconfidence: both players

exert more effort than if both were rational. In this case, the principal would not

want to de-bias the overconfident player. In contrast, overconfidence makes the prin-

cipal worse off in monotone tournaments where efforts are strategic complements and

where there is substitutability between effort and overconfidence: both players exert

less effort than if both were rational. In this case, the principal would want to de-bias

the overconfident player. Overconfidence can make the overconfident player better

offwhen it lowers the effort of the rational player but always makes the overconfident

player worse offwhen it raises the effort of the rational player. The rational player is

worse off (better off) when there is complementarity (substitutability) between effort

and overconfidence.

Next, I consider non-monotone tournaments. Proposition 3 shows the overcon-

fident player is the Nash winner of a non-monotone tournament when he is slightly

overconfident and the Nash loser when he is significantly overconfident. The intuition

behind this result is as follows. If the overconfident player is slightly overconfident,

he overestimates his marginal probability of winning the tournament. This raises

the effort of the overconfident player and lowers the effort of the rational player. In

contrast, if the overconfident player is significantly overconfident, he underestimates

his marginal probability of winning the tournament. This lowers the effort of both

players but more so that of the overconfident player. I also show that a significantly

overconfident player thinks, mistakenly, he is the Nash winner of a non-monotone
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tournament even if he anticipates he will exert less effort than his rival.

Proposition 3 has welfare implications. The principal is better off (worse off)

with a slightly overconfident when his increase in effort is greater (smaller) than the

decrease in effort of the rational player. The principal is worse off with a signific-

antly overconfident since both players exert less effort than if both were rational.

Overconfidence can make a slightly overconfident player better off but always makes

a significantly overconfident player worse off. The rational player is worse off (better

off) when the overconfident player is slightly (significantly) overconfident.

Finally, I consider contests. I study a generalized Tullock contest where player i’s

winning probability is Pi(ai, aj) = q(ai)/[q(ai)+q(aj)], with q′(ai) > 0. The function

q(ai) is the impact function. I assume the overconfident player 1 thinks, mistakenly,

his impact function is λq(a1), where λ > 1, and thinks, correctly, his rival’s impact

function is q(a2). Hence, the overconfident player’s perceived winning probability is

P1(a1, a2, λ) = λq(a1)/[λq(a1) + q(a2)].2 Proposition 4 shows that the overconfident

player is always the Nash loser of a generalized Tullock contest. I also show that an

overconfident player thinks, mistakenly, he is the Nash winner of the contest even

if he anticipates he will exert less effort than his rival. In addition, I show that

the overconfident player makes the contest less competitive since both players exert

less effort than if both were rational. Hence, the contest organizer would prefer

to de-bias the overconfident player. Overconfidence has an ambiguous effect of the

overconfident player’s welfare. Overconfidence makes the rational player better off

since she exerts less effort and has a higher winning probability than if both players

were rational.

The paper is organized as follows. Section 2 discusses related literature. Section 3

sets-up the tournament model. Sections 4 and 5 derive the results for monotone and

non-monotone tournaments, respectively. Section 6 sets-up and derives the results

for contests. Section 7 concludes the paper. All proofs are in the Appendix.

2Section 6 shows that this way of modeling overconfidence in a contest satisfies four desirable

properties.
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2 Related Literature

This study relates to several strands of literature. First, it contributes to the growing

literature on overconfidence and competitions. This literature shows that overcon-

fidence matters for entry and performance in competitions. Camerer and Lovallo

(1999) show that participants in market entry experiments who overplace them-

selves are more likely to self-select into markets where rewards depend on relative

performance. Niederle and Vesterlund (2007) show experimentally that gender dif-

ferences in overplacement can lead to gender differences in choice of compensation

scheme. Despite there being no gender differences in performance, 73 percent of

the men select to enter a tournament but only 35 percent of the women make this

choice. The gender gap in tournament entry is driven by two factors. First, men

have a stronger preference for competing than women. Second, men are substantially

more overconfident about their relative performance than women. Dohmen and Falk

(2011) find that experimental participants are more likely to select into tournaments

the more they overplace themselves. Huffman et al. (2019) find that managers of

a chain of food-and-beverage stores who compete repeatedly in high-stakes tourna-

ments overplace themselves relative to a range of different predictors obtained from

past tournament outcomes.

Second, this study contributes to the literature on tournaments. Several stud-

ies have analyzed tournaments with heterogeneous competitors. Lazear and Rosen

(1981) show that heterogeneity in effort costs leads to ineffi cient tournament out-

comes. Shotter and Weigelt (1992) study the impact of equal opportunity laws and

affi rmative actions on effort provision. They find that policies that increase the

probability of winning for disadvantaged (high cost) players reduce the effort they

exert when heterogeneity is low but increase the effort exerted by both advantaged

and disadvantaged players when heterogeneity is high. Harbring and Lünser (2008)

show that an increase in the price spread raises effort provision in a tournament with

heterogeneous competitors and that, for larger prize spreads, weaker competitors

exert higher effort than in a tournament with identical competitors. Gürtler and
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Kräkel (2010) show that ineffi ciencies can arise if the principal sets uniform prizes

(i.e., prizes that are independent from players’identity) in a tournament with het-

erogeneous competitors while effi cient effort provision can be induced if the principal

sets individualized prizes. In this paper I consider tournaments where competitors

differ in their beliefs about their productivity of effort. More precisely, I focus on

two player tournaments where an overconfident player competes against a rational

player.

The most closely related studies in the literate on tournaments are Goel and

Thakor (2008) and Santos-Pinto (2010). Goel and Thakor (2008) study promotion

tournaments where overconfident and rational managers compete against each other.

They assume that overconfident managers underestimate the risk of their projects.

They find that overconfident managers have a higher likelihood of being promoted

to CEO than rational ones. My results differ from those in Goel and Thakor (2008)

due to two reasons. First, I assume an overconfident manager overestimates his

productivity of effort instead of underestimating the risk of his project. Second, I

assume managers compete by choosing effort instead of risk exposure. My results

imply that an overconfident manager has a higher (lower) probability of being pro-

moted to CEO than a rational manager in a monotone tournament when his effort

and overconfidence are complements (substitutes). I also find that a slightly (signi-

ficantly) overconfident manager has a higher (lower) probability of being promoted

to CEO than a rational manager in a non-monotone tournament.

Santos-Pinto (2010) studies tournaments where all workers equally overestimate

their productivity of effort. The main finding is that firms can be better off with

an overconfident workforce if they wisely structure tournament prizes. If workers’

effort and overconfidence are complements, the firm can implement the same effort

with lower prizes or obtain a higher outcome for the same prizes. If workers’effort

and overconfidence are substitutes, the firm needs to raise the power of incentives

to implement the same effort level in a tournament with an overconfident workforce

as in one with a workforce with correct beliefs. My results extend and go beyond
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those in Santos-Pinto (2010) building on the same definition of overconfidence in a

tournament but allowing for heterogeneity in beliefs.

Third, this study contributes to the literature on contests. Several studies have

analyzed contests with heterogeneous competitors. Baik (1994) studies two player

contests where the players differ in their valuation of the prize and in their marginal

productivity of effort. He provides conditions under which the player who values the

prize the most or the most productive player is the Nash winner or loser of the contest.

Singh and Wittman (2001) show that when players differ in marginal productivity

of effort, output increases in ability, and effort provision decreases in effort costs.

In this paper I consider contests where players differ in their beliefs about their

productivity of effort. Stein (2002) considers a contest with N heterogeneous players

and determines the number of active players, that is, those who exert positive effort.

In this paper I consider contests where the contestants have heterogeneous beliefs

about their winning probabilities. More precisely, I focus on two player contests

where an overconfident player competes against a rational player.

The most closely related studies in the literature on contests are Ando (2004),

Krähmer (2007), and Ludwig et al. (2011). Ando (2004) studies a two player con-

test where players are uncertain about their types which represent the monetary

value of winning the contest. All players are overconfident and two definitions of

overconfidence are considered. An overconfident player can either overestimate his

own type or, alternatively, underestimate his rival’s type. Ando (2004) finds that

an overconfident player who overestimates his own type always exerts more effort.

In contrast, an overconfident player who underestimates his rival’s type might exert

less effort. My results on contests differ from those in Ando (2004) since I define an

overconfident player as someone who overestimates his winning probability instead

of his monetary value of winning the contest. My definition is adequate in contests

where the monetary value is known before entry.

Krähmer (2007) considers a repeated contest where players are uncertain about

their true relative abilities but learn them over time. players can exert either high
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or low effort and effort and ability are complements. Krähmer (2007) shows that

whenever the players’belief that one of them is the less able player is suffi ciently

large, this player chooses low effort and the other player chooses high effort. A player

who overestimates his relative ability will, due to complementarity, tends to choose

high effort, resulting in a higher number of actual successes. Increased successes, in

turn, promotes the player’s self-confidence further. At the same time, a player who

underestimates his relative ability becomes discouraged and, as a result, ever less

self-confident.

Ludwig et al. (2011) analyze a Tullock contest where an overconfident player

competes against a rational player. They assume the overconfident player underes-

timates his cost of effort. They find that the overconfident player exerts more effort

and the rational player exerts less effort than if both were rational. They also find

that the bias makes the principal better off since the overconfident player’s increase

in effort more than compensates the rational player’s decrease in effort. My results

on contests differ from those in Ludwig et al. (2011) since I define an overconfident

player has someone who overestimates his winning probability instead of underes-

timating his cost of effort. My definition is adequate in contests where the cost of

effort is known before entry.

3 Set-up

Consider two players, 1 and 2, competing in a tournament. The player who produces

the highest output receives the winner’s prize yW and the other player receives the

loser’s prize yL, with 0 < yL < yW . Winning or losing the tournament, and thus

individual prizes, depend on the relative performance of the players and not on their

absolute performance.

The two players have an identical productivity of effort, utility function, and

outside option. However, they differ from one another in terms of the perception of

their own productivity. player 1 is overconfident as he overestimates his productivity

9



of effort. player 2 is rational as she has an accurate perception of her productivity

of effort. player 1 is not aware of being overconfident while player 2 is aware that

player 1 is overconfident. Finally, both players correctly assess their utility functions

and their outside options.

The players are weakly risk averse and expected utility maximizers and have von

Neumann-Morgenstern utility functions that are separable in income (yi) and effort

(ai):

Ui(yi, ai) = u(yi)− c(ai),

for i = 1, 2. I assume u and c are twice differentiable with u′ > 0, u′′ ≤ 0, c′ > 0,

c′′ > 0, c(0) = 0, c′(0) = 0, and c(ai) =∞, for ai →∞, where the last two conditions
ensure that equilibrium effort is strictly positive but finite. The two players have

outside options which guarantee each ū; so unless the perceived expected utility

from participation is at least equal to ū, players will not be willing to participate.

Income yi is equal to yW if player i wins the tournament and to yL if player i loses

the tournament.

The output of player i is a stochastic function of effort. Each level of effort of

player i induces a distribution over output given by

Fi(qi|ei(ai, ω)),

for i = 1, 2. Here ei(ai, ω) defines player i’s productivity as a function of effort ai and

the common shock ω. Individual productivity strictly increases in effort i.e., e′i > 0,

and marginal productivity is subject to diminishing returns to effort.

As mentioned, player 1 is overconfident and overestimates his productivity whereas

player 2 is rational. player 1’s perceived productivity of effort is

e1 = e1(a1, ω, λ)

where λ > 1 is a parameter that captures player 1’s overconfidence. Given player 1’s

perceived productivity of effort, his perceived distribution over output is

F1(q1|e1(a1, ω, λ)).
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In the case of player 1, who is overconfident, F1(q1|e1(a1, ω, λ)) first order stochastic-

ally dominates F1(q1|e1(a1, ω)) for all levels of effort a1: for each level of effort ex-

erted, player 1 believes that she is more likely to produce a higher level of output

than he actually does. player 2 has an accurate perception of her own productivity

e2 = e2(a2, ω) and thus her perceived and actual distribution over output coincide at

F2(q2|e2(a2, ω)). This implies that F1(q1|e1(a1, ω, λ)) first order stochastically dom-

inates F2(q2|e2(a2, ω)) when a1 = a2. That is, player 1 believes that he is more likely

to produce a higher level of output than player 2 when the two players exert the

same effort.

player 1’s perceived probability of winning the tournament is

Pr(Q̃1 ≥ q2) = 1− Pr(Q̃1 ≤ q2) = 1− F1(q2|e1(a1, ω, λ)),

and his unconditional perceived probability of winning the tournament is

P1(a1, a2, λ) = Pr(Q̃1 ≥ Q2) =

∫
[1− F1(q2|e1(a1, ω, λ))]f2(q2|e2(a2, ω))∂q2.

player 2’s probability of winning the tournament is

Pr(Q2 ≥ q1) = 1− Pr(Q2 ≤ q1) = 1− F2(q1|e2(a2, ω)),

and her unconditional probability of winning the tournament is

P2(a1, a2) = Pr(Q2 ≥ Q1) =

∫
[1− F2(q1|e2(a2, ω))]f1(q1|e1(a1, ω))∂q1.

player 1’s perceived expected utility is

E[U1(a1, a2, λ)] = u(yL) + P1(a1, a2, λ)∆u− c(a1),

and player 2’s objective expected utility is

E[U2(a1, a2)] = u(yL) + P2(a1, a2)∆u− c(a2),

where ∆u = u(yW )− u(yL).
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The principal is risk neutral and correctly assesses the players’productivity. The

principal’s profits are the difference between expected benefits and compensation

costs:

E[π] = E[Q1 +Q2]− (yL + yW ).

The timing of the events is as follows. The principal commits to a prize schedule. The

players decide whether or not to participate. All players who agree to participate ob-

serve the realization of a common shock and then simultaneously and independently

choose their effort levels. The principal observes the players’output realizations and

awards the prizes according to the prize schedule.

4 Monotone Tournaments

This section studies monotone tournaments where an overconfident player competes

against a rational player. To understand whether an overconfident player has a higher

or a lower probability of winning a tournament we need to determine the impact of

overconfidence on the pure-strategy equilibrium efforts of the overconfident player

and the rational rival.

The pure-strategy equilibrium efforts are the solution to the first-order conditions:

∂E[U1(a1, a2, λ)]

∂a1

=
∂P1(a1, a2, λ)

∂a1

∆u− c′(a1) = 0,

and
∂E[U2(a1, a2)]

∂a2

=
∂P2(a1, a2)

∂a2

∆u− c′(a2) = 0.

The second-order conditions are

∂2E[U1(a1, a2, λ)]

∂a2
1

< 0 and
∂2E[U2(a1, a2)]

∂a2
1

< 0. (1)

I assume the second-order conditions are satisfied. I also assume the tournament has

a unique pure-strategy Nash equilibrium. A suffi cient condition for this to hold is
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that the derivatives of the players’best responses are less than 1 in absolute value

over the relevant range.3 Thus,∣∣∣∣∂2E[U1(a1, a2, λ)]

∂a2
1

∣∣∣∣ > ∣∣∣∣∂2E[U1(a1, a2, λ)]

∂a1∂a2

∣∣∣∣ and ∣∣∣∣∂2E[U2(a1, a2)]

∂a2
2

∣∣∣∣ > ∣∣∣∣∂2E[U2(a1, a2)]

∂a1∂a2

∣∣∣∣ .
(2)

is a suffi cient condition for uniqueness. Finally, I assume the tournament has mono-

tonic best responses, that is, players’efforts are either strategic complements or sub-

stitutes over all effort levels. The assumption that efforts are strategic complements

represents tournaments where a player’s increase in effort makes it more desirable

for the rival to increase effort too. This happens when higher effort by a player raises

the rival’s marginal expected utility. In this case we have

∂2E[U1(a1, a2, λ)]

∂a1∂a2

=
∂2P1(a1, a2, λ)

∂a1∂a2

> 0 and
∂2E[U2(a1, a2)]

∂a1∂a2

=
∂2P2(a1, a2)

∂a1∂a2

> 0.

The assumption that efforts are strategic substitutes represents tournaments where

a player’s increase in effort makes it more desirable for the rival to lower effort. This

happens when higher effort by a player lowers the rival’s marginal expected utility.

In this case we have

∂2E[U1(a1, a2, λ)]

∂a1∂a2

=
∂2P1(a1, a2, λ)

∂a1∂a2

< 0 and
∂2E[U2(a1, a2)]

∂a1∂a2

=
∂2P2(a1, a2)

∂a1∂a2

< 0.

The unique pure-strategy equilibrium (a∗1, a
∗
2) satisfies the first-order conditions sim-

ultaneously and is given by:

∂P1(a∗1, a
∗
2, λ)

∂a1

∆u = c′(a∗1), (3)

and
∂P2(a∗1, a

∗
2)

∂a2

∆u = c′(a∗2). (4)

3A suffi cient condition for the pure strategy Nash equilibrium to be unique is that best responses

intersect only once.
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The impact of overconfidence on the pure-strategy equilibrium efforts can be obtained

from (3) and (4). Differentiation of (3) and (4) gives us4

∂a∗1
∂λ

= − 1

D∗

[
∂2P2(a∗1, a

∗
2)

∂a2
2

∆u− c′′(a∗2)

]
∂2P1(a∗1, a

∗
2, λ)

∂a1∂λ
∆u, (5)

and
∂a∗2
∂λ

=
1

D∗
∂2P2(a∗1, a

∗
2)

∂a1∂a2

∂2P1(a∗1, a
∗
2, λ)

∂a1∂λ
(∆u)2, (6)

where

D∗ =

[
∂2P1(a∗1, a

∗
2, λ)

∂a2
1

∆u− c′′(a∗1)

] [
∂2P2(a∗1, a

∗
2)

∂a2
2

∆u− c′′(a∗2)

]
−∂

2P1(a∗1, a
∗
2, λ)

∂a1∂a2

∂2P2(a∗1, a
∗
2)

∂a1∂a2

(∆u)2. (7)

The sign of the two terms inside square brackets in (7) is strictly negative given

the second-order conditions. Note that (2) and (7) imply D∗ > 0.

It follows from (1), (2), (5), and (7) that the relation between player 1’s equi-

librium effort and overconfidence only depends on the sign of ∂2P1(a∗1, a
∗
2, λ)/∂a1∂λ,

that is, how overconfidence influences player 1’s perceived marginal probability of

winning the tournament. If effort and overconfidence are complements, that is,

∂2P1(a1, a2, λ)/∂a1∂λ > 0, then an increase in overconfidence raises player 1’s per-

ceived marginal probability of winning the tournament and player 1’s effort. If player

1’s effort and overconfidence are substitutes, that is, ∂2P1(a1, a2, λ)/∂a1∂λ < 0, then

an increase in overconfidence lowers player 1’s perceived marginal probability of win-

ning the tournament and player 1’s effort.

It follows from (1), (2), (6), and (7) that the relation between player 2’s equilib-

rium effort and player 1’s overconfidence depends on the signs of ∂2P1(a∗1, a
∗
2, λ)/∂a1∂λ

and ∂2P2(a∗1, a
∗
2)/∂a1∂a2. The sign of ∂2P2(a∗1, a

∗
2)/∂a1∂a2 is determined by the

nature of the strategic relation between the players’efforts. When efforts are strategic

complements (substitutes), the sign of ∂2P2(a∗1, a
∗
2)/∂a1∂a2 is positive (negative).

4The derivation can be found in the Appendix.
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My first result characterizes the impact of overconfidence on the pure-strategy

equilibrium winning probabilities and efforts in a monotone tournament when player

1’s effort and overconfidence are complements. I define as the Nash winner (loser)

the player with the higher (lower) probability of winning the tournament at the

pure-strategy equilibrium.

Proposition 1: The overconfident player is the Nash winner of a monotone tour-

nament when his effort and overconfidence are complements, i.e., P1(a∗1, a
∗
2) > 1/2 >

P2(a∗1, a
∗
2) when ∂2P1(a1, a2, λ)/∂a1∂λ > 0. If efforts are strategic complements,

then both players exert more effort than if both were rational, with the overconfid-

ent player exerting the greatest effort. Furthermore, an increase in overconfidence

raises the effort of both players and more so that of the overconfident player, i.e.,

∂a∗1/∂λ > ∂a∗2/∂λ > 0. If efforts are strategic substitutes, then the overconfident

player exerts more effort and the rational player exerts less effort than if both were

rational. Furthermore, an increase in overconfidence raises the effort of the overcon-

fident player and lowers that of the rational player, i.e., ∂a∗1/∂λ > 0 > ∂a∗2/∂λ.

Proposition 1 tells us that an overconfident player has a higher probability of win-

ning a monotone tournament when his effort and overconfidence are complements.

The intuition behind this result is as follows. When effort and overconfidence are

complements, an increase in overconfidence raises the overconfident player’s perceived

marginal probability of winning the tournament. This, in turn, raises the overcon-

fident player’s effort. When efforts are strategic complements, the rational player’s

optimal response to the higher effort of the overconfident player is to raise her effort.

However, the increase in effort of the rational player is less pronounced than that of

the overconfident player. When efforts are strategic substitutes, the rational player’s

optimal response to the higher effort of the overconfident player is to lower her effort.

One way or the other, the overconfident player exerts higher effort than the rational

player and therefore has a higher probability of winning the tournament.

When effort and overconfidence are complements, individuals with higher beliefs

about their abilities work harder. Chen and Schildberg-Hörisch (2019) find exper-
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imental support for this assumption using a real effort task. They also show that

informing individuals about their true abilities lowers effort provision which further

reinforces the idea that overconfidence and effort are complements. However, whether

this assumption holds generally is unclear. It might just as well the case that indi-

viduals with higher beliefs about their abilities exert less effort, that is, effort and

overconfidence are substitutes.

My second result characterizes the impact of overconfidence on the pure-strategy

equilibrium winning probabilities and efforts in a monotone tournament when player

1’s effort and overconfidence are substitutes.

Proposition 2: The overconfident player is the Nash loser of a monotone tour-

nament when his effort and overconfidence are substitutes, i.e., P1(a∗1, a
∗
2) < 1/2 <

P2(a∗1, a
∗
2) when ∂2P1(a1, a2, λ)/∂a1∂λ < 0. If efforts are strategic complements,

then both players exert less effort than if both were rational, with the overconfid-

ent player exerting the least effort. Furthermore, an increase in overconfidence

lowers the effort of both players and more so that of the overconfident player, i.e.,

∂a∗1/∂λ < ∂a∗2/∂λ < 0. If efforts are strategic substitutes, then the overconfident

player exerts less effort and the rational player exerts more effort than if both were

rational. Furthermore, an increase in overconfidence lowers the effort of the over-

confident player and raises that of the rational player, i.e., ∂a∗1/∂λ < 0 < ∂a∗2/∂λ.

Proposition 2 shows that an overconfident player has a lower probability of win-

ning a monotone tournament when his effort and overconfidence are substitutes. In

this case, an increase in overconfidence lowers the overconfident player’s perceived

marginal probability of winning the tournament. This, in turn, lowers the overcon-

fident player’s effort. When efforts are strategic complements, the rational player’s

optimal response to the lower effort of the overconfident player is to lower her effort.

However, the decrease in effort of the rational player is less pronounced than that of

the overconfident player. When efforts are strategic substitutes, the rational player’s

optimal response to the lower effort of the overconfident player is to increase her

effort. Since the overconfident player exerts lower effort than the rational player in
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either case, he has a lower probability of winning the tournament.

Propositions 1 and 2 carry welfare implications. Overconfidence makes the prin-

cipal better off when efforts are strategic complements and there is complementarity

between effort and overconfidence: both players exert more effort than if both were

rational. In this case, the principal would not want to de-bias the overconfident

player. In contrast, overconfidence makes the principal worse off when efforts are

strategic complements and there is substitutability between effort and overconfid-

ence: both players exert less effort than if both were rational. In this case, the

principal would want to de-bias the overconfident player. When efforts are strategic

substitutes, one player exerts more effort and the other player exerts less effort so

the impact of overconfidence on the principal’s welfare is ambiguous.

To evaluate the welfare implications of overconfidence for the overconfident player

I take the perspective of an outside observer who knows the overconfident player’s

true productivity (knows that λ = 1). I consider how the overconfident player’s

equilibrium objective expected utility E [U1(a∗1, a
∗
2)] = u(yL) + P1(a∗1, a

∗
2)∆u − c(a∗1)

changes with λ:

∂E [U1(a∗1, a
∗
2)]

∂λ
=

[
∂P1(a∗1, a

∗
2)

∂a1

∂a∗1
∂λ

+
∂P1(a∗1, a

∗
2)

∂a2

∂a∗2
∂λ

]
∆u− c′(a∗1)

∂a∗1
∂λ

=

[
∂P1(a∗1, a

∗
2)

∂a1

− ∂P1(a∗1, a
∗
2, λ)

∂a1

]
∂a∗1
∂λ

∆u+
∂P1(a∗1, a

∗
2)

∂a2

∂a∗2
∂λ

∆u,(8)

where the second equality follows from the first-order condition of the overconfident

player. The first term on the right-hand side of (8) is the direct effect and the

second term is the strategic effect. The direct effect is always negative because

the overconfident player fails to play a best response against his rival.5 Given that

5When effort and overconfidence are complements, player 1’s marginal perceived probability of

winning the tournament is higher than his actual marginal probability. Hence, the term inside

square brakets in (8) is negative. Furthermore, an increase in λ raises the effort of the overconfident

player, i.e., ∂a∗1/∂λ > 0. Hence, an increase in λ has an unfavorable direct effect when effort and

overconfidence are complements. When effort and overconfidence are substitutes, player 1’s mar-

ginal perceived probability of winning the tournament is lower than his actual marginal probability.
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∂P1(a∗1, a
∗
2)/∂a2 < 0, the sign of the strategic effect is negative when ∂a∗2/∂λ > 0

and positive when ∂a∗2/∂λ < 0. Hence, an increase in overconfidence always makes

the overconfident player worse off when it raises the effort of the rational player.

However, an increase in overconfidence can make the overconfident player better off

when it lowers the effort of the rational player. This happens when the strategic

effect dominates the direct effect. These welfare results for the overconfident player

are in line with Heifetz et al. (2007).

To evaluate the welfare implications of overconfidence for the rational player I

consider how her equilibrium expected utility E [U2(a∗1, a
∗
2)] changes with λ:

∂E [U2(a∗1, a
∗
2)]

∂λ
=

[
∂P2(a∗1, a

∗
2)

∂a1

∂a∗1
∂λ

+
∂P2(a∗1, a

∗
2)

∂a2

∂a∗2
∂λ

]
∆u− c′(a∗2)

∂a∗2
∂λ

=
∂P2(a∗1, a

∗
2)

∂a1

∂a∗1
∂λ

∆u,

where the second equality follows from the first-order condition of the rational player.

The sign of the derivative ∂P2(a∗1, a
∗
2)/∂a1 is negative since an increase in the effort of

the overconfident player lowers the winning probability of the rational player. Hence,

an increase in overconfidence makes the rational player worse off when the sign of

∂a∗1/∂λ is positive, i.e., when overconfidence raises the effort of the overconfident

player. This happens when there is complementarity between effort and overconfid-

ence. In contrast, an increase in overconfidence makes the rational player better off

when the sign of ∂a∗1/∂λ is negative, i.e., when overconfidence lowers the effort of

the overconfident player. This happens when there is substitutability between effort

and overconfidence.

Hence, the term inside square brakets in (8) is positive. Furthermore, an increase in λ lowers the

effort of the overconfident player, i.e., ∂a∗1/∂λ < 0. Hence, an increase in λ also has an unfavorable

direct effect when effort and overconfidence are substitutes.
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5 Non-Monotone Tournaments

This section studies non-monotone tournaments where an overconfident player com-

petes against a rational player. I assume output is linearly additive in effort, an

idiosyncratic shock, and a common shock. That is, if player i exerts effort ai his

output is given by Qi = ai + εi + ω, where εi and ω are random variables with zero

mean. The random variables ε1 and ε2 are identically and independently distributed.

Additionally, ε1 and ε2 are independent of ω. This specification for output is chosen

for its analytical simplicity and is often used in the tournament literature (see Lazear

and Rosen 1981, Green and Stokey 1983, Akerlof and Holden 2012).

The overconfident player mistakenly perceives his stochastic production function

to be equal to Q̃1 = λa1 + ε1 +ω, with λ > 1. The rational player correctly perceives

her stochastic production function to be equal to Q2 = a2 + ε2 + ω. Under this spe-

cification, player 1’s overconfidence and effort are complements in generating output,

that is, ∂2Q1/∂a1∂λ > 0. In other words, under this specification an overconfident

player overestimates his total as well as his marginal productivity of effort.6

The overconfident player chooses the optimal effort level that maximizes his per-

ceived expected utility:

E[U1(a1, a2, λ)] = u(yL) + P1(a1, a2, λ)∆u− c(a1)

= u(yL) + Pr(Q̃1 ≥ Q2)∆u− c(a1)

= u(yL) + Pr(ε2 − ε1 ≤ a1λ− a2)∆u− c(a1)

= u(yL) +G(λa1 − a2)∆u− c(a1). (9)

The rational player chooses the optimal effort level that maximizes her objective

6An alternative specification would be Q̃1 = λ + a1 + ε1 + ω. Under this specification, player

1 overestimates his total productivity of effort while holding a correct assessment of his marginal

productivity of effort.
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expected utility:

E[U2(a1, a2)] = u(yL) + P2(a1, a2)∆u− c(a2)

= u(yL) + Pr(Q2 ≥ Q1)∆u− c(a2)

= u(yL) + Pr(ε2 − ε1 ≥ a1 − a2)∆u− c(a1)

= u(yL) + [1−G(a1 − a2)]∆u− c(a2). (10)

Since the difference between the random variables ε1 and ε2 will be crucial, I define

the random variable x = ε2 − ε1 with cumulative distribution function G(x) and

density g(x). I assume G(x) is continuous and twice differentiable. Because ε1 and

ε2 are identically distributed, g(x) is symmetric around zero. Additionally, g(x)

satisfies g′(x) > 0 for x < 0, and g′(x) < 0 for x > 0.7

The first-order conditions are

∂E[U1(a1, a2, λ)]

∂a1

= λg(λa1 − a2)∆u− c′(a1) = 0,

and
∂E[U2(a1, a2)]

∂a2

= g(a1 − a2)∆u− c′(a2) = 0.

The second-order conditions are

∂2E[U1(a1, a2, λ)]

∂a2
1

= λ2g′(λa1 − a2)∆u− c′′(a1) < 0, (11)

and
∂2E[U2(a1, a2)]

∂a2
2

= −g′(a1 − a2)∆u− c′′(a2) < 0, (12)

and

D =
∂2E[U1(a1, a2, λ)]

∂a2
1

∂2E[U2(a1, a2)]

∂a2
2

− ∂2E[U1(a1, a2, λ)]

∂a1∂a2

∂2E[U2(a1, a2)]

∂a1∂a2

=
[
λ2g′(λa1 − a2)∆u− c′′(a1)

]
[−g′(a1 − a2)∆u− c′′(a2)]

+λg′(λa1 − a2)g′(a1 − a2)(∆u)2 > 0. (13)

7For example, when ε1 and ε2 are normally distributed with mean 0 and variance σ2, then x

is normally distributed with mean 0 and variance 2σ2. When ε1 and ε2 are uniformly distributed

with mean 0, then x follows a triangular distribution with mean 0. See, e.g., Drago et al. (1996),

Hvide (2002), Chen (2003), among others.
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I assume throughout the second-order conditions (11), (12), and (13) are satisfied.

The pure-strategy Nash equilibrium (a∗1, a
∗
2) satisfies the two first-order conditions

simultaneously and is given by

λg(λa∗1 − a∗2)∆u = c′(a∗1), (14)

and

g(a∗1 − a∗2)∆u = c′(a∗2). (15)

The impact of overconfidence on the pure-strategy equilibrium efforts is obtained

from total differentiation of (14) and (15):8

∂a∗1
∂λ

=
1

D∗
[g′(a∗1 − a∗2)∆u+ c′′(a∗2)] [g(λa∗1 − a∗2) + λa∗1g

′(λa∗1 − a∗2)] ∆u, (16)

and
∂a∗2
∂λ

=
1

D∗
g′(a∗1 − a∗2) [g(λa∗1 − a∗2) + λa∗1g

′(λa∗1 − a∗2)] (∆u)2, (17)

where D∗ denotes D at (a∗1, a
∗
2). As we will see, the impact of overconfidence on the

pure-strategy equilibrium efforts depends on the size of player 1’s bias. The following

definition will prove helpful to characterize the magnitude of player 1’s bias.

Definition 1: player 1 is said to be slightly overconfident if

λ <
g(λa∗1 − a∗2)

−a∗1g′(λa∗1 − a∗2)
.

Conversely, player 1 is said to be significantly overconfident if

λ >
g(λa∗1 − a∗2)

−a∗1g′(λa∗1 − a∗2)
.

I denote the value of the threshold that determines whether player 1 is slightly or

significantly overconfident by λ̄. A necessary condition for λ̄ to be greater than 0 is

that g′(λa∗1−a∗2) < 0, or, equivalently, λa∗1 > a∗2. Furthermore, a necessary condition

for λ̄ to be greater than 1 is that g(λa∗1 − a∗2) + a∗1g
′(λa∗1 − a∗2) > 0.

8The derivation can be found in the Appendix.
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Proposition 3:

(i) The overconfident player is the Nash winner of a non-monotone tournament when

he is slightly overconfident, i.e., P1(a∗1, a
∗
2) > 1/2 > P2(a∗1, a

∗
2) when λ ∈ (1, λ̄]. In

this case, the overconfident player exerts more effort and the rational player exerts

less effort than if both were rational. Furthermore, an increase in overconfidence

raises the effort of the overconfident player and lowers that of the rational player,

i.e., ∂a∗1/∂λ > 0 > ∂a∗2/∂λ.

(ii) The overconfident player is the Nash loser a non-monotone tournament when he

is significantly overconfident, i.e., P1(a∗1, a
∗
2) < 1/2 < P2(a∗1, a

∗
2) when λ > λ̄. In this

case, both players exert less effort than if both were rational, with the overconfident

player exerting the least effort. Furthermore, an increase in overconfidence lowers the

efforts of both players and more so that of the overconfident player, i.e., ∂a∗1/∂λ <

∂a∗2/∂λ < 0.

In the pure-strategy Nash equilibrium, the overconfident player wins the tourna-

ment with probability P1(a∗1, a
∗
2) = G(a∗1−a∗2) and the rational player with probability

P2(a∗1, a
∗
2) = 1−G(a∗1−a∗2).When both players are rational (λ = 1), the tournament

is symmetric and the pure-strategy Nash equilibrium is a∗1 = a∗2 = a∗ where a∗ solves

g(0)∆u = c′(a∗). Symmetry of g(x) implies P1(a∗1, a
∗
2) = P2(a∗1, a

∗
2) = G(0) = 1/2.

Hence, when both players are rational, each is equally likely to win the tournament

(i.e., the winner is purely random).

Proposition 3 shows that in a non-monotone tournament the identity of the Nash

winner depends critically on the size of overconfident player’s bias. Part (i) tells

us that a slightly overconfident player exerts more effort than the rational player

and therefore is the Nash winner. In this case, the overconfident player believes,

mistakenly, he is slightly more productive than the rational player. This raises the

overconfident player’s perception of his marginal productivity of effort and leads him

to exert more effort. The rational player, knowing that the overconfident player be-

lieves he has a slight advantage, decides to lower her effort in response. Note that

a slightly overconfident player anticipates, correctly, he will be the Nash winner but
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overestimates his winning probability. In fact, the overconfident player’s perceived

probability of winning P1(a∗1, a
∗
2, λ) = G(λa∗1− a∗2) is greater than his objective prob-

ability of winning P1(a∗1, a
∗
2) = G(a∗1 − a∗2) since λ > 1.

Part (ii) tells us that a significantly overconfident player exerts less effort than

the rational player and therefore is the Nash loser. In this case, the overconfid-

ent player believes, mistakenly, he is significantly more productive than the rational

player. As a consequence, the overconfident player decides to lower his effort since

he perceives to have a large productivity advantage. The rational player, knowing

that the overconfident player will lower his effort also decides to lower her effort but

not as much as the overconfident player. Interestingly, even though a significantly

overconfident player anticipates, correctly, he will exert less effort than the rational

player, he anticipates, incorrectly, he will be the Nash winner. This happens be-

cause the overconfident player’s perceived probability of winning the tournament

P1(a∗1, a
∗
2, λ) = G(λa∗1 − a∗2) is greater than 1/2 (in equilibrium λa∗1 > a∗2) whereas

his objective probability of winning P1(a∗1, a
∗
2) = G(a∗1 − a∗2) is less than 1/2 (in

equilibrium a∗2 > a∗1).

Proposition 3 has welfare implications. The principal is better off (worse off)

with a slightly overconfident when his increase in effort is greater (smaller) than

the decrease in effort of the rational player. The principal is always worse off with

a significantly overconfident player since both players exert less effort than if both

were rational.

To evaluate the welfare implications for the overconfident player I consider how

his equilibrium objective expected utilityE [U1(a∗1, a
∗
2)] = u(yL)+G(a∗1−a∗2)∆u−c(a∗1)

changes with λ:

∂E [U1(a∗1, a
∗
2)]

∂λ
= g(a∗1 − a∗2)∆u

(
∂a∗1
∂λ
− ∂a∗2
∂λ

)
− c′(a∗1)

∂a∗1
∂λ

= [g(a∗1 − a∗2)− λg(λa∗1 − a∗2)] ∆u
∂a∗1
∂λ
− g(a∗1 − a∗2)∆u

∂a∗2
∂λ

,(18)

where the second equality follows from the first-order condition of the overconfident

player. The first term on the right-hand side of (18) is the direct effect and the
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second term is the strategic effect. The direct effect is always negative because the

overconfident player fails to play a best response against his rival.9 The sign of the

strategic effect is negative when ∂a∗2/∂λ > 0 (player 1 is significantly overconfident)

and positive when ∂a∗2/∂λ < 0 (player 1 is slightly overconfident). Hence, when

player 1 is significantly overconfident, the direct and the strategic effects are both

negative and an increase in overconfidence always makes a significantly overconfident

player worse off. However, when player 1 is slightly overconfident, the direct effect is

negative and the strategic effect is positive. Therefore, an increase in overconfidence

can make a slightly overconfident player better off. This happens when the strategic

effect dominates the direct effect.

To evaluate the welfare implications for the rational player I consider how her

equilibrium objective expected utility E [U2(a∗1, a
∗
2)] changes with λ:

∂E [U2(a∗1, a
∗
2)]

∂λ
= −g(a∗1 − a∗2)∆u

(
∂a∗1
∂λ
− ∂a∗2
∂λ

)
− c′(a∗2)

∂a∗2
∂λ

= −g(a∗1 − a∗2)
∂a∗1
∂λ

∆u,

where the second equality follows from the first-order condition of the rational player.

Hence, an increase in overconfidence makes the rational player worse off when over-

confidence raises the effort of the overconfident player. This is the case when the

rival is slightly overconfident. In contrast, an increase in overconfidence makes the

rational player better off when overconfidence lowers the effort of the overconfident

player. This is the case when the rival is significantly overconfident: the rational

player has a higher probability of winning the tournament and exerts less effort than

if both players were rational.

9When player 1 is slightly overconfident a∗1 > a∗2 and ∂a
∗
1/∂λ > 0. The first-order conditions

and a∗1 > a∗2 imply g(a
∗
1 − a∗2) < λg(λa∗1 − a∗2). Hence, when player 1 is slightly overconfident, the

direct effect is negative. When player 1 is significantly overconfident a∗1 < a∗2 and ∂a
∗
1/∂λ < 0.

The first-order conditions and a∗1 < a∗2 imply g(a
∗
1 − a∗2) > λg(λa∗1 − a∗2). Hence, when player 1 is

significantly overconfident, the direct effect is also negative.
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6 Contests

This section studies contests where an overconfident player competes against a ra-

tional player. In a standard two player Tullock (1980) contest with linear effort costs

the players compete for the winner prize V . player i chooses an effort level ai to

maximize E[Ui] = Pi(ai, aj)V − ai, where Pi(ai, aj) is the probability player i wins
the contest—the contest success function (CSF). Tullock (1980) assumes the CSF is:

Pi(ai, aj) =

{
ari/(a

r
i + arj) if ai + aj > 0

1/2 if ai + aj = 0
,

where r ≥ 0. Note that under the a Tullock contest, as in a tournament, the player

who exerts higher effort does not necessarily win the contest. However, unlike in a

tournament, a player who exerts zero effort has a zero probability of winning if the

other player exerts some positive amount of effort no matter how small.10

To study contests where an overconfident player competes against a rational

player I consider a generalized Tullock contest. The utility of the monetary prize

V is v = u(V ) with u′ > 0. The effort cost is c(ai) with c(0) = 0, c′ > 0 and c′′ ≥ 0.

Following Baik (1994) I assume the CSF is:

Pi(ai, aj) =

{
q(ai)/[q(ai) + q(aj)] if q(ai) + q(aj) > 0

1/2 if q(ai) + q(aj) = 0
,

where q(0) ≥ 0 and q(ai) is increasing in ai.11 The function q(a) is often referred

to as the impact function (Ewerhart 2015). The overconfident player mistakenly

10There are at least three reasons why Tullock contests are widely employed. First, a number of

studies have provided axiomatic justification for it (Skaperdas 1996, Clark and Riis 1998). Second,

a variety of rent-seeking contests, innovation tournaments, and patent-race games are strategically

equivalent to the Tullock contest (Baye and Hoppe 2003). Third, its tractability. The drawback of

Tullock contests is that they do not separate the degree to which luck as opposed to effort affects

behavior (Amegashie 2006).
11When q(0) = 0 the player who spends zero effort has a zero probability of winning if the other

player spends some positive effort no matter how small. This is no longer the case when q(0) > 0.
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perceives his impact function to be λq(a1), with λ > 1, and correctly perceives the

rational player’s impact function to be q(a2). This way of modeling overconfidence

in a contest implies that the overconfident player’s perceived winning probability is

equal to

P1(a1, a2, λ) =

{
λq(a1)/[λq(a1) + q(a2)] if q(a1) + q(a2) > 0

1/2 if q(a1) + q(a2) = 0
.

This specification of overconfidence in a contest satisfies four desirable properties.

First, contests where players have heterogeneous productivity of effort are modeled

similarly: players are assumed to have heterogeneous impact functions (Baik 1994,

Singh and Wittman 2001, Stein 2002). Second, the overconfident player’s perceived

winning probability is well defined for any value of λ > 1.12 Third, the overconfident

player’s perceived winning probability is increasing in λ. Fourth, overestimating

one’s impact function is equivalent to underestimating the rival’s impact function:

λq(a1)/[λq(a1) + q(a2)] = q(a1)/[q(a1) + q(a2)/λ].

The overconfident player chooses the optimal effort level that maximizes his per-

ceived expected utility:

E[U1(a1, a2, λ)] = P1(a1, a2, λ)v − c(a1) =
λq(a1)

λq(a1) + q(a2)
v − c(a1).

The rational player chooses the optimal effort level that maximizes her objective

expected utility:

E[U2(a1, a2)] = P2(a1, a2)v − c(a2) =
q(a2)

q(a1) + q(a2)
v − c(a2).

The first-order conditions are

∂E[U1(a1, a2, λ)]

∂a1

=
λq′(a1)q(a2)

[λq(a1) + q(a2)]2
v − c′(a1) = 0, (19)

12This is not the case with alternative specifications. For example, if one assumes the overconfid-

ent player’s perceived winning probability is P1(a1, a2, λ) = λq(a1)/[q(a1)+q(a2)], with λ > 1, then

P1(a1, a2, λ) is not a well defined probability for any value of λ > 1. Note that this specification for

overconfidence is equivalent to assuming the overconfident player overestimates the winning prize.
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and
∂E[U2(a1, a2)]

∂a2

=
q′(a2)q(a1)

[q(a1) + q(a2)]2
v − c′(a2) = 0. (20)

The second-order conditions are

∂2E[U1(a1, a2, λ)]

∂a2
1

=
q′′(a1)[λq(a1) + q(a2)]− 2λ[q′(a1)]2

[λq(a1) + q(a2)]3
λq(a2)v − c′′(a1) < 0, (21)

and

∂2E[U2(a1, a2)]

∂a2
2

=
q′′(a2)[q(a1) + q(a2)]− 2[q′(a2)]2

[q(a1) + q(a2)]3
q(a1)v − c′′(a2) < 0, (22)

and

D =
∂2E[U1(a1, a2, λ)]

∂a2
1

∂2E[U2(a1, a2)]

∂a2
2

− ∂2E[U1(a1, a2, λ)]

∂a1∂a2

∂2E[U2(a1, a2)]

∂a1∂a2

> 0.

(23)

I assume throughout the second-order conditions (21), (22), and (23) are satisfied.

Let a1 = R1(a2) denote player 1’s best response obtained from (19). Along player

1’s best response we have

λq′(a1)q(a2)v = c′(a1) [λq(a1) + q(a2)]2 .

Let a2 = R2(a1) denote player 2’s best response obtained from (20). Along player

2’s best response we have

q′(a2)q(a1)v = c′(a2) [q(a1) + q(a2)]2 .

Lemma 1 describes the shapes of the players’best responses.

Lemma 1: As a2 increases from zero, the overconfident player’s best response lies

below curve q(a2) = λq(a1) and increases in a2, lies on curve q(a2) = λq(a1) and

reaches the maximum, and then lies above curve q(a2) = λq(a1) and decreases in a2.

As a1 increases from zero, the rational player’s best response lies above line a2 = a1

and increases in a1, lies on line a2 = a1 and reaches the maximum, and then lies

below line a2 = a1 and decreases in a1.
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Lemma 1 tells us that the players’best responses are non-monotonic. Given high

effort of the rival, a player reacts to an increase in effort of the rival by decreasing

effort; given low effort of the rival, a player reacts to an increase in effort of the rival

by increasing effort. Lemma 2 describes how the overconfident player’s best response

changes with λ.

Lemma 2: When λ increases from λ1 to λ2, above curve q(a2) = λ2q(a1) the

overconfident player’s best response shifts to the right but below curve q(a2) = λ1q(a1)

the overconfident player’s best response shifts to the left, and the maximum value of

the overconfident player’s best response remains constant.

Lemma 2 tells us how an increase in overconfidence shifts the best response of the

overconfident player. Given high effort of the rational rival, an increase in overcon-

fidence raises the overconfident player’s effort level; given low effort of the rational

rival, an increase in overconfidence lowers the overconfident player’s effort level. This

result is driven by player 1’s marginal perceived probability of winning the contest

which, using (19), is given by:

∂2P1(a1, a2, λ)

∂a1∂λ
=

q(a2)− λq(a1)

[λq(a1) + q(a2)]3
q′(a1)q(a2)v.

Lemma 2 also tells us that the maximum value of the overconfident player’s best

response does not depend on his degree of overconfidence.

The pure-strategy Nash equilibrium (a∗1, a
∗
2) satisfies the two first-order conditions

simultaneously and is given by

λq′(a∗1)q(a∗2)v = c′(a∗1) [λq(a∗1) + q(a∗2)]2 , (24)

and

q(a∗1)q′(a∗2)v = c′(a∗2) [q(a∗1) + q(a∗2)]2 . (25)

From (24) and (25) it follows that

λ
q′(a∗1)q(a∗2)

q(a∗1)q′(a∗2)
=
c′(a∗1)

c′(a∗2)

[
λq(a∗1) + q(a∗2)

q(a∗1) + q(a∗2)

]2

. (26)
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Proposition 4: The overconfident player is the Nash loser of a generalized Tullock

contest, i.e., P1(a∗1, a
∗
2) < 1/2 < P2(a∗1, a

∗
2). Both players exert less effort than if both

were rational, with the overconfident player exerting the least effort. Furthermore,

an increase in overconfidence lowers the efforts of both players and more so that of

the overconfident player, i.e., ∂a∗1/∂λ < ∂a∗2/∂λ < 0.

Proposition 4 shows that an overconfident player always has a lower probabil-

ity of winning a generalized Tullock contest. This happens because overconfidence

lowers the effort level of the overconfident player more than that of the rational

player. Interestingly, even though the overconfident player knows he will exert less

effort than his rational rival, he anticipates being the Nash winner. This happens

because in the pure-strategy equilibrium we have λq(a∗1) > q(a∗2). This implies

that the overconfident player has a perceived probability of winning the tournament

P1(a∗1, a
∗
2, λ) = λq(a∗1)/[λq(a∗1) + q(a∗2)] greater than 1/2.

To illustrate this result consider a Tullock contest. In this case, the impact

function is q(ai) = ari and the cost of effort is c(ai) = ai. This implies q′(ai) = rar−1
i

and c′(ai) = 1. Hence, expression (26) becomes

λ
a∗2
a∗1

=

[
λ(a∗1)r + (a∗2)r

(a∗1)r + (a∗2)r

]2

. (27)

It is easy to see that setting a∗1 = a∗2 in (27) implies that the left-hand side is equal

to λ and the right-hand side to λ2 and hence the equality does not hold. Furthermore,

setting a∗1 > a∗2 in (27) lowers the left-hand side below λ and raises the right-hand

side above λ2 and hence the equality also does not hold. Therefore, for (27) to hold

it must be that a∗1 < a∗2, that is, in a Tullock contest, the overconfident player exerts

less effort than the rational player.

Proposition 4 carries welfare implications. Since both players exert less effort

the principal is worse off than if both players were rational. To evaluate the welfare

implications for the overconfident player I consider how his equilibrium objective
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expected utility E [U1(a∗1, a
∗
2)] = vq(a∗1)/[q(a∗1) + q(a∗2)]− c(a∗1) changes with λ:

∂E [U1(a∗1, a
∗
2)]

∂λ
=

[
vq′(a∗1)q(a∗2)

[q(a∗1) + q(a∗2)]2
− c′(a∗1)

]
∂a∗1
∂λ
− vq(a∗1)

[q(a∗1) + q(a∗2)]2
∂a∗2
∂λ

, (28)

The first term on the right-hand side of (28) is the direct effect and is negative since

the overconfident player fails to best respond against his rival. The second term on

the right-hand side of (28) is the strategic effect and is positive since ∂a∗2/∂λ < 0.

Hence, an increase in overconfidence has an ambiguous impact on the welfare of the

overconfident player.

To evaluate the welfare implications for the rational player I consider how her

equilibrium objective expected utility E [U2(a∗1, a
∗
2)] changes with λ:

∂E [U2(a∗1, a
∗
2)]

∂λ
=

[
vq(a∗1)q′(a∗2)

[q(a∗1) + q(a∗2)]2
− c′(a∗2)

]
∂a∗2
∂λ
− vq(a∗2)

[q(a∗1) + q(a∗2)]2
∂a∗1
∂λ

= − vq(a∗2)

[q(a∗1) + q(a∗2)]2
∂a∗1
∂λ

,

where the second equality comes from the first-order condition of the rational player.

Hence, an increase in overconfidence makes the rational player better off since over-

confidence always lowers the effort of the overconfident player. Note that the rational

player has a higher equilibrium probability of winning the contest and exerts less ef-

fort than in a benchmark contest with two rational players

7 Conclusion

This paper studies the impact of overconfidence on tournaments and contests where

an overconfident player competes against a rational player. The overconfident player

overestimates his productivity of effort and, as a consequence, his probability of

winning. The paper provides conditions under which the overconfident player is

either the Nash winner or loser of a tournament. The overconfidence player is the

Nash winner (loser) of a monotone tournament when his effort and overconfidence

are complements (substitutes). The overconfident player is the Nash winner (loser)
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of a non-monotone tournament when he is slightly (significantly) overconfident. The

overconfidence player is always the Nash loser of a contest.

The results hold under the assumption that an overconfident player overestim-

ates his productivity of effort. This way of modeling overconfidence is often used in

principal-agent settings (Bénabou and Tirole 2002 and 2003, Gervais and Goldstein

2007, Santos-Pinto 2008 and 2010, and de la Rosa 2011). Alternatively, an overcon-

fident player might underestimate the cost of effort. This alternative specification for

overconfidence can lead to different results as shown by previous studies on contests

(Ando 2004, Ludwig et al. 2011).

The results were derived under the assumption that tournament and contest

prizes are exogenously specified. However, if the principal is aware of the asymmetry

in beliefs of the players he will adapt the prizes to the players’characteristics. This

is an interesting avenue for future research.
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8 Appendix

Derivation of Equations (5) and (6): Total differentiation of the first-order

conditions (3) and (4) gives:[
∂2P1(a∗1, a

∗
2, λ)

∂a2
1

∂a∗1 +
∂2P1(a∗1, a

∗
2, λ)

∂a1∂a2

∂a∗2 +
∂2P1(a∗1, a

∗
2, λ)

∂a1∂λ
∂λ

]
∆u = c′′(a∗1)∂a∗1.

and [
∂2P2(a∗1, a

∗
2)

∂a2∂a1

∂a∗1 +
∂2P2(a∗1, a

∗
2)

∂a2
2

∂a∗2

]
∆u = c′′(a∗2)∂a∗2.

Diving both equations by ∂λ we obtain[
∂2P1(a∗1, a

∗
2, λ)

∂a2
1

∂a∗1
∂λ

+
∂2P1(a∗1, a

∗
2, λ)

∂a1∂a2

∂a∗2
∂λ

+
∂2P1(a∗1, a

∗
2, λ)

∂a1∂λ

]
∆u = c′′(a∗1)

∂a∗1
∂λ

, (29)

and [
∂2P2(a∗1, a

∗
2)

∂a2∂a1

∂a∗1
∂λ

+
∂2P2(a∗1, a

∗
2)

∂a2
2

∂a∗2
∂λ

]
∆u = c′′(a∗2)

∂a∗2
∂λ

. (30)

Solving (30) for ∂a∗2/∂λ we have

∂a∗2
∂λ

= −
∂2P2(a∗1,a

∗
2)

∂a2∂a1
∆u

∂2P2(a∗1,a
∗
2)

∂a22
∆u− c′′(a∗2)

∂a∗1
∂λ

. (31)

Substituting (31) into (29) we obtain∂2P1(a∗1, a
∗
2, λ)

∂a2
1

∂a∗1
∂λ
−

∂2P1(a∗1,a
∗
2,λ)

∂a1∂a2

∂2P2(a∗1,a
∗
2)

∂a2∂a1
∆u

∂2P2(a∗1,a
∗
2)

∂a22
∆u− c′′(a∗2)

∂a∗1
∂λ

+
∂2P1(a∗1, a

∗
2, λ)

∂a1∂λ

∆u = c′′(a∗1)
∂a∗1
∂λ

.

Solving this equation for ∂a∗1/∂λ we find (5). Substituting (5) into (31) we obtain

(6).

Proof of Proposition 1:

i) When player 1’s overconfidence and effort are complements

∂2P1(a∗1, a
∗
2, λ)

∂a1∂λ
> 0.
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In addition, if efforts are strategic complements, then

∂2P2(a∗1, a
∗
2)

∂a1∂a2

> 0.

Since the second-order conditions are satisfied and D∗ > 0, these two inequalities

and equations (5) and (6) imply

∂a∗1
∂λ

> 0 and
∂a∗2
∂λ

> 0.

We know from (31) that

∂a∗2
∂λ

= −
∂2P2(a∗1,a

∗
2)

∂a2∂a1
∆u

∂2P2(a∗1,a
∗
2)

∂a22
∆u− c′′(a∗2)

∂a∗1
∂λ

. (32)

Assumptions (1), and (2) imply that the first term on the right-hand side of (32) is

greater than 0 and less than 1. Hence, it follows that

∂a∗1
∂λ

>
∂a∗2
∂λ

> 0. (33)

If (33) holds and players have identical utility functions, then a∗1 > a∗2. If a
∗
1 > a∗2

and players have identical productivity of effort, then P1(a∗1, a
∗
2) > 1/2 > P2(a∗1, a

∗
2).

ii) When player 1’s overconfidence and effort are complements

∂2P1(a∗1, a
∗
2, λ)

∂a1∂λ
> 0.

In addition, if efforts are strategic substitutes, then

∂2P2(a∗1, a
∗
2)

∂a1∂a2

< 0.

Since the second-order conditions are satisfied and D∗ > 0, these two inequalities

and equations (5) and (6) imply

∂a∗1
∂λ

> 0 >
∂a∗2
∂λ

. (34)

If (34) holds and players have identical utility functions, then a∗1 > a∗2. If a
∗
1 > a∗2

and players have identical productivity of effort, then P1(a∗1, a
∗
2) > 1/2 > P2(a∗1, a

∗
2).
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Proof of Proposition 2:

i) When player 1’s overconfidence and effort are substitutes

∂2P1(a∗1, a
∗
2, λ)

∂a1∂λ
< 0.

In addition, if efforts are strategic complements, then

∂2P2(a∗1, a
∗
2)

∂a1∂a2

> 0.

Since the second-order conditions are satisfied and D∗ > 0, these two inequalities

and equations (5) and (6) imply

∂a∗1
∂λ

< 0 and
∂a∗2
∂λ

< 0.

We know from (31) that

∂a∗2
∂λ

= −
∂2P2(a∗1,a

∗
2)

∂a2∂a1
∆u

∂2P2(a∗1,a
∗
2)

∂a22
∆u− c′′(a∗2)

∂a∗1
∂λ

.

Assumptions (1), and (2) imply that the first term on the right-hand side of (32) is

greater than 0 and less than 1. Hence, it follows that

∂a∗1
∂λ

<
∂a∗2
∂λ

< 0. (35)

If (35) holds and players have identical utility functions, then a∗2 > a∗1. If a
∗
2 > a∗1

and players have identical productivity of effort, then P1(a∗1, a
∗
2) < 1/2 < P2(a∗1, a

∗
2).

ii) When player 1’s overconfidence and effort are substitutes

∂2P1(a∗1, a
∗
2, λ)

∂a1∂λ
< 0.

In addition, if efforts are strategic substitutes, then

∂2P2(a∗1, a
∗
2)

∂a1∂a2

< 0.
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Since the second-order conditions are satisfied and D∗ > 0, these two inequalities

and equations (5) and (6) imply

∂a∗2
∂λ

> 0 >
∂a∗1
∂λ

. (36)

If (36) holds and players have identical utility functions, then a∗2 > a∗1. If a
∗
2 > a∗1

and players have identical productivity of effort, then P1(a∗1, a
∗
2) < 1/2 < P2(a∗1, a

∗
2).

Derivation of Equations (16) and (17): Total differentiation of the first-order

conditions (14) and (15) gives us:

∂λg(λa∗1 − a∗2)∆u+ λg′(λa∗1 − a∗2)(a∗1∂λ+ λ∂a∗1 − ∂a∗2)∆u = c′′(a∗1)∂a∗1

and

g′(a∗1 − a∗2)(∂a∗1 − ∂a∗2)∆u = c′′(a∗2)∂a∗2.

Diving both equations by ∂λ we obtain

g(λa∗1 − a∗2)∆u+ λg′(λa∗1 − a∗2)

(
a∗1 + λ

∂a∗1
∂λ
− ∂a∗2
∂λ

)
∆u = c′′(a∗1)

∂a∗1
∂λ

, (37)

and

g′(a∗1 − a∗2)

(
∂a∗1
∂λ
− ∂a∗2
∂λ

)
∆u = c′′(a∗2)

∂a∗2
∂λ

. (38)

Solving (38) for ∂a∗2/∂λ we have

∂a∗2
∂λ

=
g′(a∗1 − a∗2)∆u

g′(a∗1 − a∗2)∆u+ c′′(a∗2)

∂a∗1
∂λ

. (39)

Substituting (39) into (37) we obtain

g(λa∗1−a∗2)∆u+λg′(λa∗1−a∗2)

[
a∗1 + λ

∂a∗1
∂λ
− g′(a∗1 − a∗2)∆u

g′(a∗1 − a∗2)∆u+ c′′(a∗2)

∂a∗1
∂λ

]
∆u = c′′(a∗1)

∂a∗1
∂λ

.

Solving this equation for ∂a∗1/∂λ we obtain (16). Substituting (16) into (39) we

obtain (17).

Proof of Proposition 3: To prove this result I consider the four possible ways an

increase in player 1’s overconfidence can change the pure-strategy Nash equilibrium

efforts and show that only two of them are feasible.
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(i) Assume ∂a∗1/∂λ > 0 and ∂a∗2/∂λ > 0. If ∂a∗1/∂λ > 0 and D∗ > 0, then g(λa∗1 −
a∗2)+λa∗1g

′(λa∗1−a∗2) > 0. If ∂a∗2/∂λ > 0,D∗ > 0, and g(λa∗1−a∗2)+λa∗1g
′(λa∗1−a∗2) > 0,

then g′(a∗1 − a∗2) > 0. Now, g′(a∗1 − a∗2) > 0 and g′(x) > 0 for x < 0 implies a∗2 > a∗1.

This, in turn, implies ∂a∗2/∂λ > ∂a∗1/∂λ or

g′(a∗1 − a∗2) [g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2)] (∆u)2

> [g′(a∗1 − a∗2)∆u+ c′′(a∗2)] [g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2)] ∆u,

or

g′(a∗1 − a∗2)∆u > g′(a∗1 − a∗2)∆u+ c′′(a∗2),

or

c′′(a∗2) < 0,

which contradicts c′′ > 0. Hence, ∂a∗1/∂λ > 0 and ∂a∗2/∂λ > 0 do not characterize

the impact of player 1’s overconfidence on the Nash equilibrium efforts.

(ii) Assume ∂a∗1/∂λ < 0 < ∂a∗2/∂λ. This implies a
∗
1 < a∗2. This, in turn, implies

g′(a∗1 − a∗2) > 0. If ∂a∗1/∂λ < 0 and D∗ > 0, then g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) < 0.

If ∂a∗2/∂λ > 0, D∗ > 0, and g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) < 0, then g′(a∗1 − a∗2) < 0.

But g′(a∗1−a∗2) < 0 contradicts g′(a∗1−a∗2) > 0. Hence, ∂a∗1/∂λ < 0 < ∂a∗2/∂λ do not

characterize the impact of player 1’s overconfidence on the Nash equilibrium efforts.

(iii) Assume ∂a∗2/∂λ < 0 < ∂a∗1/∂λ. This implies a
∗
1 > a∗2. This, in turn, implies

g′(a∗1 − a∗2) < 0. Furthermore, a∗1 > a∗2 and λ > 1 imply λa∗1 > a∗2. This, in turn,

implies g′(λa∗1 − a∗2) < 0. Since D∗ > 0, then for ∂a∗1/∂λ > 0 it must be that

g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) > 0,

or

λ <
g(λa∗1 − a∗2)

−a∗1g′(λa∗1 − a∗2)
= λ̄.

Note that g(λa∗1 − a∗2) > 0 and g′(λa∗1 − a∗2) < 0 imply that λ̄ is strictly positive.

Furthermore, g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) > 0 implies λ̄ > 1. Hence, ∂a∗1/∂λ > 0

and ∂a∗2/∂λ < 0 characterize the impact of player 1’s overconfidence on the Nash
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equilibrium efforts when λ ∈ (1, λ̄). Let us now check whether the pure-strategy Nash

equilibrium with a slightly overconfident player satisfies the second-order conditions

(11), (12), and (13). The second-order conditions at (a∗1, a
∗
2) are

λ2g′(λa∗1 − a∗2)∆u− c′′(a∗1) < 0,

and

−g′(a∗1 − a∗2)∆u− c′′(a∗2) < 0,

and

D∗ =
[
λ2g′(λa∗1 − a∗2)∆u− c′′(a∗1)

]
[−g′(a∗1 − a∗2)∆u− c′′(a∗2)]

+ λg′(λa∗1 − a∗2)g′(a∗1 − a∗2)(∆u)2 > 0.

The first second-order condition is satisfied since g′(λa∗1−a∗2) < 0. The second second-

order condition might not be satisfied since g′(a∗1 − a∗2) < 0. The third second-order

condition is satisfied since g′(λa∗1−a∗2) < 0 and g′(a∗1−a∗2) < 0 imply g′(λa∗1−a∗2)g′(a∗1−
a∗2) > 0. Hence, the pure-strategy Nash equilibrium with a slightly overconfident

player satisfies the second-order conditions provided that −g′(a∗1 − a∗2)∆u < c′′(a∗2).

(iv) Assume ∂a∗1/∂λ < 0 and ∂a∗2/∂λ < 0. If ∂a∗1/∂λ < 0 and D∗ > 0, then

g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) < 0. A necessary (but not suffi cient) condition for

g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2) < 0 is that g′(λa∗1 − a∗2) < 0. If g′(λa∗1 − a∗2) < 0,

then λa∗1 > a∗2. If ∂a
∗
2/∂λ < 0, D∗ > 0, and g(λa∗1 − a∗2) + λa∗1g

′(λa∗1 − a∗2) < 0,

then g′(a∗1 − a∗2) > 0. Furthermore, if g′(a∗1 − a∗2) > 0, then a∗2 > a∗1. Hence, we have

λa∗1 > a∗2 > a∗1. This, in turn, implies ∂a
∗
1/∂λ < ∂a∗2/∂λ or

[g′(a∗1 − a∗2)∆u+ c′′(a∗2)] [g(λa∗1 − a∗2) + λa∗1g
′(λa∗1 − a∗2)] ∆u

< g′(a∗1 − a∗2)
[
g(λa∗1 − a∗2) + λa∗1g

′(λa∗1 − a3
2)
]

(∆u)2,

or

g′(a∗1 − a∗2)∆u+ c′′(a∗2) > g′(a∗1 − a∗2)∆u,

or

c′′(a∗2) > 0,
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which is true. Hence, ∂a∗1/∂λ < 0 and ∂a∗2/∂λ < 0 characterize the impact of

player 1’s overconfidence on the Nash equilibrium efforts when λ > λ̄. Let us now

check whether the pure-strategy Nash equilibrium with a significantly overconfident

player satisfies the second-order conditions (11), (12), and (13). The second-order

conditions at (a∗1, a
∗
2) are

λ2g′(λa∗1 − a∗2)∆u− c′′(a∗1) < 0,

and

−g′(a∗1 − a∗2)∆u− c′′(a∗2) < 0,

and

D∗ =
[
λ2g′(λa∗1 − a∗2)∆u− c′′(a∗1)

]
[−g′(a∗1 − a∗2)∆u− c′′(a∗2)]

+ λg′(λa∗1 − a∗2)g′(a∗1 − a∗2)(∆u)2 > 0.

The first second-order condition is satisfied since g′(λa∗1 − a∗2) < 0. The second

second-order condition is also satisfied since g′(a∗1 − a∗2) > 0. Finally, to see that the

third second-order condition is also satisfied note that

D∗ = λ(1− λ)g′(λa∗1 − a∗2)g′(a∗1 − a∗2)(∆u)2 − λ2g′(λa∗1 − a∗2)c′′(a∗2)∆u

+g′(a∗1 − a∗2)c′′(a∗1)∆u+ c′′(a∗1)c′′(a∗2). (40)

When g′(λa∗1−a∗2) < 0 and g′(a∗1−a∗2) > 0, the first term in (40) is positive since λ > 1,

g′(λa∗1 − a∗2) < 0, and g′(a∗1 − a∗2) > 0. The second and third terms in (40) are also

positive since g′(λa∗1 − a∗2) < 0 and g′(a∗1 − a∗2) > 0, respectively. Finally, the fourth

term in (40) also is positive since c′′ > 0. Hence, the pure-strategy Nash equilibrium

with a significantly overconfident player satisfies the second-order conditions.

I now show that player 1 has a higher (lower) probability of winning if he is slightly

(significantly) overconfident. player 1’s probability of winning is P1(a∗1, a
∗
2) = G(a∗1−

a∗2). player 2’s probability of winning is P2(a∗1, a
∗
2) = 1−G(a∗1−a∗2). We have G(0) = 0

and G′ > 0. When λ = 1 the tournament is symmetric and the pure-strategy Nash
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equilibrium is a∗1 = a∗2 = a. Symmetry of g(x) implies that P1(a∗1, a
∗
2) = P2(a∗1, a

∗
2) =

G(0) = 1/2. If player 1 is slightly overconfident, then ∂a∗2/∂λ < 0 < ∂a∗1/∂λ which

implies a∗1 > a∗2. Hence, if player 1 is slightly overconfident, then

P1(a∗1, a
∗
2) = G(a∗1 − a∗2) > 1/2 > 1−G(a∗1 − a∗2) = P2(a∗1, a

∗
2).

In contrast, if player 1 is significantly overconfident, then ∂a∗1/∂λ < ∂a∗2/∂λ < 0

which implies a∗1 < a∗2. Hence, if player 1 is significantly overconfident, then

P1(a∗1, a
∗
2) = G(a∗1 − a∗2) < 1/2 < 1−G(a∗1 − a∗2) = P2(a∗1, a

∗
2).

Proof of Lemma 1: The best response of player 1 is defined implicitly by (19).

Hence, the slope of the best response of player 1 is

R′1(a2) = −∂R1/∂a2

∂R1/∂a1

= −
∂2E[U1]
∂a1∂a2
∂2E[U1]

∂a21

= −
λq(a1)−q(a2)

[λq(a1)+q(a2)]3
λq′(a1)q′(a2)v

q′′(a1)[λq(a1)+q(a2)]−2λ[q′(a1)]2

[λq(a1)+q(a2)]3
λq(a2)v − c′′(a1)

.

The denominator is player 1’s second-order condition and so it is negative. Therefore,

the sign of the slope of player 1’s best response is only determined by the sign of

the numerator which only depends on λq(a1) − q(a2). Hence, R′1(a2) is positive for

λq(a1) > q(a2), zero for λq(a1) = q(a2), and negative for λq(a1) < q(a2). This

implies that R1(a2) increases in a2 for λq(a1) > q(a2), reaches the maximum at

λq(a1) = q(a2), and decreases in a2 for λq(a1) < q(a2).

The best response of player 2 is defined implicitly by (20). Hence, the slope of

the best response of player 2 is

R′2(a1) = −∂R2/∂a1

∂R2/∂a2

= −
∂2E[U2]
∂a2∂a1
∂2E[U2]

∂a22

= −
q(a2)−q(a1)

[q(a1)+q(a2)]3
q′(a1)q′(a2)v

q′′(a2)[q(a1)+q(a2)]−2λ[q′(a2)]2

[q(a1)+q(a2)]3
q(a1)v − c′′(a2)

.

The denominator is player 2’s second-order condition and so it is negative. Therefore,

the sign of the slope of player 2’s best response is only determined by the sign of the

numerator which only depends on q(a2)− q(a1) or, equivalently, on a2 − a1. Hence,
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R′2(a1) is positive for a2 > a1, zero for a2 = a1, and negative for a2 < a1. This

implies that R2(a1) increases in a1 for a2 > a1, reaches the maximum at a1 = a2,

and decreases in a1 for a2 < a1.

Proof of Lemma 2: (This proof follows Baik 1994) The overconfident player’s best

response is defined by (19):

λq′(a1)q(a2)

[λq(a1) + q(a2)]2
v − c′(a1) = 0.

Hence, we have
∂R1(a2)

∂λ
=

q(a2)− λq(a1)

[λq(a1) + q(a2)]3
q′(a1)q(a2)v.

We see that when λ increases from λ1 to λ2, ∂R1(a2)/∂λ > 0 holds at the points above

curve q(a2) = λ2q(a1) but ∂R1(a2)/∂λ < 0 holds at the points below curve q(a2) =

λ1q(a1). This follows from the fact that q(a2) > λ2q(a1) holds at point above curve

q(a2) = λ2q(a1) but q(a2) < λ1q(a1) holds at points below curve q(a2) = λ1q(a1). We

also know, from the second-order condition of player 1, that ∂R1(a2)/∂a1 < 0 and

∂R1(a2)/∂λ > 0 holds at the points above curve q(a2) = λ2q(a1) but ∂R1(a2)/∂a1 < 0

and ∂R1(a2)/∂λ < 0 hold at points below curve q(a2) = λq(a1). Therefore, given

player 2’s effort level, when λ increases from λ1 to λ2, above curve q(a2) = λ2q(a1)

player 1’s effort must increase but below curve q(a2) = λ1q(a1) player 1’s effort must

decrease, in order to satisfy the first-order condition. Furthermore, as λ increases

from λ1 to λ2, the maximum value of the overconfident player’s best response remains

unchanged. We know from Lemma 1 that the maximum point of the overconfident

player’s best response satisfies the first-order condition (19) and q(a2) = λq(a1).

Substituting q(a2) = λq(a1) into the first-order condition of player 1 we obtain

λq′(a1)λq(a1)

[λq(a1) + λq(a1)]2
v = c′(a1),

or
λ2q′(a1)q(a1)

4λ2 [q(a1)]2
v = c′(a1),
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or
q′(a1)

4q(a1)
v = c′(a1).

This implies that the value of a1 corresponding to the maximum value of the over-

confident player’s best response does not depend on λ.

Proof of Proposition 4: The proof has three steps. First, I show that for the Nash

equilibrium (a∗1, a
∗
2) to satisfy (26) it must be located below curve q(a2) = λq(a1).

Second, I show that for the Nash equilibrium (a∗1, a
∗
2) to satisfy (26) it must be located

above line a2 = a1. Note that the second step implies that the overconfident player

exerts less effort than the rational player. Third, I show that both players exert less

effort than if both were rational.

Step 1: Assume, by contradiction, the Nash equilibrium (a∗1, a
∗
2) is located on curve

q(a2) = kq(a1), with k ≥ λ. If that is the case, then q(a∗2) = kq(a∗1) and q′(a∗2) =

kq′(a∗1). In addition, k ≥ λ > 1 and q(a∗2) = kq(a∗1) imply a∗2 > a∗1 which, given

convexity of c(ai), implies c′(a∗2) > c′(a∗1). However, on curve q(a∗2) = kq(a∗1), we

have

λ
q′(a∗1)q(a∗2)

q(a∗1)q′(a∗2)
>
c′(a∗1)

c′(a∗2)

[
λq(a∗1) + q(a∗2)

q(a∗1) + q(a∗2)

]2

,

since

λ
q′(a∗1)kq(a∗1)

q(a∗1)kq′(a∗1)
>
c′(a∗1)

c′(a∗2)

[
λq(a∗1) + kq(a∗1)

q(a∗1) + kq(a∗1)

]2

,

or

λ >
c′(a∗1)

c′(a∗2)

(
λ+ k

1 + k

)2

,

which holds given that c′(a∗2) > c′(a∗1) and k ≥ λ > 1. This shows that (26) is not

satisfied on the curve q(a2) = kq(a1) with k ≥ λ. Hence, for the Nash equilibrium

(a∗1, a
∗
2) to satisfy (26) it must be located below curve q(a2) = λq(a1). If the Nash

equilibrium (a∗1, a
∗
2) is located below curve q(a2) = λq(a1), then q(a∗2) < λq(a∗1).

Step 2: Assume, by contradiction, that the Nash equilibrium (a∗1, a
∗
2) is located on

curve q(a2) = mq(a1), with m ∈ (0, 1]. If that is the case, then q(a∗2) = mq(a∗1) and

q′(a∗2) = mq′(a∗1). In addition, m ≤ 1 and q(a∗2) = mq(a∗1) imply a∗2 ≤ a∗1 which, given
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convexity of c(ai), implies c′(a∗2) ≤ c′(a∗1). Hence, on curve q(a∗2) = mq(a∗1), we have

λ
q′(a∗1)q(a∗2)

q(a∗1)q′(a∗2)
<
c′(a∗1)

c′(a∗2)

[
λq(a∗1) + q(a∗2)

q(a∗1) + q(a∗2)

]2

,

since

λ
q′(a∗1)

q(a∗1)

mq(a∗1)

mq′(a∗1)
<
c′(a∗1)

c′(a∗2)

[
λq(a∗1) +mq(a∗1)

q(a∗1) +mq(a∗1)

]2

,

or

λ <
c′(a∗1)

c′(a∗2)

(
λ+m

1 +m

)2

,

which holds given that c′(a∗2) ≤ c′(a∗1) and λ > 1 > m. This shows that (26) is

not satisfied on the curve q(a2) = mq(a1) with m ∈ (0, 1]. Hence, for the Nash

equilibrium (a∗1, a
∗
2) to satisfy (26) it must be located above line a2 = a1. If the

Nash equilibrium (a∗1, a
∗
2) is located above line a2 = a1, then a∗2 > a∗1. Hence, in the

Nash equilibrium of a generalized Tullock contest the rational player exerts more

effort than the overconfident player. Since both players are equally productive, this

implies the overconfident player is the Nash loser of a generalized Tullock contest.

Step 3: We know from step 2 that a∗2 > a∗1. We know for Lemma 2 that the rational

player’s best response reaches its maximum on line a2 = a1. Hence, it must be that

the rational player exerts a lower effort than in the case where λ = 1. This shows

that player’s 1 overconfidence lowers the efforts of both players compared to the case

where λ = 1. Moreover, the higher is the overconfidence of player 1, the lower are the

efforts of both players. The impact of player 1’s overconfidence on the pure-strategy

equilibrium efforts is obtained from total differentiation of (24) and (25):

[q′(a∗1)q(a∗2)∂λ+ λq′′(a∗1)q(a∗2)∂a∗1 + λq′(a∗1)q′(a∗2)∂a∗2] v

= c′′(a∗1) [λq(a∗1) + q(a∗2)]2 ∂a∗1

+ 2c′(a∗1) [λq(a∗1) + q(a∗2)] [q(a∗1)∂λ+ λq′(a∗1)∂a∗1 + q′(a∗2)∂a∗2] ,

and

[q′(a∗1)q′(a∗2)∂a∗1 + q(a∗1)q′′(a∗2)∂a∗2] v = c′′(a∗2) [q(a∗1) + q(a∗2)]2 ∂a∗2

+ 2c′(a∗2) [q(a∗1) + q(a∗2)] [q′(a∗1)∂a∗1 + q′(a∗2)∂a∗2] .
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Diving both equations by ∂λ we obtain[
q′(a∗1)q(a∗2) + λq′′(a∗1)q(a∗2)

∂a∗1
∂λ

+ λq′(a∗1)q′(a∗2)
∂a∗2
∂λ

]
v

= c′′(a∗1) [λq(a∗1) + q(a∗2)]2
∂a∗1
∂λ

+ 2c′(a∗1) [λq(a∗1) + q(a∗2)]

[
q(a∗1) + λq′(a∗1)

∂a∗1
∂λ

+ q′(a∗2)
∂a∗2
∂λ

]
,

and[
q′(a∗1)q′(a∗2)

∂a∗1
∂λ

+ q(a∗1)q′′(a∗2)
∂a∗2
∂λ

]
v

= c′′(a∗2) [q(a∗1) + q(a∗2)]2
∂a∗2
∂λ

+ 2c′(a∗2) [q(a∗1) + q(a∗2)]

[
q′(a∗1)

∂a∗1
∂λ

+ q′(a∗2)
∂a∗2
∂λ

]
.

Solving the second equation for ∂a∗2/∂λ we obtain

q′(a∗1)q′(a∗2)
∂a∗1
∂λ

∆u+ q(a∗1)q′′(a∗2)
∂a∗2
∂λ

v

= c′′(a∗2) [q(a∗1) + q(a∗2)]2
∂a∗2
∂λ

+ 2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗1)
∂a∗1
∂λ

+ 2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗2)
∂a∗2
∂λ

,

or

[
q(a∗1)q′′(a∗2)∆u− 2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗2)− c′′(a∗2) [q(a∗1) + q(a∗2)]2

] ∂a∗2
∂λ

= [2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗1)− q′(a∗1)q′(a∗2)v]
∂a∗1
∂λ

,

48



or

∂a∗2
∂λ

=
2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗1)− q′(a∗1)q′(a∗2)v

q(a∗1)q′′(a∗2)∆u− 2c′(a∗2) [q(a∗1) + q(a∗2)] q′(a∗2)− c′′(a∗2) [q(a∗1) + q(a∗2)]2
∂a∗1
∂λ

=

2c′(a∗2)[q(a∗1)+q(a∗2)]−q′(a∗2)v

[q(a∗1)+q(a∗2)]
2 q′(a∗1)

q(a∗1)q′′(a∗2)∆u−2c′(a∗2)[q(a∗1)+q(a∗2)]q′(a∗2)

[q(a∗1)+q(a∗2)]
2 − c′′(a∗2)

∂a∗1
∂λ

=

2c′(a∗2)[q(a∗1)+q(a∗2)]−q′(a∗2)v

[q(a∗1)+q(a∗2)]
2 q′(a∗1)

q(a∗1)q′′(a∗2)[q(a∗1)+q(a∗2)]v−2c′(a∗2)[q(a∗1)+q(a∗2)]
2
q′(a∗2)

[q(a∗1)+q(a∗2)]
3 − c′′(a∗2)

∂a∗1
∂λ

=

2c′(a∗2)q(a∗1)[q(a∗1)+q(a∗2)]−q(a∗1)q′(a∗2)v

[q(a∗1)+q(a∗2)]
2

q′(a∗1)

q(a∗1)

q(a∗1)q′′(a∗2)[q(a∗1)+q(a∗2)]v−2
q(a∗1)q

′(a∗2)v

[q(a∗1)+q(a∗2)]
2 [q(a∗1)+q(a∗2)]

2
q′(a∗2)

[q(a∗1)+q(a∗2)]
3 − c′′(a∗2)

∂a∗1
∂λ

=

2c′(a∗2)q(a∗1)−c′(a∗2)[q(a∗1)+q(a∗2)]
q(a∗1)+q(a∗2)

q′(a∗1)

q(a∗1)

q′′(a∗2)[q(a∗1)+q(a∗2)]−2[q′(a∗2)]2

[q(a∗1)+q(a∗2)]
3 q(a∗1)v − c′′(a∗2)

∂a∗1
∂λ

=

q(a∗1)−q(a∗2)

q(a∗1)+q(a∗2)

c′(a∗2)q′(a∗1)

q(a∗1)

q′′(a∗2)[q(a∗1)+q(a∗2)]−2[q′(a∗2)]2

[q(a∗1)+q(a∗2)]
3 q(a∗1)v − c′′(a∗2)

∂a∗1
∂λ

.

The denominator is negative from the second-order condition of player 2. The nu-

merator is negative as long as a∗2 > a∗1. Hence, this expression implies that if a
∗
2 > a∗1,

then the sign of ∂a∗2/∂λ is the same as the sign of ∂a
∗
1/∂λ. This shows that an

increase in overconfidence lowers the efforts of the two players and more so that of

the overconfident player.
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