Perché iniziamo a parlare

Uno studio sui robot aiuta a capire come è nata la comunicazione

C'è un'intera colonia di robot intelligenti che producono spontaneamente e studiano le condizioni in cui gli automi imparano spontaneamente a comunicare fra loro. Con questo esperimento un gruppo di ricercatori dell'Ecole Polytechnique Fédérale di Losanna ha cercato di dare luce su una delle incognite più complicate dell'evoluzione. Ovvero, l'emergere della capacità di comunicare delle specie sociali, dalle formiche all'uomo.

Questo evento non ha lasciato tracce nel registro fossile, e realizzare esperimenti con le specie altamente sociali che hanno questa capacità è troppo complicato. La comunicazione sembrerebbe un controsenso evolutivo. Un gruppo che comunica è più efficiente nella ricerca delle risorse, ma per un individuo, condividere l'informazione vuol dire prima di tutto aumentare la competizione per il cibo. Nello studio pubblicato su «Current Biology», Dario Floreano e colleghi dispongono dei robot in un'arena all'interno della quale si trovano una fonte di cibo e una di veleno. I robot possono comunicare tra loro la natura delle fonti emetendo segnali luminosi, e che lo fanno è di norma, dipende dal loro «genoma artificiale».

All'inizio dell'esperimento, il genoma è casuale, una situazione in cui solo alcuni robot hanno la capacità di comunicare. Lo svantaggio del farlo è che solo otto dei dieci robot presenti in ogni esperimento possono disponer si intorno alla fonte di cibo. La generazione di robot segue è prodotta scegliendo fra i genomi della prima generazione quelli associati a un maggior successo nella ricerca di cibo. Con questo meccanismo, i ricercatori hanno studiato 100 comunità di dieci robot per 500 generazioni, e hanno verificato che in quasi tutti i casi la selezione naturale favorisce le comunità in grado di comunicare. I robot sviluppano diversi sistemi di comunicazione, più o meno efficienti (per esempio, segnalare il cibo invece del veleno). Ma una volta che una comunità ha scelto un linguaggio, difficilmente lo cambia per un altro, anche se più efficace. Proprio come accade con i diversi dialetti del linguaggio delle vespe.

La statistica dei brogli elettorali

Ricordiamo o non ricordiamo? È stato il ritornello del dopoelezioni dello scorso anno, trascorso fra reciproche accuse di brogli tra le due coalizioni. Ma Walter Mebane, statistico e politologo della Cornell University, ha trovato un modo più rapido ed economico del ricorreggio delle schede per confermare i sospetti. Il metodo, che Mebane ha illustrato alla riunione della American Association for the Advancement of Sciences, richiede poco più che carta e penna. Basta prendere i risultati dei singoli seggi in una determinata area geografica, e isolare la seconda cifra del totale di voti andati a ogni candidato o partito: per esempio «5» se in quel seggio quel partito ha preso 451 voti. Come Mebane ha mostrato, analizzando decine di elezioni svoltesi in diversi paesi, le seconda cifre hanno una distribuzione caratteristica: gli zeri sono il 12 per cento, gli uno l'11,4 e così via, passando per i 4 che sono il 10 per cento esatto, fino ai nove che sono appena l'8,5 per cento. Perché concentrarsi sulle seconda cifre? La prima dipende dal numero complessivo
Luce sul campo di battaglia

Un fascio laser con potenza mai raggiunta prima sembra aprire la strada per lo sviluppo di nuove applicazioni belliche. Un gruppo di ricercatori del Lawrence Livermore Laboratory guidati da Bob Yamamoto ha costruito un laser a dodi con potenza pari a 67 chilowatt e spera di superare la soglia di 100 entro la fine dell’anno. Un simile laser è descritto come un’arma difensiva perfetta, per esempio nella protezione da missili e colpi di mortaio, ma ci si possono aspettare anche rischi offensivi. In campo bellico questa tecnologia non ha mai mantenuto le promesse. Gli unici laser di potenza adeguata sono quelli chimici ma sono pericolosi da far funzionare e richiedono un continuo rifornimento di gas, il che li rende poco adatti all’impiego sul campo. Il laser sviluppato da Yamamoto è una matrice di dodi infrarossi di grande potenza, che emette un fascio con frequenza degli impulsi pari a 200 hertz. Concettualmente si tratta di uno strumento molto semplice, ma i ricercatori hanno visto la sfida di ottenere un fascio di buona qualità ottica, che possa essere focalizzato su una piccola area. Una versione precedente, più piccola, dello strumento, con soli 25 chilowatt è in grado di perforare due centimetri di acciaio in sette secondi. Secondo Yamamoto, un laser a dodi da 100 chilowatt potrebbe essere alloggiato in un container lungo nove metri e in condizioni atmosferiche favorevoli, avrebbe una portata di vari chilometri.

Aldo Conti

La selezione naturale favorisce le comunità non-comunicative quando si combinano due fattori: un meccanismo di selezione che premia non le comunità ma gli individui più efficienti, e la presenza nella comunità di genomi molto differenti fra loro. Se non c’è un vantaggio evolutivo associato alla comunicazione, l’unico giustificazione per la sua affermazione è la somiglianza genetica fra i membri della comunità. Come per esempio accade con le formiche che comunicano con i feromoni.

Michele Catanzaro


Nicolò Nosengo

Le talpe ci vedono e ci sentono poco. Potremmo pensare che, passando la vita sotto terra, non abbiano bisogno di una vista acuta e un udito sensibile. In realtà, proprio perché al buio, i mammiferi sotterranei contano molto sul sistema udito, sia per comunicare sia per avvertire i pericoli. E pur percependo un intervallo di frequenze limitato, le talpe hanno un ricco repertorio vocale e mostrano specializzazioni strutturali progressive dell’orecchio medio e interno. Allora, come mai sono quasi sordi? La teoria più popolare, sostenuta anche da alcuni scienziati, vuole che le ridotte capacità siano il residuo di un udito degenerato nel corso dell’evoluzione a causa della bassa stimolazione. Ma un nuovo studio, pubblicato su «Naturwissenschaften», ribalta questa spiegazione sostenendo l’opposto: il problema è l’iperstimolazione. Biologi e zoologi dell’Università di Duisburg-Essen hanno studiato l’acustica delle tane delle specie africana Fukomys. Hanno così scoperto che sotto terra i suoni a basse frequenze (tra 200 e 800 hertz), come quelli prodotti da animali o persone che camminano sul suolo, sono amplificati. Per le talpe, dicono i ricercatori, è come vivere in uno stetoscopio. Questi mammiferi, quindi, avrebbero progressivamente abbandonato la sensibilità uditoria per l’eccessivo e fastidioso rumore del loro ambiente naturale.

Daniela Cipolloni