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Natcat Volatility — A Main Driver for Earnings Risk

Earnings risk: danger that earnings fall
below expectation

Overall re-insurance earning volatility can be seen as
portfolio level

1-in-10 AEP / AAL

>

\ Estimated AEP
Real AEP

Frequency

Loss severity

AAL: Average Annual Loss; AEP: Aggregate Exceedance Probability
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Natcat Volatility — A Main Driver for Earnings Risk

Earnings risk: danger that earnings fall Earnings risk under-evaluation mainly
below expectation driven by:

Overall re-insurance earning volatility can be seen as * Loss history proved to be incomplete and not
portfolio level sufficient to understand current risk, this is why

1-in-10 AEP / AAL models are needed!

>

* Model issues:

Several peril/regions still unmodelled

-
[ )

Estimated AEP
Real AEP

Frequency

Lack of realistic physics of the risk being modelled

Lack of cross-country / cross-peril correlation

Lack of critical model analytics and functionalities

Loss severity

AAL: Average Annual Loss; AEP: Aggregate Exceedance Probability
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The Computing Power Limit in Catastrophe Modelling

RMS® RiskLink 15
600,000+ diskettes

PPPPPP

1,000,000 : e et P
100,000~ [0, S o .y i
| Brokers '
10,000~ | ’@ 0 250 500 km
(. |

1,000 - IRAS v1.0

On-premise flood model (2015)

17 diskettes
100
~8’000 stochastic events

3 countries only, disconnected

1= 1989 | 2015 | Resolution from 50 m to 1 km
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Moving Modelling
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to the Cloud 2 st e T
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| 5 Vatk:an Ciy 3 ;:\‘, : & !
6. Isle of Man b - ;. o ==
7. Channel Islands, ie., ) =8 L
Guernsey and Jersey ¢ — S B
8. Isles of Scilly — 6 9
9. Neuwerk “Ireland 3
Model Domain =
United Kingdom Poland
Germany
e, Belgium
i 1 Czech Republic
Slovakia
2 Austria
France  switzerland Hungary
Italy
‘ .
3

c 2 ol e | s |

Complete and Consistent High Resolution

>900°000 stochastic events > 1 bn cells
1 single, pan-continental event set Spatial resolution 40m
50,000-year simulation Location level analytics
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Recent Catastrophe Model Advances
Capturing the Realistic Physics and Correlation of the Risk

Precipitation simulation
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Recent Catastrophe Model Advances > 40%

Enabling New Key Analytics of claims in Europe happen outside
the main floodplains

Isolating fluvial /pluvial components
An example from a French insurer

Combined Fluvial Pluvial
AAL AAL AAL AAL AEP (200 yr)
Commune [/ IRIS Zone GR Loss GR Loss GR Loss Pluvial Contribution [E]ifEef
A 15,695 15,321 2% 792,661
B 7,366 6,946 6% 236,837
C 12,805 12,152 5% 762,186
D 8,259 7,862 5% 451,320
E 12,436 - 100%) 536,034
F 31,475 20,952 33% 694,811
G 851 166 B0% 18,775
H 12,003 - 100%) 794,901
I 17,280 14,936 14% 744,843
J 42,252 42,229 0% 1,358,599
K 5,011 1,559 69% 215,978
L 29,323 29,040 1% 942,848
M 28,921 14,997 48% 638,423
N 6,234 3,000 52% 412,819
O 3,519 2,874 18% 210,719

AAL: Average Annual Loss; AEP: Aggregate Exceedance Probability
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Recent Catastrophe Model Advances

Ability to Create Own Vie
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Recent Catastrophe Model Advances
Better Representing Uncertainty and Extreme Events Storm swath

Hail Straight-line Wind
— — g Individual
storm streaks

Severe Convective Storm Europe

8 millions stochastic events
1 single pan-continental event set
50,000-year simulation
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Recent Catastrophe Model Advances

Examples for the Lausanne Region

Hail max 6 cm (Lausanne Region®)

Hail max 12 cm (Lausanne Region*)

Hail Footprint - 46604293

Maximum Hail Diameter (in cm)
[Jo4s
1455
56

IR A8

TP ‘
7 g ”r
Hail Footprint - 45718696 }:v‘ RN

Maximum Hail Diameter
(in cm)
[10-45
[1455
156
67
B 7-8
Il 89
B 9-10
B 10-11
M 1112

A 2
]

Pt

Number of
Claims

Return Period Loss
ECA Vaud (years)

Average

Claim Value ECA Vaud (CHF) Claim (CHF)

140 million
(85% over Lausanne®)

60 37,000 3,700

© 2022 Risk Management Solutions, Inc.

Number of
Claims

76,200

Return Period Loss
ECA Vaud (years)

Claim Value ECA Vaud
(CHF)

3,400 million
(54% over Lausanne *)

Average
Claim (CHF)

25,000 44,600

* Postal Codes: 1000, 1003, 1004, 1005, 1006, 1007, 1010, 1011, 1012, 1018
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Recent Catastrophe Model Advances
Ability to Model the Complex Hazard Factors Influencing Losses

%%
North America Wildfire L v .

93 millions stochastic events

50,000-year simulation
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Recent Catastrophe Model Advances
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Recent Catastrophe Model Advances
Ability to Model the Complex Vulnerablllt Factors Influencing Losses
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Recent Catastrophe Model Advances
Ability to Model the Complex Vulnerability Factors Influencing Losses
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Wildfire Primary Modifiers

Occupancy

Number of Stories
Year Built

Floor Areas

Wildfire Secondary Modifiers

Roof System Covering el

Roof Shape

Roof Age / Condition
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https://www.rms.com/risklabs

Final Thoughts...

New technologies and recent CAT modelling
advances help...

Adressing challenges

» Natcat volatility, earnings risk
» Complexity around «secondary perils»

Delivering new insights

» More comprehensive and realistic views of risk
» New analytics to better understand complex risks
» New tools to improve risk management workflows

Unlocking new opportunities

» Grow the industry, profitably
» Maintain industry’s relevance for society

© 2022 Risk Management Solutions, Inc.

Where a center of excellence like ECCE could help

Risk Modeling and Assessment, incl. independent
benchmarking on extreme events

Cross-Disciplinary Research: climate science, engineering,
economics, and risk management

Policy Recommendations: risk mitigation strategies and
regulations

Resilience Studies: infrastructure improvements, early warning
systems, incentivization

Educational Programs, across a broad range of stakeholders
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