Course directory 2015.2016

School of Biology (FBM-BIO)
Master

* your selection

> Biology > Master of Science (MSc) in Behaviour, Evolution and Conservation, subject area Behaviour, Economics and Evolution
NOTICE

This course catalogue was produced using data from the SylviaAcad information system of the University of Lausanne. Its database contains all information about courses proposed by the different faculties and their times. This data can also be consulted online at the address: https://applicationspub.unil.ch/interpub/noauth/php/Ud/index.php.

Web site of the faculty: http://www.unil.ch/ecoledebiologie/

Generated on: 16.06.2016
NAME OF THE COURSE

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Status</th>
<th>Hours per week</th>
<th>Teaching language</th>
<th>Hours per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Levels

P: Programme requirements

O: Objective

C: Content

B: Bibliography

I: Additional information

ABBREVIATIONS

TYPE OF COURSE

- **Attest.** Attestation
- **C** Course
- **C/S** Course - seminar
- **Cp** Camp
- **E** Exercises
- **Exc** Excursion
- **Lg** Guided lecture
- **S** Seminar
- **T** Fieldwork
- **TP** Practical work

STATUS

- **Fac** Facultative
- **Obl** Compulsory
- **Opt** Optional
- **Fac/Comp/Opt** Facultative, compulsory or optional (according to the study programme)

SEMESTER

- **Sp** Spring
- **A** Autumn
The Master program has a normal duration of 3 semesters and comprises 90 ECTS:

- 15 ECTS: Compulsory (9.5 ECTS) and Optional Courses (5.5 ECTS) (Module 1)
- 15 ECTS: First Step Project (Module 2)
- 30 ECTS: Compulsory (18 ECTS) and Optional Courses (12 ECTS) (Module 3)
- 30 ECTS: Personal Research Project (Master Thesis) (Module 4)

For specialisation Behaviour, Economics and Evolution (BEE) (30 ECTS), the student must obtain:

- 6 ECTS with Compulsory courses (marked in blue) in the Module 1
- 18 ECTS with Compulsory interdisciplinary subjects (marked in blue) in the Module 3
- 3 ECTS with Disciplinary optional subjects (marked in green) in the Module 3
- 3 ECTS with Cross disciplinary optional subjects (marked in blue) in the Module 3

Autumn Semester (semester 1)

<table>
<thead>
<tr>
<th>Courses / Enseignement</th>
<th>Hours per semester</th>
<th>Teaching Staff</th>
<th>ECTS Credits</th>
<th>Limited nb of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory / Obligatoires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Data Analysis in Biology I</td>
<td>6 - 6</td>
<td>Schütz F.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analyse de données en biologie I : niveau avancé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction into Scientific Writing I</td>
<td>7 - 9</td>
<td>Flatt T.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Introduction à la rédaction scientifique I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microeconomics and Game Theory (HEC)</td>
<td>56 - 6</td>
<td>Thöni C.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Microéconomie et jeux théoriques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>69 - 6</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Optional / Optionnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Data Analysis in Biology II</td>
<td>6 - 6</td>
<td>Schütz F.</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Analyse de données en biologie II : niveau avancé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem-based Learning in Biological Models</td>
<td>7 - 35</td>
<td>Franken P.</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Apprentissage par problème : modèles biologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Research in all its Forms (for Biology)</td>
<td>14 - 10</td>
<td>Preissmann D.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>(Sciences2 - in French only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La recherche dans tous ses états (pour biologie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Analysis and GIS in Ecology</td>
<td>7 - 10</td>
<td>Guisan A.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Analyses spatiales et SIG en écologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to R (optional support)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction à R (mise à niveau optionnelle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Communication and Parasitism</td>
<td>14 - 10</td>
<td>Roulin A., Christe P.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Communication animale et parasitisme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylogeography</td>
<td>7 - 10</td>
<td>Fumagalli L.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Phylogéographie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populations Genetic and Dynamic</td>
<td>7 - 10</td>
<td>Goudet J.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Génétique et dynamique des populations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Major Transitions in Evolution</td>
<td>14 - 10</td>
<td>Keller L.</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Les grandes étapes de l’évolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Practical Project / Travail pratique				
Module 2				
First Step Project	- -	224	Wedekind C.	15
Travail d'initiation à la recherche				

* Obtain 5.5 ECTS with optional courses including at least 3 ECTS from courses recognised in the field according to the module 1 (marked in green).

Abbreviations

C = Course
E/S = Exercise/Seminar
PW = Practical Work

03.03.2016/MPJ/jn
<table>
<thead>
<tr>
<th>Courses / Enseignement</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

Compulsory interdisciplinary subjects **

Sujets interdisciplinaires obligatoires

Behaviour, Economics and Evolution Lecture Series

- **Séminaires BEE**
 - 10 10 50 Lehmann L. 6

Environmental Economics

- Di Falco S. 3

Social Evolution: from Genes to Culture

- 28 - - Lehmann L. 3

Writing a Project Proposal

- 10 - 75 Wedekind C. 6

Subtotal 66 0 75 18

Disciplinary optional subjects **

Sujets disciplinaires optionnels

- **Applied Ecology**
 - 14 - 28 Pellet J. 3

- **Biology of Invasives Species**
 - 14 - - Cherix D. 1.5

- **Co-evolution, Mutualism, Parasitism**
 - 14 - - Sanders I. 1.5

- **Conservation Genetics**
 - 14 - - Fumagalli L. 1.5

- **Current Problems in Conservation Biology**
 - 14 14 - Wedekind C. 3

- **Ecology of the Fishes of Switzerland**
 - 7 - 10 Rubin J.-F. 1.5

- **Evolution of Life History and Aging**
 - 14 - - Flatt T. 1.5 15

- **Evolution des traits d'histoire de vie et du vieillissement**
 - 14 - - Perrin N. 1.5 12

- **Evolutionary Biology Workshop**
 - 14 - 32 Kawecki T. 3 5

- **Evolutionary Consequences of Hybridization and whole Genome Duplication**
 - 14 - - Arrigo N. 1.5

- **Honeybee Ecology, Evolution and Conservation**
 - 14 - - Dietemann V. 1.5

- **Ecology of the Fishes of Switzerland**
 - 7 - 10 Rubin J.-F. 1.5

- **Plant Population Genetics and Conservation**
 - 7 - 10 Felber F. 1.5

- **Plant Range Dynamics and Global Change**
 - 7 - 10 Randin C. 1.5

- **Predictive Models of Species' Distribution**
 - 14 14 - Guisan A. 3

- **Sexual Selection**
 - 14 - - Fitze P. 1.5

Optional Internship

Stage optionnel

- **Biological Conservation of the Mediterranean Region**
 - 40 Roulin A., Christe P., Fumagalli L. 2

- **Ecology and Faunistics of the Sea Shore, Roscoff**
 - 49 Perrin N. 3 20

- **Evolution and Biogeography of Semi-arid and Island Floras**
 - 40 Pannell J. 1.5
Master of Science in Behaviour, Evolution and Conservation
Specialisation Behaviour, Economics and Evolution
2015-2016

<table>
<thead>
<tr>
<th>Courses / Enseignement</th>
<th>Hours per semester</th>
<th>Teaching Staff</th>
<th>ECTS Credits</th>
<th>Limited nb of students</th>
</tr>
</thead>
</table>
| **Cross disciplinary optional subjects **
Sujets optionnels cross disciplinaires | | | | |
| Economic Growth
Croissance économique | 56 - - | Thoenig M., Couttenier M. | 6 | |
| Judgment and Decision Making
Jugement et prise de décision | 28 - - | Hoffrage U. | 3 | |
| Leadership Development
Développement de leadership | 28 - - | Bendahan S. | 3 | |
| Neuro Economics (in french)
Neuro économie | 56 - - | Villa A. | 6 | |
| Political and Institutional Economics
Institution politique et économique | 56 - - | Rohner D. | 6 | |
| Behavioral Economics (autumn)
Économie comportementale | 56 - - | Santos-Pinto L.-P. | 6 | |
| Social & Economic Networks (autumn)
Réseaux sociaux et économiques | 56 - - | Tomassini M., Pellizzari M. | 6 | |
| **Total** | **30** | | | |

Spring semester (semester 2) and Autumn Semester (semester 3)

<table>
<thead>
<tr>
<th>Course / Enseignement</th>
<th>ECTS Credits</th>
</tr>
</thead>
</table>
| Master Thesis BEE
Travail de Master BEE | Thesis Director
Directeur du travail de Master | 30 |

** Obtain 18 ECTS with compulsory interdisciplinary subjects.
** Obtain 12 ECTS with optional courses including at least 3 ECTS from disciplinary subjects (marked in green) and 3 ECTS from cross disciplinary subject (marked in blue) according into the module 3.
BIOLOGICAL SECURITY

<table>
<thead>
<tr>
<th>C</th>
<th>Obl</th>
<th>french</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: A basic knowledge of microbiology and vegetal science

O: To familiarise future researchers with legislation concerning genetic engineering. In addition, possible biological risks associated to different applications of this technology will be discussed with the help of examples.

C: * Legislation: article 24 of the Federal Constitution; law concerning environmental protection; law concerning epidemics; ordinance on protection against major accidents; Swiss commissions on biological security: notification and registration of projects.
 * Biological security in the laboratory: containment; security equipment; technical measures: laboratory construction; standard laboratory (microbiological) practice; classification of biological material: plasmids, microorganisms, cell lines, primary cells; security levels 1-4.
 * Release of genetically modified bacteria in the environment: monitoring, survival and dissemination, ecological impact, transfer of genes, containment systems.
 * Potential biological risks associated with the use of transgenic plants: dissemination, cross-pollination, gene transfer.
 * The problem of recombinant vaccines: vectors, DNA vaccines.
 * Somatic genetic therapy I: Illnesses accessible to treatment by somatic genetic therapy, gene transfer methods.
 * Somatic genetic therapy II: Evaluation of the biological risk for the patient and his environment.
ADVANCED DATA ANALYSIS IN BIOLOGY I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Obl/Opt</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>Obl/Opt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>Obl/Opt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

Frédéric Schütz
INTRODUCTION INTO SCIENTIFIC WRITING I

Thomas Flatt

<table>
<thead>
<tr>
<th>C</th>
<th>Obl/Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Obl/Opt</th>
<th>english</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: Lecturing and paper writing are in English.

O: Synopsis of the major course aims in English:

This short but intensive block course introduces students to the practice of scientific writing (and aspects related to getting published in peer-reviewed scientific journals).

We will discuss questions such as:

Why is it important to publish?

What is good/clear versus bad/unclear (scientific) writing?

How to learn how to write well?

How to structure and write a good scientific manuscript?

The submission, editorial and reviewing process.

How to review someone else's paper?

Publishing is of key importance in scientific research: your job as a scientist is not finished until you have published your results - science is to a very large extent about effectively communicating your results and insights, i.e. what you have learned about how nature works. The ultimate aim of this intensive course is thus to equip students with a solid understanding of how to effectively communicate their research in writing.
The course includes both lectures and practical exercises in class, distributed over four half-days. The lectures will give a broad and brief overview of different aspects of scientific writing and publishing; however, the major emphasis of the course is on practical work on part of the students. During the practical parts the students will learn, from scratch, the fundamental structure and essential components of scientific writing, how to write effective outlines/drafts and - most importantly - how to write complete, clear, well-structured papers. These practical exercises will thus require students to do reading and writing assignments, often under a bit of time pressure. At the beginning the exercises will be worked on by teams of 2-4; towards the end, each student will work individually. Finally, to get a grade for this class, students will have to complete 1 written report (homework assignment). For each exercise as well as for the written reports we will give detailed and individualized feedback.

Detailed Program

Day 1: Lecture 1: Writing papers: the basics of why and how. We will discuss the following: Overview of class and organizational things (incl. homework assignments). Why is it important to publish? What is good/clear versus bad/unclear (scientific) writing? How to learn how to write well? [We will also briefly touch upon issues of good scientific practice and conduct, and various ethical issues connected to publishing.] Approx. 1 hour.

Day 1: Practical work 1. How to think of an effective title and how to write a succinct abstract. In groups of 2-3. Read the assigned (stripped down and short) manuscript and come up with a title and with keywords. Then write a short abstract (< 200 words). We will then discuss the solutions you have come up with, and their potential pros and cons, together in class. Approx. 3 hours.

Day 2: Lecture 2: How to write a scientific paper. We will discuss the basics and essentials of writing a scientific paper (and also what not to do!). Specifically, I will explain how a paper should be structured and sub-structured, how to draft a paper (i.e., how to get started), how to build and complete a full manuscript, and then how to improve it by continuous and agressive revising and re-revising. I will also give you hints and tips for effective writing. Approx. 1 hour.

Day 2: Practical work 2. Writing your own paper in a nutshell. I will give you some data/results (e.g., data figures/tables/legends/statistical outcomes) to choose from. Form a team of 2-3. Ask yourself: What do the results/tables/figures/analyses show and mean? Then prepare a very short mini-paper (1 page max), including: Title, Abstract, Introduction, Materials and Methods, Results, Discussion and Conclusion (there are some other components in a paper that we will skip for the sake of this exercise). Each component should be between 1 and 3-4 sentences maximum. We will then discuss your solutions and their potential pros and cons together in class; I will then give you detailed feedback on your papers by e-mail within 1 week of the exercise. Approx. 3 hours.

Day 3: Lecture 3: How to write a scientific paper: recap. We will briefly recapitulate what we have discussed and learned so far. Approx. 30 min - 1 hour

Day 3: Practical work 3: Review a paper. What distinguishes a good from a bad manuscript? Now you are the reviewer! Being a critical reviewer will help you to learn to distinguish between good and bad writing and thus help you to improve your own scientific writing. You will be given 2 short, stripped-down manuscripts. Team up in groups of 2-3. Read both manuscripts critically, then make pro and contra lists for both manuscripts. Briefly explain why you would accept/reject (or reach some other decision) the manuscript for publication (
MICROECONOMICS & GAME THEORY

Christian Thoeni

<table>
<thead>
<tr>
<th>C</th>
<th>Obl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.00</td>
</tr>
</tbody>
</table>

N: Master

B:
- Slides and problem sets
- Further readings will be announced in class
ADVANCED DATA ANALYSIS IN BIOLOGY II

Frédéric Schütz

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

School of Biology (FBM-BIO)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
SCIENTIFIC RESEARCH IN ALL ITS FORMS

Delphine Preissmann

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>2</th>
<th>french</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: * Bachelor degree
 * Passive knowledge of French

O: - Integrate technics & scientific methods from different academic fields
 - Synthesize information from different disciplines
 - Transpose knowledge & results from one academic field to another

C: This course offers a multidisciplinary perspective on memory. While addressing this topic, speakers from different faculties will shed light on their own way of practicing research.

I: http://www.unil.ch/sciencesaucarre/page86487.html
SPATIAL ANALYSIS AND GIS IN ECOLOGY

Antoine Guisan

<table>
<thead>
<tr>
<th>E</th>
<th>Opt</th>
<th>english</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: Basics in statistics and ecology

O: Teaching students the basics of GIS and remote sensing, as well as the main spatial methods available in spatial ecology.

C: 1. Introduction to GIS
 2. Introduction to remote sensing
 3. Raster analyses
 4. Neighbourhood analyses
 5. Spatial interpolation
 6. Detection of spatial structures and patterns

I: http://www.unil.ch/ecospat
ANIMAL COMMUNICATION AND PARASITISM

Philippe Christe, Alexandre Roulin

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
</tr>
</tbody>
</table>

N: Master
P: None
O: Across the animal kingdom, individuals of the same species differ in their propensity to take risks, and explore new environments, and to be active, aggressive or sociable. Individual differences in behaviour that are consistent through time and across contexts are coined ‘personalities’, ‘behavioural syndromes’ or ‘temperaments’. The terminology of personality is not a mere fashionable label of something usually studied by behavioural ecologists, but useful to conceptualize the common phenomenon that individuals differ markedly and consistently in their behavioural phenotypes across ecological and social contexts. The notion of personality implies that suites of behaviours are correlated within individuals and hence individuals are less flexible than would be expected under optimality models. In this course, I propose to study personality from an evolutionary point of view and also the evolution of language.

C: This lecture is interactive and illustrated by recent research articles.
7h will be given by A. Roulin and 7h by P. Christe

Journaux scientifiques figurant à la bibliothèque du Biophore ou sur internet (http://perunil.unil.ch/perunil/periodiques/).

I: Aucune
PHYLOGEOGRAPHY

Luca Fumagalli

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Opt</th>
<th>english</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

O: 1) Course
 Study of the historical processes (population expansions, bottlenecks, vicariance and migration) responsible for the current geographic distribution of genealogical lineages.
 2) TPs
 Analysis and interpretation of phylogeographic data with the help of several softwares.

C: 1) Phylogeography: definition and historical backgrounds
 2) Animal and plant molecular markers
 3) Distribution area
 4) Gene tree/species tree
 5) Molecular clocks
 6) Coalescence
 7) Mismatch distribution
 8) Phylogenetic trees and networks
 9) Phylogeographic patterns
 10) Comparative phylogeography
 11) Phylogeography and conservation
 12) Phylogeography and genomics.

POPULATIONS GENETIC AND DYNAMIC

Jérôme Goudet

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Opt</th>
<th>english</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: An introductory course in population genetics and population dynamics, and a good understanding of the notions developed in Nicolas Perrin’s course, “Biologie des populations”

O: Gain an understanding of how genetics and genomics interact with demographic and selective processes.
website:
http://www2.unil.ch/popgen/teaching/PGD15/

C: In the first part of the course, selected papers from the recent literature are presented by students and discussed in a journal club format.
In the second part, in groups of 2-3 students you will use computer simulations and the quantiNemo program (http://www2.unil.ch/popgen/softwares/quantinemo/) to investigate questions such as:
- efficacy of selection in the face of gene flow?
- effect of the number of loci encoding a trait on the speed of adaptation
- is neutral diversity a good proxy for adaptive diversity?

I: http://www2.unil.ch/popgen/teaching/PGD15/
THE MAJOR TRANSITIONS IN EVOLUTION

Laurent Keller

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
P: none
O: Understand how life has become increasingly more complex during the course of evolution on earth
C: We will address the major transitions of life, including the evolution of multicellularity, evolution of sex and emergence of animal societies and language in humans
B: La bibliographie sera déterminée lors du cours
FIRST STEP PROJECT

Christian Fankhauser, Olivier Staub, Claus Wedekind

<table>
<thead>
<tr>
<th>TP</th>
<th>Obl</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15.00</td>
<td>english</td>
<td>224</td>
</tr>
<tr>
<td>A</td>
<td>15.00</td>
<td>english</td>
<td>282</td>
</tr>
<tr>
<td>A</td>
<td>14.00</td>
<td>english</td>
<td>250</td>
</tr>
</tbody>
</table>

N: Master

P: Practicals performed during the bachelor (molecular biology, genetics, biochemistry, bioinformatics)

O: - An initiation to the work of a scientist
 - Conduct experimental work in research lab (wet bench or in silico)
 - Interpretation of research results
 - Implement basic principles in experimental design (e.g. include the appropriate controls, statistical significance of the results etc…)
 - Present your experimental work in a written report which will be organized like a typical research article (introduction, results, discussion, materials and methods)
 - Present your work orally (seminar style)

C: Perform laboratory work for about 12 weeks during the time when the student does not follow theoretical classes. This research project will typically be performed under the guidance of a PhD student or a post-doc from the host laboratory.
BEHAVIOUR, ECONOMICS AND EVOLUTION LECTURE SERIES

Laurent Lehmann

<table>
<thead>
<tr>
<th>C</th>
<th>Obl</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Obl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>Obl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

School of Biology (FBM-BIO)
SOCIAL EVOLUTION : FROM GENES TO CULTURE

Laurent Lehmann

<table>
<thead>
<tr>
<th>C</th>
<th>Obl/Opt</th>
<th>english</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

O: The goal of the course is to introduce the student to the foundations of social evolution and to an understanding of the main selective forces underlying the emergence of cooperation, altruism, and conflict within animal societies.

C: The course will consist of an analysis of various models of social interactions (games) by using and providing an introduction to evolutionary game theory and inclusive fitness theory. These models will include the analysis of one shot interactions settings, such as the prisoner’s dilemma, the stag-hunt, and the snow-drift games, as well as multimove games including reciprocity and reputation. Models for the evolution of punishment and policing will also be analysed, along with tragedy of the commons type of situations and their resolutions. Interactions occurring in well mixed as well as in family and spatially structured populations will be considered. The course will emphasize the similarities and differences between all these situations.
WRITING A PROJECT PROPOSAL

Claus Wedekind

<table>
<thead>
<tr>
<th></th>
<th>Obl</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

TP: Obl

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>english</td>
<td>10</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>english</td>
<td>75</td>
</tr>
</tbody>
</table>

School of Biology (FBM-BIO)
APPLIED ECOLOGY

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2.50/3.00</td>
<td>english</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP</th>
<th>Opt</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>english</td>
</tr>
</tbody>
</table>

N: Master

P: BSc level in biology, including ecology

O: Applied ecology is a young crisis discipline undergoing a major effectiveness revolution. In most situations, urgent action is necessary, even in the absence of reliable information. How do we gather sound ecological information? How do we use it to plan natural communities conservation? In the process of answering these questions, wildlife ecologists often realize that research and practice are just two sides of the same coin.

C: The goal of the course is to teach students some of the skills they will need as evidence-based conservationists. Practical examples will be drawn from various ecosystems, communities and species. The course will revolve around the stages of adaptive management:
- monitoring ecological resources, monitoring occupancy and abundance
- research syntheses (systematic reviews and meta-analyses)
- ecological triage (systematic conservation planning and red lists)
- natural communities conservation planning and legislative context.

Field-based case studies will provide students an opportunity to apply and discuss some of the principles illustrated in the course. Practical work will include meeting with practitioners, discussing and analyzing their approach and methods through the prism of adaptive management.

« There is no such thing as a special category of science called applied science; there is science and its applications, which are related to one another as the fruit is related to the tree that has borne it. » Louis Pasteur
BIOLOGY OF INVASIVES SPECIES

Daniel Cherix

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: knowledge of fauna and flora

O: To understand the fundamentals of biological invasions in relation to conservation biology

C: Introduction - Origin and basics of biological invasion - Characteristics of invasive species - Diffusion mechanisms - Ecological consequences. Examples are taken in Switzerland, Europe and World, including animal species and plant species regarding accidentally introduced species, voluntary introduced species, re-introductions and extensions

CO-EVOLUTION, MUTUALISM AND PARASITISM

Ian Sanders

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>English</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: Must understand English and be prepared to give presentations

O: To understand the evolutionary consequences of organisms living together in mutualism or parasitism and how to investigate it experimentally

C: The course comprises some introductory talks given by me about concepts in co-evolution and theoretical frameworks for studying co-evolution. Afterwards, students give presentations on chosen key publications in this field and the group discusses these subjects after the presentations.

B: All bibliography is made available in PDF format before the course begins. For an example of the publications discussed you can find last year’s publications in my document public folder.
CONSERVATION GENETICS
Luca Fumagalli

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
P: None
O: To give a comprehensive introduction to genetic principles involved in conservation
C: loss of genetic diversity in small populations; inbreeding and loss of fitness; population fragmentation; management of intraspecific genetic diversity; genetic management of captive populations; non-invasive genetic sampling; fragmented populations and translocations; genetically viable populations; forensic zoology; detecting hybridization

CURRENT PROBLEMS IN CONSERVATION BIOLOGY

Claus Wedekind

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: Lectures, discussions, and proposal writing in English.

O: Introduction into
- some important problems of conservation biology
- funding opportunities for conservation projects
- the planning and writing of grant proposals
- peer reviewing of grant proposals

Own ideas shall be developed, presented and discussed in class.

C: Some current research topics within the field of conservation biology will be further introduced in lectures, guest lectures, and discussion in class. Each student then develops his own idea of a research project within these topics. After an introduction into funding agencies and the planning and writing of grant proposals, each student (or groups of two) write(s) up an own proposal and present(s) it to the class. The proposals of colleagues will then be peer-reviewed after an introduction into peer-reviewing of grant proposals.
Ecology of the Fishes of Switzerland

Jean-François Rubin

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP</th>
<th>Opt</th>
<th>english</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: none

O: Recognize the different habitats and species
Know the biology of the principal species
Identify the problems linked to the management of these habitats and species

C: Generalities on water
Lakes
Watercourses
Plankton and plants
Systematic of fish
Anatomy of fish
The fish of Switzerland
This is an advanced course for students with a solid background in evolutionary ecology, evolutionary genetics and quantitative genetics with a strong interest in understanding Darwinian fitness and natural selection. The course will be strongly based on a book by Stearns (Stearns, S.C. 1992. The evolution of life histories. Oxford: Oxford University Press). The course requires proficiency in English and the willingness to actively engage in discussing, asking questions, reading, presenting material, etc. An understanding of basic statistics and mathematics (including calculus) is helpful. At the end of the course, the students will take an oral exam.

O:
(1) To learn about fundamental concepts in evolutionary biology in the context life history evolution.
(2) To learn what fitness and life history traits are; to learn how life history traits evolve; and to understand the diversity of different life history strategies among different organisms and environments.
(3) To learn what life history trade-offs are; to learn what life history plasticity and reaction norms are.
(4) To learn how we can understand the existence of aging, as well as differences in lifespan and the rate of aging among individuals and among species, by using evolutionary thinking.
(5) To learn about why life history evolution is one of the major explanatory frameworks in evolutionary biology. To be able to define its main concepts and explain its main approaches and limitations.
(6) To be able to explain fundamental concepts in evolutionary biology to lay persons using examples from life history evolution.
(7) To be able to explain to lay persons why evolution matters in terms of explaining why organisms age and die.
(8) To improve your ability to have educated conversations about science in English.
(9) To improve your ability to read and understand scientific texts in English.

C: This course introduces the field of life history evolution, a branch of evolutionary ecology and evolutionary genetics that deals with the evolution of fitness-related traits. A female North Pacific Giant Octopus (Enteroctopus dofleini) lives three to four years; it lays thousands of eggs in a single bout and then dies. By contrast, a mature Coast Redwood Tree (Sequoia sempervirens) lives for many hundreds of years and produces millions of seeds each year. As these examples illustrate, organisms differ dramatically in how they develop, the time they take to grow, when they become mature, how many offspring of a particular size they produce, and how long they live. Together, the age-, size-, or stage-specific patterns of development, growth, maturation, reproduction, survival, and lifespan define an organism’s life cycle, its life history. The principal aim of the field of life history evolution is to explain the remarkable diversity in life histories among species. But there is another, more compelling reason for why life history evolution is important: adaptation by natural selection is based on variation in Darwinian fitness among individuals, and since life history traits determine survival and reproduction they are the major components of fitness. The study of life history evolution is thus about understanding adaptation, the most fundamental issue in evolutionary biology: to explain the remarkable diversity of life histories among species we must understand how evolution shapes organisms to optimize their reproductive success. I will introduce the basics of life history theory and review what biologists have learned about life history evolution. A particular focus of the course will be on lifespan and aging: Why do we age? And why does natural selection not prevent such a deleterious process? In the course we will discuss evolutionary explanations for why organisms grow old and die. In addition to these evolutionary concepts and explanations, we will also discuss the genetic and physiological mechanisms underlying the evolution of life histories and aging. The course will consist of a series of interactive overview lectures, mixed with reading/discussion sessions.

Parts:
(1) Overview of life history theory
(2) Basic demography
(3) Quantitative genetics and reaction norms
(4) Age and size at maturity
(5) Number and size of offspring (Clutch Size and Reproductive Investment)
(6) Reproductive lifespan and aging

Remark no. 1: The overview lectures should be followed and these lecture notes be used in conjunction with reading the chapters in Stearns’ 1992 book.

Remark no. 2: We won’t cover sex allocation theory; modular life histories; complex life histories. Most of the material presented is based on animal life histories, not plant life histories.
B:
EVOLUTION OF SEX DETERMINATION

Nicolas Perrin

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
EVOLUTIONARY BIOLOGY WORKSHOP

Tadeusz Kawecki

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP</th>
<th>Opt</th>
<th>english</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: Background knowledge and interest in evolutionary biology

O: The main goals are to develop the following skills:
- developing your scientific ideas through discussions in groups
- thinking critically and expressing oneself clearly
- turning a general idea into a research project
- writing a grant proposal and defending it
- doing it all in English

C: Teachers:
- DEE: Tadeusz Kawecki, Ian Sanders
- Invited Professors:
 - Mark Kirkpatrick (University of Texas, Austin)
 - John Taylor (University of California, Berkeley)

Target participants: advanced Master students and PhD students from University of Lausanne and from other universities in Switzerland and abroad.

This course is based on a concept developed by Steve Stearns and John Maynard Smith and implemented in their "Guarda" workshop (organized by the University of Basel since 1987). It has a character of a retreat; it takes place in a beautiful small Alpine village (La Fouly), which will allow you to focus while being able to enjoy the landscape and the Alpine flora.

It is you, the students, who will be in charge in this course. You will work with your ideas, you will decide yourself what the important questions in broadly defined evolutionary biology are, you will choose one, and propose a research project that will address it. The faculty will visit the groups during the discussions to answer your questions and provide coaching and they will give you feedback on your proposal, but they will generally take the back seat. Additionally, the faculty will give informal talks about their research and be available for informal discussion with individual students.

Provisional schedule:
- **Day 1:** arrival in the afternoon; students are divided in groups of 4-5. A research talk.
- **Day 2:** Discussions in groups (3 sessions), faculty visit the groups on rotational basis. A research talk in the evening.
- **Day 3:** Discussions in groups, proposal writing. The first version of the proposal due at dinner time. After dinner feedback by the faculty.
- **Day 4:** Morning: free half-day for hiking/birdwatching/botanizing/relaxing. Afternoon: groups continue working on the proposals. A research talk in the evening.
- **Day 5:** Groups continue working on the proposals, the second version delivered in the evening. A research talk.
- **Day 6:** Morning: groups get feedback about their proposals and prepare presentations. Each group presents their project to the other groups; this is run by the students, the faculty sit back. Evening-next morning: a grill party.
- **Day 7:** cleaning up and departure.
EVOLUTIONARY CONSEQUENCES OF HYBRIDIZATION AND WHOLE GENOME DUPLICATION

Nils Arrigo

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
HONEYBEE ECOLOGY, EVOLUTION AND CONSERVATION

Vincent Dietemann

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

O: This series of lectures will show the complexity of insect societies and will give the opportunity to see how concepts learned elsewhere by the students can be placed within the context of a single species.

C: Since honeybees are economically important insects, they have been studied early in history and the knowledge we possess about them is greater than for any other social insect. Our understanding of the honeybee reveals the complex organisation reached by insects when they form societies. This series of lectures will present some aspects of this complexity that will be replaced within its evolutionary context. Various aspects of honeybee ecology and evolution, including geophylogeny, biology, reproduction at individual and colony level, division of labour, communication, economical value, pathogens will be presented. After a general introduction of this model species describing the diversity and biogeography of the taxon, we will dissect the communication abilities of European honeybees and compare it with related Asian species. We will see how this communication is used to organise foraging tasks sustaining colony growth. Reproductive conflicts will be described to show that the altruism commonly attributed to the colony members is tainted by selfishness. Honeybee health is a current concern and we will review the pathogens affecting them and comment the role of humans in their spread and control in an evolutionary context. Since honeybees are globally threatened, we will see what economical losses their decline could have and some conservation projects to invert the trend will be put in context.

B:
- Moritz RFA, Southwick EE, 1992. Bees are superorganisms. Springer Verlag
PHYLOGENY AND COMPARATIVE METHODS

Nicolas Salamin

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: none

O: Phylogenetic reconstruction methods and their application in evolutionary biology. To know and understand phylogenetic reconstruction methods in order to test the processes leading to genes and organisms evolution.

C: The subjects will be presented during lectures as well as practicals.
 I. Reconstruction methods
 - What is a phylogenetic tree and how to interpret it?
 - Tree reconstruction:
 a) optimisation criteria and models of evolution
 b) search for the optimum tree
 c) Bayesian methods
 - Can we trust the inferred tree?
 II. Uses for phylogenetic trees
 - Detecting positive selection in a coding gene
 - Testing coevolution and cospeciation
 - Macroevolution:
 a) dating evolutionary events
 b) tempo and mode of evolution
 c) testing for key innovations
 - Phylogeny and conservation

I: http://www.unil.ch/phylo/teaching PMC.html
PLANT POPULATION GENETICS AND CONSERVATION

François Felber

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>/english</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TP</th>
<th>Opt</th>
<th>/english</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
PLANT RANGE DYNAMICS AND GLOBAL CHANGE

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th></th>
<th>S</th>
<th>1.50</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td></td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
PREDICTIVE MODELS OF SPECIES’ DISTRIBUTION

Antoine Guisan

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2.50/3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: If possible, course ‘Spatial Analyses & GIS’ (ANSPAT) in 1st semester of the Master (not strictly required).

O: Species distribution models (SDMs) are increasingly important in ecology and conservation biology. This course proposes an introduction to these models and related concepts and methods. Overview of the main steps of model building. Advantages and limitations. Applications to various domains (climate change, invasions, rare species, ...).

C: Chap. 1. Introduction to species’ niche & distributions, and related models. Theory and principles behind these models. Competition and dispersal limitations. Types of response variables, main predictive modelling approaches, field sampling design, from predicting species distributions to predicting communities.
 Chap. 4. Assumptions behind these models. Pseudo-equilibrium, niche conservatism, niche completeness, realized niche, and other postulates.

I: http://www.unil.ch/ecospat
<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>english</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

SEXUAL SELECTION

Patrick Stefan Fitze

School of Biology (FBM-BIO)
BIOLOGICAL CONSERVATION OF THE MEDITERRANEAN REGION
Alexandre Roulin

<table>
<thead>
<tr>
<th>T</th>
<th>Opt</th>
<th>english, french</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>A S</td>
<td>1.50/2.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

P: None

O: Faunistic knowledge on birds, insects, crustaceans, mammals and reptiles with an emphasis on conservation issues. We will visit several places (Extermadura, Andalucia around the Doñana national parc, Tarifa and Brazo del Este) where the fauna is fundamentally different and habitats have suffered from human activities to different degrees.

C: Excursions and group field work. Discussion of scientific articles about conservation issues of Spanish endangered species. Additionally, each student shall be responsible for the study of one endangered species. Discussion of projects that could be carried out in Spain to answer questions on evolutionary biology, behavioural ecology and conservation.

B: Polycopié distribué aux participants
ECOLOGY AND FAUNISTICS OF THE SEA SHORE, ROSCOFF
Nicolas Perrin

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>Opt</th>
<th>language</th>
<th>S</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>english, french</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Opt</th>
<th>language</th>
<th>S</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>english, french</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

N: Master

P: !!! Please, contact the person in charge before your inscription !!!

O: To allow a first, integrated approach of the intertidal biotope, and to understand the role played by the tides, the substrate and other conditions on the faunistic composition of littoral communities and on the physical and behavioural adaptations of the species.

C: Lecture (6 h): Introduction to intertidal ecology.
 Excursions and group field work: analysis of zonation and biodiversity in various habitats (sand beach, rock, estuaries and so on). Additionally, each student shall be responsible for the study of one taxonomic group.
 Lab experimentations: experimental design and realisation of an experiment in etho-ecology illustrating adaptative behaviour of an intertidal species.
EVOLUTION AND BIOGEOGRAPHY OF SEMI-ARID AND ISLAND FLORAS
John Pannell

<table>
<thead>
<tr>
<th>T</th>
<th>Opt</th>
<th>french</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
ECONOMIC GROWTH

Mathias Thoenig

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>4</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
B: PART I : Theory
- Galor, 2011, Unified Growth Theory
- Aghion & Howitt, 2009, The Economics of Growth
- Romer, 2011, Advanced Macroeconomics

PART II : Topics
The presentation material is downloadable from the HEC website of the course. The list of papers for the class presentation will be distributed after week 4.

I: http://moodle2.unil.ch/course/view.php?id=5996
JUDGMENT AND DECISION MAKING

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>2</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

B: All materials can be downloaded from the course page. For the slides, two parallel versions exist (one in English, one in French). The literature that is relevant for the exam (journal articles, book chapters) is exclusively in English.

I: http://moodle2.unil.ch/course/view.php?id=5139
LEADERSHIP DEVELOPMENT

Samuel Bendahan

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>2</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

Articles (available for download on the course website in Moodle).
NEURO ECONOMIE

Alessandro Villa

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6.00</td>
</tr>
</tbody>
</table>

N: Master
P: None
O: This course is for students who wish to acquire the principles of management of constraints and decision making from a perspective based on recent discoveries in neuroscience, cognitive science, biology and ecology. The goal is to provide practical benchmarks to various stakeholders of the economy on resource management, information and waste in a neuroeconomics approach.

C: Contemporary society, as each individual, is set to change in a world with limited resources. The choices and decisions we are taking must necessarily consider the constraints imposed on producers and consumers through access to resources and their management. These same principles are found in brain function and behavior by one of its most characteristic behavior: decision-making with respect to whether investment, purchasing, risk taking, consumption are affordable. Where begins and ends the freedom of choice we make?
This course analyzes the information processing by the brain and especially the structures and the brain mechanisms that underlie the cognitive, motor and emotional behavior. Much of the course is devoted to the illustration of examples and experiences of neuroscience and to the methodological approach. Several chapters deal with the organization, allocation and management of resources for development and evolution of living systems in general.
Student participation will be encouraged during the development of exercises and classroom interactions. A working group will be assigned to students who must submit a written report which will be evaluated with consideration for the note.
The reference list is indicative and goes well beyond the strict content of the course but serves to deepen the subject matter.

POLITICAL AND INSTITUTIONAL ECONOMICS

Ana Fernandes, Dominic Rohner, Philippe Tzaud

<table>
<thead>
<tr>
<th></th>
<th>Opt</th>
<th>4</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master
BEHAVIORAL ECONOMICS

Luis Pedro Santos Pinto

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>4</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

I: http://moodle2.unil.ch/course/view.php?id=1741
LIST OF COURSES

School of Biology (FBM-BIO)

B: SECTION 1: THE BIG PICTURE: ORIGINS OF THE STATE

- Market Failures and the efficiency arguments for the state - Redistribution arguments for the state - State Failure and bad politicians

SECTION 2A: ELECTORAL COMPETITION AND PUBLIC CHOICE: THEORY

- Downsian electoral competition and Median Voter Theorem - Probabilistic voting - Lobbying, rent-seeking and Special interest policy - Bureaucracy - Partisan politics: "citizen candidate" and "legislative bargaining"

SECTION 2B: ELECTORAL COMPETITION AND PUBLIC CHOICE: EMPIRICS

- Incumbency advantage - Direct democracy - Political dynasties - Identity of leaders - Information, voting and public policies

i: http://moodle2.unil.ch
SOCIAL & ECONOMIC NETWORKS

Rafael Lalive, Michele Pellizzari, Marco Tomassini

<table>
<thead>
<tr>
<th>C</th>
<th>Opt</th>
<th>4</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: Master

B: The course will cover some material of the excellent overview by Jackson (2009). Watts (2003) is a popular introduction to networks covering many of the phenomena we will discuss in class. The course also discusses material from recent papers on the topics. The following are good sources but not required to follow the course. Course material will be handed out as needed.

- Jackson (2009), Social and Economic Networks, Princeton University Press.
- Barrat, Barthélemy, Vespignani (2010), Dynamical Processes on Complex Networks.

I: http://moodle2.unil.ch/course/view.php?id=5203