## Determination of Chl a in EtOH 90 \%

## Equipment

- 1 vacuum pump
- 1 filter unit
- Filter membrane GF/F (porosity $0.7 \mu \mathrm{~m}$ )
- $90 \%$ ethanol prepared from ethanol absolute for analysis, ACS,ISO,Reag. Ph Eur, purity $\geq 99,9 \%$ (Merck)
- $\quad 15 \mathrm{~mL}$ falcon tubes
- uv-vis spectrophotometer


## Filtration of water

Depending on the phytoplankton load of the sample, 100 to 1000 mL of water is filtered through GF/F filters with a diameter of 47 mm . The filter is then placed in a 15 mL Falcon tube covered with aluminum foil and annotated as follows:

## Sampling site - date - replicate no. - volume filtred

The filter is then frozen at $-20^{\circ} \mathrm{C}$ for at least a few hours prior to extraction. Freezing/ thawing causes the cells to burst, which facilitates the extraction of Chl a.

## Extraction

## Important notes:

* As Chl a is photodegradable, it's essential to protect the samples from light by wrapping a sheet of aluminum foil around the tubes.
* Ethanol is a relatively toxic solvent when ingested, it's also toxic by inhalation and skin contact. It must therefore be handled with gloves and under a fume hood.

1) After thawing the filter, add 7.5 mL of $90 \%$ ethanol. Close the tube tightly to prevent evaporation of the solvent.
2) Shake the tube vigorously to destroy the filter until it forms a dough.
3) Place the tube for 10 min in the water bath at $70^{\circ} \mathrm{C}$.
4) Leave to cool at room temperature for one hour before measuring with the spectrophotometer or leave to stand for about 16 hours at $4^{\circ} \mathrm{C}$ and in the dark.

## Absorbance measurements with spectrophotometer

1) Centrifuge 5 min at 4000 rpm and $10^{\circ} \mathrm{C}$. Most of the filter sludge will form a pellet but some fragments will remain stuck to the walls of the tube, so the tube must be tilted to re-suspend these pieces in the ethanol $90 \%$.
2) Centrifuge 10 min at 4000 rpm and $10^{\circ} \mathrm{C}$ to form the pellet.
3) Take 1 mL of the supernatant with a micropipette and place it in a semi-micro glass or polystyrene cuvette. Read the absorbance at 665nm (wavelength corresponding to the maximum absorption of Chl a ) and at 750 nm (for evaluation of the turbidity of the sample).
$>$ If the measurement at 750 nm is too high (> 0.005 for absorbance levels of 0.1-0.2), then particles form the filter were present in the supernatant. These particles have therefore distorted the absorbance measurement, so centrifugation is necessary and absorbance measurements should be repeated.
> The sample can also be too concentrated. Above 0.8-1 absorbance unit, the extract must be diluted with $90 \%$ ethanol, because it's no more in the linear part of the reading range. Conversely, you should always try to reach absorbance $>0.1$, i.e. beyond the detection limits.

## First make a blank with 90\% ethanol, then measure three times per sample.

## Estimation of the Chl a concentration (according to Talling ,1963)

If it's certain that the analyzed sample contains only Chl a, the concentration in the raw water in $g / L$ is calculated as follows:

$$
\begin{gathered}
{[\mathrm{Chl} \mathrm{a}]=12.055^{*}\left(\mathrm{DO}_{665}-\mathrm{DO}_{750}\right)^{*}(\mathrm{VE} / \mathrm{VF})} \\
\text { with VE : extraction volume }(\mathrm{mL}) \\
\text { VF : filtered volume }(\mathrm{L})
\end{gathered}
$$

On the other hand, if the water sample contains other chlorophyll pigments, the method of Wintermans \& de Mots (1965), still with $90 \%$ ethanol as solvent, in addition to Chl a, an estimation of $\mathbf{C h l} \boldsymbol{b}$ (en $\mu \mathrm{g} / \mathrm{L})$.

$$
\begin{gathered}
{[\mathrm{Chl} \mathrm{a}]=\left[13.7 *\left(\mathrm{DO}_{665}-\mathrm{DO}_{750}\right)-5.76 *\left(\mathrm{DO}_{649}-\mathrm{DO}_{750}\right)\right] *(\mathrm{VE} / \mathrm{VF})} \\
{[\mathrm{Chl} \mathrm{~b}]=\left[25.8 *\left(\mathrm{DO}_{649}-\mathrm{DO}_{750}\right)-7.6 *\left(\mathrm{DO}_{665}-\mathrm{DO}_{750}\right)\right] *(\mathrm{VE} / \mathrm{VF})}
\end{gathered}
$$

