CHAPTER

Point Estimation

Education is man’s going forward from
cocksure ignorance to thoughtful uncer-
tainty.

DON CLARKS' SCRAPBOOK
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232 CHAP, 7 POINT ESTIMATION

7-1 POPULATIONS AND SAMPLES 5

In labie /-1, we review uie concepis ol i:u};ulniiun atid Sdltpie, i |
essential to remember that the population mean p and variance o2 .
constants (though generally unknown). These are called pupuldlnm pr '
ramelers.

By contrast, the sample mean X and sample variance s? are randoy,

variables. Each varies from sample to sample, according to its sampliy,
distribution. For example, the distribution of X was found to be approy;
mately normal in (6-9). A random variable such as X or s?, which ;.
calculated from the observations in a sample, is given the technical nap,
sample statistic. In Table 7-1 and throughout the rest of the text, we shay |
leave the population gray and make the sample colored in order to keg;
the distinction clear, just as we did in Chapter 6.

Now we can address the problem of statistical inference that we poge; |
in Chapter 1: How can the population be estimated by the sample? Syj.
pose, for example, that to estimate the nation’s mean household income
we take a random sample of 100 incomes. Then the sample mean X surely
is a reasonable estimator of w. By the normal approximation rule (6-9), we
know that X fluctuates about u; sometimes it will be above p, sometimes
below. Even better than estimating p with the single point estimate }
would be to construct an interval estimate about X that is likely to bracke
w—a task we shall leave to Chapter 8.

For now, this chapter will concentrate on point estimates. How good i
the sample mean X as an estimator of u? Would the sample median be
better? To answer such questions, we now develop criteria for judgings
good estimator.

7-2 EFFICIENCY OF UNBIASED ESTIMATORS

A—UNBIASED ESTIMATORS

We already have noted that the sample mean X is, on average, exactly on
its target w. We therefore call X an unbiased estimator of .

To generalize, we consider any population parameter ¢ (Greek theta)
and denote its estimator by U. If, on average, U is exactly on target &

TABLE 7-1 Review of Population versus Sample

A Random Sample js a Random Subset of the Population

Relative frequencies f/n are used to Probabilities p(x) are used to com- =
compute pute E

X and s? w and o?

These random variables are examples of These fixed constants are examples of
statistics or estimators. parameters or targets.
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plv)

FIGURE 7-1
Comparison of (a) unbiased estimator, and (b) biased esti-
mator.

shown in Figure 7-1a, it is called an unbiased estimator. More formally,
we define:

U is an unbiased estimator of 0 if (7-1)
E(U) = 0 like (6-5)

Of course, an estimator V is called biased if E(V) is different from 6. In
fact, bias is defined as this difference:

fBias = E(V) ‘ﬁ (7-2)

Bias is illustrated in Figure 7-1b, where the distribution of V is off-target.
Since E(V) is greater than 6, the bias given by (7-2) is positive—reflecting
the tendency of V to be too high.

As we stressed already, to avoid bias we have to randomly sample from
the whole population. To show the difficulty we can encounter if we fail

to follow this fundamental principle, consider an example of nonresponse
bias.

EXAMPLE 7-1

15 0!

.

Let us give a concrete example of the sample survey mentioned at the
beginning of Chapter 6. Suppose each of the 200,000 adults in a city under
study has eaten a number X of fast-food meals in the past week. However,




234

CHAP. 7 POINT ESTIMATION

TABLE 7-2 Target Population, and Subpopuiation Wno
Would Respon

| Whole larget SubpUpuialiv
Population Responding

i
X = Number Freq. Rel. Freq. Freq. Rel. Freq.

of Meals f fIN f fIN

0 100,000 .50 38,000 .76

1 40,000 20 6,000 2

2 40,000 .20 4,000 .08

3 20,000 10 2,000 .04
200,000 1.00 50,000 1.00

a residential phone survey on a week-day afternoon misses those who g

working—the very people most likely to eat fast foods. As shown in Tab|,

7.2 below. this leaves a small subpopulation who would respond, esp.

cially small for higher values of X.

a. What is the mean u of the whole target population, and the mean
up of the subpopulation who would respond?

b. A random sample of 200 phone calls will bring a response of
about 50, whose average R will be used to estimate . What is its

bias?
SOLUTION ;
a. Using the probabilities (rel. freq.) for the whole target population,
we obtain p = 0(.50) + 1(.20) + . . . = .90. _
Similarly, using the probabilities for the responding subpopu- |
Jation, we obtain ug = 0(.76) + 1(.12) + . . . = .40. l

b. The sample mean R has an obvious nonresponse bias. Since
heavy buyers of fast foods are far less likely to respond, R will
tend to be much too small. To calculate just how serious the bias
is, note that R is the average of a random sample drawn from the
subpopulation with mean ug. Therefore, E(R) = ug according to
(6-5), and consequently,

Bias = E(R) — 1 like (7-2)
= HRp — M '
= .40 — .90 = —.50 (7-3)

Thus the bias is indeed very large—an underestimate of .50
meals per week.
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ESTIMATORS (MiNIMUM VARIANCE)

As well as being on target on the average. we also would like the distribu-
tion of an estimator to be highly concentrated—that is, to have a small
variance. This is the notion of efficiency, shown in Figure 7-2. We de-
scribe the estimator V in panel (a) as more efficient than the estimator W
in panel (b) because it has smaller variance. More formally, we define the
relative efficiency of two unbiased estimators:

var W

var V (7-4)

Efficiency of V compared to W =

For example, in the rare case when the population being sampled is
exactly symmetric, its center can be estimated without bias by either the
sample mean X or median X. For some populations, X is more efficient;
for others, X is more efficient. In sampling from a normal population for
instance, we show in Appendix 7-2 that for large samples:

var X = 1.57 ¢%/n (7-5)

Since X has variance o%/n, as given in (6-6), this smaller variance makes it

plv)

True ¢ U

plw)

- .-

True ¢ w

FIGURE 7-2
A comparison of (a) efficient estimator,
and (b) inefficient estimator.




236 CHAP. 7 POINT ESTIMATION

more efficient. Specifically, for normal populations,

o varX "
Etficiency of X relative to X = = 11Ke (7.4
var X :
B 1.57a%/n
o4/n
= 1.57 = 157% (7-6

The greater efficiency of the sample mean is nicely confirmed by t,
Monte Carlo study in Figure 6-11—where the ratio of variances was a5,
1.57 (=1.26%/1.012). We conclude that, in estimating the center of a ot
mal population, the sample mean X is about 57% more efficient than tj
sample median X. (In fact, it could be proved that the sample mean
more efficient than every other estimator of the center of a normal popy.
lation.)

Of course, by increasing sample size n, we can reduce the variance ¢
either the sample mean or median. This provides an alternative way ¢
looking at the greater efficiency of the sample mean (in sampling froy |
normal populations). The sample median will yield as accurate an esti
mate only if we take a 57% larger sample. Hence the sample mean is mor |
efficient because it costs less to sample. Note how the economic an
statistical definitions of efficiency coincide in this case.

Is the sample mean always more efficient than the median? An exampl;

will give the answer.

EXAMPLE 7-2

One of the population models with thicker tails than the normal is callec
the Laplace. In this case, we show in Appendix 7-2 that for large samples |

|
var X = .50 o?/n (7-7

Now what is the efficiency of X relative to X?

SOLUTION

Again, X has variance a?*/n, as given in (6-6). In this case it has larg
variance than X, and so X is now less efficient. Specifically, for Laplac

populations,
X
—-— | -

Efficiency of X relative to X = e like (7
var X

_ .50 o?/n (74
a?/n

= .50 = 50% (74

|:
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Although the Laplace distribution is a mathematical rarity, it nicely
illustrates a very practical point: If a population has thick tails, so that
outlying observations are likelv to occur. then the samvle mean has laroer

variance

because it takes into account all the observations. even the

distant outliers that the sample median ignores. In Chapter 16 we will
pursue this issue further.

PROBLEMS

7-1

7-2

7-3

7-5

Assuming as usual that samples are random, answer True or False; if
False, correct it.

a. Samples are used for making inferences about the population
from which they are drawn.

b. w is a random variable (varying from sample to sample), and is
an unbiased estimator of the parameter X.

c. If we double the sample size, we halve the standard error of X,
and consequently double its accuracy in estimating the popula-
tion mean. ;

d. The sample proportion P is an unbiased estimator of the popula-
tion proportion .

Based on a random sample of 2 observations, consider two compet-
ing estimators of the population mean u:

= _ 1 1
XEEX'I"I“EXZ

1 2
andU—§X1+§X2

a. Are they unbiased?
b. Which estimator is more efficient? How much more efficient?

An economist gathers a random sample of 500 observations, and
loses the records of the last 180. This leaves only 320 observations
from which to calculate the sample mean. What is the efficiency of
this, relative to what could have been obtained from the whole
sample?

What is the efficiency of the sample median relative to the sample
mean in estimating the center of a normal population? [Hint: Recall
from (7-6) that the efficiency of the mean relative to the median was
157%.]

a. Answer True or False; if False, correct it.
In both Problems 7-3 and 7-4 we have examples of estimates
that are only 64% efficient. In Problem 7-3, this inefficiency was
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obvious, because 36% of the observations were lost in caley),.
ing X. In Problem 7-4, the inefficiency was more subtle, bey,
it was caused merely bv usine the sample median instead . .'
sample mean. However, in terms of results—producing an ¢
mate with more variance than necessary—both ilu:fﬁ{:ien(,msc,_
equally damaging. T

\

b. In view of part a, what advice would you give to a resear,.
who spends $100,000 collecting data, and $100 analyzing iy

7-6 Suppose that a surveyor is trying to determine the area of a rectapg,
lar field, in which the measured length X and the measured widlﬁi
are independent random variables that fluctuate widely about i
true values, according to the following probability distributions:

x plx) v py)

8 1/4 4 1/2
10 1/4 6 1/2
11 1/2

The calculated area A = XY of course is a random variable, a-
is used to estimate the true area. If the true length and widthe:
10 and 5, respectively,

a. Is X an unbiased estimator of the true length?
b. Is Y an unbiased estimator of the true width?

Is A an unbiased estimator of the true area? (Hint: see Probler
5-38)

7-7 a. To guide long-term planning, an automobile executive commi:
sioned two independent sample surveys to estimate the propo:
tion 7 of car owners who intend to buy a smaller car next tim:
The first survey showed a proportion P, = 60/200 = 30%. Tt
second and larger survey showed a proportion P, = 240/1000+
24%. To get an overall estimate, the simple average P* = 27"
was taken. What is the variance of this estimate? [Hint: You me
assume simple random sampling, so that var P = P(1 — P)/n

b. The first poll is clearly less reliable than the second. So it we
proposed to just throw the first away, and use the estimate P:*
249%. What is the variance of this estimate? What then is ©
efficiency relative to P*?

c¢. The best estimate of all, of course, would count each observait
equally (not each sample equally). That is, take the overall [
portion in favor, P = (60 + 240)/(200 + 1000) = 25%. What*
the variance of this estimate? Then what is its efficiency relati”
to P*?

d. True or False? If False, correct it:
It is important to know the reliability of your sources. For exé®

" .
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ple. it an unreliable source is not discounted appropriatelv, us-
ing it can be worse than simply throwing it away.

7.3 EFFICIENCY OF BIASED AND UNBIASED ESTIMATORS

In comparing unbiased estimators, we chose the one with minimum vari-
ance. Now suppose we are comparing both biased and unbiased estima-
tors, as in Figure 7-3. It may no longer be appropriate to select the estima-
tor with least variance: W qualifies on that score, but is unsatisfactory
because it is so badly biased. Nor do we necessarily pick the estimator
with least bias: U has zero bias, but seems unsatisfactorv because of its
high variance. Instead. the estimator that seems to be closest to the target
overall is V, because it has the best combination of small bias and small
variance.

How can we make precise the notion of being “closest to the target
overall”? We are interested in how an estimator, V let us sav, is spread
around its true target 0:

'idean squared error (MSE) = E(V — 6)? ' (7-10)
like (4-34)

This is similar to the variance, except that it is measured around the true
target ¢ rather than around the (possibly biased) mean of the estimator.
Then, as Appendix 7-4 proves, MSE does indeed turn out to be a combina-
tion of variance and bias:

MSE = (variance of estimator) + (its bias)? (7-11)

We choose the estimator that minimizes this MSE,

W has
least variance
plw)
MOST EFFICIENT
V" has
least MSE
plv)
U/ has
least bias
plu)
|
t
Target

FIGURE 7-3
V is the estimator with the best combination of small bias and variance.
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This confirms two earlier conclusions: if two estimators with equ:
variance are compared (as in Figure 7-1), the one with less bias ig ]J:r-:
ferred: and if two unbiased estimators are compared (as in Figure 7-2) 4.
one with smaller variance is preferred. In fact, if two estimators are Uﬂb
ased. it is evident from (7-11) that the MSE reduces to the variance, ']‘hu;
MSE may be regarded as a general kind of variance, applying to Cithe-
unbiased or biased estimators. This leads to a general definition of ih:l-

relative efficiency of two estimators:

For any two estimators—whether biased or unbiased—

o s MSE(W)
7 , e
Efficiency of V compared to 11 MSE(V)

(7-12
like (7.4

To sum up, because it combines the two attractive properties of smg| |

bias and small variance, the concept of minimum MSE (or maximyp ;

efficiency) becomes the single most important criterion for judging be. |

tween estimators. An example will illustrate.

EXAMPLE 7-3

In Example 7-1, recall the phone survey of 50 responses from 200 calls
that had a serious nonresponse bias. In addition, the average responsef |

has variability too.

a. To measure how much R fluctuates around its target p overall,

calculate its MSE.

b. If the sample size was increased fivefold, how much would the

MSE be reduced?

c. A second statistician takes a sample survey of only n = 20
phone calls, with persistent follow-up until he gets a response.
Let this small but unbiased sample have a sample mean denoted

by X. What is its MSE?

d. In trying to publish his results, the second statistician was criti-
cized for using a sample only 1/10 as large as the first. In fact,

his sample size n = 20 was labeled “‘ridiculous.” What defense

might he offer?

SOLUTION

a. Since R is the sample mean for n = 50 observations drawn only
from the subpopulation who would respond, this is the popula-

tion whose moments are relevant:
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Subpopuiation VWhno VWouid Respond (from Tabie 7-2)

r plr) rp(r) (r — o) (r — pnl (r — up) plr)

0 .76 0 —.4 .16 el 7

1 12 2 .6 .36 0432

2 .0 .16 .0 2.56 2048

3 .04 12 2.6 6.76 2704
confirmed: uy = .40 oh = .64

Thus we can confirm that the bias in R was:
Bias = .40 — .90 = —.50 (7-3) repeated

Also, from the subpopulation variance of = .64 in the table, we
can deduce the variance of R:

2
oh_ 5 h1g like (6-6)

var(R) = - 50

Now we can put the bias and variance together to get the MSE:

MSE = var + bias?® (7-11) repeated
=.013 + .25 = .263

b. A sample five times as large would reduce the variance:

= z .64
var(R) = ? = - = .003

Unfortunately it would not reduce the bias—the same nonre-
sponse would merely be repeated more often. Thus,

var + bias?
= .003 + .25 = .253 (7-13)

MSE

Since the predominant term is the bias, which is unaffected by
sample size, the MSE was reduced hardly at all (from .263 to
.253).

c. By persistent follow up, the statistician gets everybody to reply.
He is therefor sampling from the whole target population, whose
distribution now becomes the relevant one:
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Total Target Popuiation (from Table 7-2)

—_—

3 p(x) xp(x) [x = u) (x — p)? (x —_,u]zp[x]

E—

0 .50 0 —.90 81 405
1 .20 20 10 01 .002
2 .20 40 1.10 1:21 .242
3 .10 .30 2.10 4.41 e

confirmed: p = .90 o’ = 1.09

Since this sample is drawn from the whole population, X is
now unbiased, with

ts
Y
o
o

-_ a .
var(X) = T 20
Thus we can calculate the MSE:

MSE = var + bias? (7-11) repeated
= .055 + 0 = .055 (7-14)

His defense would simply be that his estimator is far better be-
cause it has a far smaller MSE—four times smaller! Or, in less
mathematical terms, “it’s the quality of the sample that counts,
not mere quantity.” He might even point out the lesson of part b
Increasing the sample size (even by 5 times) without dealing
with its bias would provide little practical improvement.

PROBLEMS

7-8 Each of three guns is being tested by firing 12 shots at a target froma

clamped position. Gun A was not clamped down hard enough, and
wobbled. Gun B was clamped down in a position that pointed
slightly to the left, due to a misaligned sight. Gun C was clamped
down correctly.

a. Which of the following patterns of shots belongs to gun A7 gun
B? gun C?

b. Which guns are biased? Which gun has minimum variance’
Which has the largest MSE? Which is most efficient? Which is
least efficient?
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7-9

7-10

*7-11

243

A large chain of shops specializing in tuneups has to choose one of
four gauges to measure the gap in a spark plug. When tested, each
gauge showed a slight error (in hundredths of mm.):

Gauge A B ) D
bias none -10 5 2
standard dev. 10 none 5 8

Which gauge has the smallest MSE (greatest accuracy)?

A market survey of young business executives was undertaken to
determine what sort of computer would suit a combination of their
professional and personal needs. Since those with more children
were thought to be more likely to buy a home computer, one of the
questions each executive was asked was, “How many children do
you have?”

Unfortunately, those with more children tend to have less time
and inclination to reply to the survey, as the following table shows:

Total Population Subpopulation Who

(Target) Would Respond

x = Number of Rel. Rel.
Children Over Frequency Frequency Frequency Frequency

5 Years Old f fIN f fiIN

0 20,000 40 6,200 .62

1 12,000 .24 2,100 21

2 10,000 .20 1,200 12

3 6,000 A2 400 .04

4 2,000 .04 100 .01

N = 50,000 1.00 N = 10,000 1.00

Two types of sample survey were proposed:

i. High volume, with 1000 executives sampled, and with no fol-
low up. Their overall response rate would be 10,000/50,000 =
20% as given by the table, yielding 200 replies.

ii. High quality, with 25 executives sampled, and enough follow-
up to get a 100% response rate.

a. Calculate the mean number of children in the population .

b. In estimating u, does either survey have a sample mean X that
is unbiased?

c. Which survey has the smallest MSE (greatest accuracy)?

In Problem 7-10, note how the response rate of executives drops as

the number of children X increases. For example, when X = 0, the
response rate is 6200/20,000 = 31%, while for X = 4, the response
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rate drops to 100/2000 = 5%. This is what causes the NONTesporg,
bias, of course.

Now suppose a sample survey with enough follow-up to guarg,.
tee 100% response was prohibitively expensive. So a COmMpromige
was suggested: Sample 100 executives, with enough fellow-up
get a response rate of 12,000/20,000 = 60% when X = 0; and then
for X = 1, 2, 3, 4, response rates of 40%, 30%, 30%, and 309,
respectively.

How would the MSE of this compromise survey compare to th
other two surveys in Problem 7-107

*7-4 CONSISTENT ESTIMATORS

A—CONSISTENCY: EVENTUALLY ON TARGET

Like efficiency, consistency is one of the desirable properties of estima.
tors. But consistency is more abstract, because it is defined as a limit: A
consistent estimator is one that concentrates in a narrower and narrower
band around its target as sample size n increases indefinitely. This is
sketched in Figure 7-4, and made more precise in Appendix 7-4.

One of the conditions that makes an estimator consistent is if its MSE
approaches zero in the limit. In view of (7-11), this may be reexpressed as
follows.

n =200

FIGURE 7-4
A consistent estimator, showing how the dis-

tribution of V concentrates on its target 6 as
sample size n increases.

S —— —— ——— V————— —1
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One of the conditions that makes an estimator consistent is: ‘

I i 1S bias and varlance Doth approach zero. |

EXAMPLE 7-4

a. Is X a consistent estimator of Hi?
b. Is P a consistent estimator of 77

c. Is the average response R in Example 7-1 (based on a 25% re-
sponse rate) a consistent estimator of u?

SOLUTION

a. From the normal approximation rule (6-9), we know that X has:

0 foralln

Bias
0-2
var = —, which approaches zero

Thus (7-15) assures us that X is a consistent estimator of .

b. From the normal approximation rule for P given in (6-12), we
similarly see that P is a consistent estimator of .

c. Recall the nonresponse bias: The estimator R concentrated
around the value uy = .40, which is far below the target u = .90.
So R is inconsistent.

B—ASYMPTOTICALLY UNBIASED ESTIMATORS

Sometimes an estimator has a bias that fortunately tends to zero as sample
size n increases. Then it is called asymptotically unbiased. If its variance
also tends to zero, (7-15) then assures us it will be consistent. An example
will illustrate.

EXAMPLE 7-5

Consider the mean squared deviation:

1 - (7-16)

i = 2
MSD n SR (2-10) repeated
This is a biased estimator of the population variance 2. Specifically, on
the average it will underestimate, as can be seen very easily in the case of
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n = 1. Then X coincides with the single observed X, so that (7-16) give
MSD = 0, no matter how large the population variance ¢ may be,

However, if we inflate MSD by dividing by n — 1 instead of n, we obyy;,
the sample variance: '

1 T (717
(2-11) repeateg

It can be proved (Lindgren, 1976) that this slight adjustment inflates q:
just enough to make it perfectly unbiased. [And in the extreme case aboy,
where n = 1, the zero divisor in (7-17) makes s? undefined. This provige
a simple warning that o cannot be estimated with a single X, since .
single isolated observation gives us no idea whatsoever how spread oy
the underlying population may be.]

If you were puzzled earlier by the divisor n — 1 used in defining s, yq, |
now can see why. It is to ensure that s? will be an unbiased estimator ¢f |
the population variance.

a. Although we have seen that MSD is biased, is it nevertheless
asymptotically unbiased?

b. Suppose we used an even larger divisor, n + 1, to obtain the
following estimator:

S(X - X)? (7-18)

Is s asymptotically unbiased?

SOLUTION

a. Let us write MSD in terms of the unbiased s?:

MSD = (n ; l) s? = (1 - %) 52 like (2-22)

E(MSD) = (1 = %) E(s?)

Finally, since s? is an unbiased estimator of o2,

E(MSD) = (1 - %) ot = ot~ () 02

n

Since 1/n tends to zero, the last term—the bias—also tends to
zero. So the MSD is indeed asymptotically unbiased.
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b. Similarly, we may write:

(n— ‘l‘]
\n + 1/

n:f--"'i._ 2 \('2
" n+1/°

And since 2/(n + 1) tends to zero, this is also asymptotically
unbiased.

REMARKS

We have shown that both MSD and s2 are asymptotically unbiased. And
s* itself is unbiased for any sample size n. It could further be shown that
all three estimators have variance that approaches zero, so that they are all
consistent.

Which of the three estimators should we use? Since all three are consis-
tent, we need a stronger criterion to make a final choice, such as effi-
ciency. For many populations, including the normal, it turns out that s is
most efficient.

C—CONCLUSIONS

Although consistency has an abstract definition, it often provides a useful
preliminary criterion for sorting out estimators.

Nevertheless, to finally sort out the best estimator, a stronger criterion
such as efficiency is required—as we saw in Example 7-5. Another famil-
iar example will illustrate: In estimating the center of a normal popula-
tion, both the sample mean and median satisfy the consistency criterion.
To choose between them, efficiency is the criterion that will finally select
the winner (the sample mean).

*PROBLEMS

7-12 The population of American personal incomes is skewed to the
right (as we saw in Figure 2-5, for men in 1975, for example).
Which of the following will be consistent estimators of the popula-
tion mean w?

a. From arandom sample of incomes, the sample mean? The sam-
ple median? The sample mode?

b. Repeat part a, for a sample of incomes drawn at random from
the cities over one million.

7-13 When S successes occur in n trials, the sample proportion P = S/n
customarily is used as an estimator of the probability of success .
However, sometimes there are good reasons to use the estimator
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P* = (S + 1)/(n + 2). Alternatively, P* can be written as a ling,
combination of the familiar estimator P:

pr=DE 1| | 2 [t

n+2 \n + 2/ \n + 2/

a. What is the MSE of P? Is it consistent?

b.  What is the MSE of P*? Is it consistent? (Hint: Calculate th
mean and variance of P*, in terms of the familiar mean ap
variance of P.)

c. To decide which estimator is better, P or P*, does consistenc
help? What criterion would help?

d. Tabulate the efficiency of P* relative to P, for example when
=10and 7 =0,.1,.2,. . ., .9, 1.0.

e. State some possible circumstances when you might prefer t,
use P* instead of P to estimate 7.

CHAPTER 7 SUMMARY

7-1

7-2

7-3

*7-4

Statistics such as X from random samples (colored blue) are used tc
estimate parameters such as u from populations (gray).

An estimator is called unbiased if, on average, it is exactly on
target. An unbiased estimator is called efficient if it has the smallest
variance.

For estimators with bias as well as variance, minimum MSE (mean
squared error) is the appropriate measure of efficiency. MSE re-
mains disappointingly high for estimators with persistent bias,
such as nonresponse bias.

A consistent estimator is one that eventually is on target. (Not only
on target on average, but the whole Sdmplmg distribution gets
squeezed onto the target, as the sample size n increases infinitely.)

REVIEW PROBLEMS
7-14

An estimator that has small variance (but may be biased) is called
precise. An estimator that has small MSE is called accurate. To
illustrate: A standard 100-gm mass was weighed many many times
on a scale A, and the distribution of measurements is graphed
below. A similar distribution was obtained for scale B, and finally
for scale C.
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7-15

99.9 100.0 100.1 Measured
Target weight

Scale A: u = 100.00, o = .05
Scale B: pu 99.98, o = .02
Scale C:  p = 100.08, o = .01

a. Which scale is most precise? Most accurate?

b. What is the relative efficiency of scale A relative to B? Of scale
C relative to B? Do these answers agree with part a?

¢. Which is more important: for an estimator to be precise or
accurate?

a. Continuing Problem 7-14, since the scales were not perfect, it
was decided in each case to weigh an object 25 times and take
the average as the best estimate of the true weight. When used
this way, which scale gives the most accurate X?

b. Answer True or False; if False, correct it:
If a single measurement is taken, the random part (o) and the
systematic part (bias) are equally important.
When several measurements are averaged, the random part
of the error gets averaged out, while the systematic part per-
sists. Then it is particularly important to have little bias.

Suppose that two economists estimate u (the average expenditure
of American families on food), with two unbiased (and statistically
independent) estimates U and V. The second economist is less
careful than the first—the standard deviation of V is 3 times as
large as the standard deviation of U. When asked how to combine U
and V to get a publishable overall estimate, three proposals are
made:

. 1 1 ;
i. W, = ) I 5 5 V (simple average)
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e 7 3 T 4 1 7 :
ii. W, =—-U + — V (weighted average)
4 4
iii. Wy = 1U + 0V (drop the less accurate estimate)

a. Which are unbiased?
Intuitively, which would you guess is the best estimator? The
worst?

c. Check out your guess in part b by making the approprig,
calculations. _

*d. Intuitively, W, works well because it gives only 14 as much
weight to the component (V) that has 3 times the standay
deviation.

Is it possible to do even better than W,? Suggest some posg;.
bilities, and then check them out. |

7-17 A processor of sheet metal produces a large number of square |
plates, whose size must be cut within a specified tolerance. T, |
measure the final product, a slightly worn gauge is used: Its mes.
surement error is normally distributed with a mean p© = 0 ang
standard deviation o = .10 inch. To improve the accuracy, and
protect against blunders, two independent measurements of ;
plate’s length are taken with this gauge, say X; and X,. To find the
area of a plate, the quality control manager is in a dilemma:

i. Should he square first, and then average:

ii. Should he average first, and then square:

(X1 + Xz)z
2

a. Are methods i and ii really different, or are they just two differ- |
ent ways of saying the same thing? (Hint: Try a simulation. |
Suppose, for example, the two measured lengths are X; = 53 |
and Xz = 61) |

b. Which has less bias? [Hint: See equation (4-36).] 1

c. As an alternative estimator of the area, what is the bias of XX’
(Hint: See Problem 5-38.)

*7-18 A free-trade agreement has opened up a new market of 50 million
potential customers for personal computers, and a market survey of
these customers is being planned. People with higher incomes aré
more likely to buy a computer within the next 6 months, and also
more likely to respond to a phone survey, as the following table

shows: ’
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Total Population  Subpopulation Who
(Target) Would Respond

. Frequency Frequency
Income Proportion Who ! - : 2 _

Level Will Buv f (millions) f (millions)

$0-20,000 2% 40 7
20-40,000 4% 5 1
40-80,000 10% 3 1
over 80,000 20% 2 1

N = 50 N =10

a. In the 50 million population, how many will buy a computer?
Answer as a total figure, and then as a percentage.

b. A market survey of 1000 random phone calls would bring
about how many replies? Among these replies, the percentage
P who will buy is a natural estimator of the population percent-
age in a. What is the bias and MSE of P?

c. A smaller survey was also considered, with just 100 calls but
enough follow-up to get a 100% response. What is the bias and
MSE of the resulting estimator P*?

To interpret MSE concretely, we could take its square root to get the
“typical” error (more precisely, the Root-Mean-Square or RMS er-
ror—just like we took the square root of the variance to get the
standard deviation). '

In Problem 7-18, calculate this RMS error:

a. For P and P*, the two competing estimators of the percentage of
the population who will buy.

b. For the two corresponding estimators of the total number in the
population who will buy (the “market size").

7-20 A Final Challenge: How Much Follow-Up Should a Survey

Use?

A market survey was being planned to estimate the number of drug
circulars physicians have read in the past seven days. Physicians
who read more were also more likely to respond to the survey, as

the following table shows: Subpopulation

Subpopulation Responding to
Whole Target Responding First or Second
Population to First Contact Contact
X = Number of Frequency Frequency Frequency
Circulars Read f f f
0 40,000 2,000 14,000
1 5,000 1,000 2,000
2 5,000 2,000 4,000
N = 50,000 N = 5,000 N = 20,000
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To get an accurate estimate of the total number of circulars reag
determine which of the following surveyvs would be better. '

1. A large survey of 1000 physicians contacted just once.
1. A small survey of only 25 physicians, with relentless folloy,.
up to get a 100% response rate.
iii. A compromise survey of 100 physicians contacted a secong

time if necessary, that would obtain the response rate givey, in
the final column.




