SPM course 2012 Lausanne

Computational Anatomy

Laboratoire de Recherche en Neuro-Imagerie
Motivation

- Genetic predisposition
- Neural signature
- Synaptic plasticity
- Training
- Lesion
- Behaviour
Methods

surface

- Fischl et al., 1999 *Neuroimage*
- Cykowski et al., 2008 *Cereb Cortex*

shape

- Ashburner & Friston, 2000 *Neuroimage*
- Jones et al., 2005 *Neuroimage*
- Hutton et al., 2009 *Neuroimage*

voxel-based
Prerequisites

• Anatomical scans can also help us infer brain function.
 – Do people with chronic depression show brain atrophy?
 – Which brain regions atrophy with age?
 – Do people with good spatial memory (taxi drivers) have different anatomy than other people?

• Voxel-based morphometry is a tool to relate grey matter volume with medical history and behaviour
• Cross-sectional studies

 – Can compare two distinct populations

 – Can also examine atrophy through time, though will require more people than longitudinal VBM.

• Longitudinal VBM

 – Sensitive way to detect atrophy through time. Using the same individual reduces variability.

• VBM findings are first step in understanding structural changes.
Morphometry examines the shape, volume and integrity of structures.

Classically, morphometry was conducted by manually segmenting a few regions of interest.

Voxel based morphometry conducts an independent statistical comparison for each voxel in the brain.
VBM has some advantages over manual tracing:

- Automated: fast and not subject to individual bias.

- Able to examine regions that are not anatomically well defined.

- Able to see the whole brain

- Normalisation compensates for overall differences in brain volume, which can add variance to manual tracing of un-normalised images.
Scan Volume: Field of View (FOV), e.g. 192 mm

Matrix Size e.g., 192 x 192
In-plane resolution
192 mm / 192
= 1 mm

Slice thickness e.g., 1 mm

Voxel Size (volumetric pixel)
examples
We can statistically analyze gray matter atrophy
Neurodegenerative diseases

• Alzheimer’s disease
 – 6 different MR scanner
 – Major software updates
 – 10 years of data acquisition

• Chorea Huntington
 – Pre-symptomatic stage

Stonnington et al., 2008 *Neuroimage*
Thieben et al., 2002 *Brain*
Higher cognitive functions

Fig. 3 Gray-matter volume correlated with introspective ability. (A) Projection of statistical (T) maps for positive (hot color map: red, orange, yellow) and negative (cool color map: blue) correlations with A_{10c} onto an inflated cortical surface (T1-weighted template, thresholded at $T > 3$ for display purposes). Significant clusters ($P < 0.05$, corrected for multiple comparisons) where metacognitive ability correlated with gray-matter volume (see SOM methods) were found in right anterior PFC (BA 10, positive correlation) and the left inferior temporal gyrus (negative correlation), accompanied by contralateral homologous clusters at $P < 0.001$, uncorrected. (B) Plot of gray-matter volume in the right BA 10 cluster against both A_{10c} and d' (see SOM methods for full details), indicating that the correlation with metacognitive ability was independent of task performance. a.u., arbitrary units.
Univariate goes multivariate

Stonnington et al., 2008 *Neuroimage*
Klöppel et al., 2007 *Brain*
Brain plasticity
• Taxi drivers – London

• Training = „the Knowledge“

• Posterior HC volume increase

• Positive correlation with navigation experience

Maguire et al. 2000 *PNAS*
Woollett et al., 2009 *PTRSB*
Mode d’emploi
Wellcome Trust Centre for Neuroimaging

http://www.fil.ion.ucl.ac.uk/spm/

https://www.jiscmail.ac.uk/
Data processing

- Original
- Normalized
- GM Segment
- Modulated GM
- Smoothed GM

Processes:
- Normalization
- Segmentation
- Modulation
- Smoothing

Inputs:
- Template
- GM prior
- WM prior
- CSF prior

Output:
- Gaussian Kernel
VBM preprocessing

• Unified Segmentation
 – New Segment
 – Smooth

• DARTEL (alternative)
 – New Segment
 – Create Template
 – Normalise to MNI
• High-resolution MRI reveals fine structural detail in the brain, but not all of it reliable or interesting

 – Noise, intensity-inhomogeneities, vasculature, …

• MR Intensity is usually not quantitatively meaningful (in the same way that e.g. CT is)

• Regional volumes of the three main tissue types: gray matter, white matter and CSF, are well-defined and potentially very interesting
• Uses information from tissue probability maps (TPMs) and the intensities of voxels in the image to work out the probability of a voxel being GM, WM or CSF

ICBM Tissue Probabilistic Atlases. These tissue probability maps are kindly provided by the International Consortium for Brain Mapping, John C. Mazziotta and Arthur W. Toga.
• VBM segments image into three tissue types: grey matter, white matter and CSF.

 – Typically done on T1 scans (best spatial resolution, good grey-white contrast).

 – Only three tissue types: will not cope with large lesions.

 – Probability map: each voxel has a 0..100% chance of being one of the 3 tissue types.
Intensities are modelled by a Gaussian Mixture Model (aka Mixture Of Gaussians)

With a specified number of components

Parameterised by means, variances and mixing proportions (prior probabilities for components)

Multiple MoG components per tissue class allow non-Gaussian distributions to be modelled

- E.g. accounting for partial volume effects
- Or possibility of deep GM differing from cortical GM
Segmentation clean-up

T_1

masked

mask
Inhomogeneity correction

- MR Images are corrupted by smoothly varying intensity inhomogeneity caused by magnetic field imperfections and subject-field interactions
 - Would make intensity distribution spatially variable
- A smooth intensity correction can be modelled by a linear combination of DCT basis functions
Inhomogeneity correction

- Field inhomogeneity will disrupt intensity based segmentation
- Bias correction required

no correction

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>T₁</th>
<th>GM</th>
<th>WM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The generative model

• Keeps doing these steps iteratively until the objective function is minimised

• Results in images that are segmented, bias-corrected, and registered into standard space
Summary of the unified model

- SPM5/SPM8 implements a **generative model**
 - Principled Bayesian probabilistic formulation

- Combines deformable tissue probability maps with Gaussian mixture model segmentation
 - The inverse of the transformation that aligns the TPMs can be used to normalise the original image

- Bias correction is included within the model
VBM preprocessing

New Segment

- Select: Batch → SPM → Tools → New Segment

- Volumes to Segment (Data:Channel:Volumes) – select structural MRI scans

Optional: for DARTEL pre-processing select Tissues:Tissue{1}:Native Tissue: Native+DARTEL Imported

- To obtain spatially normalized modulated (preserve amount of signal) images select option: Tissues:Tissue{1}:Warped Tissue: **Modulated**
New segmentation

• An extended work-in-progress algorithm

• Multi-spectral \(\mu_k \rightarrow \mu_k, \sigma_k \rightarrow \sigma_k, \rho \rightarrow \{\rho_s\} \)

• New TPMs including different tissues
 – Reduces problems in non-brain tissue

• New more flexible warping of TPMs
 – More precise and more “sharp/contrasty” results
New segmentation – tissue probability maps

Segment button

New Seg Toolbox
• The tissue probability maps (which are in standard space) are warped to match the image
 – this gives parameters for registering the image into standard space later
Diffeomorphic registration

• VBM is crucially dependent on registration performance
 – The limited flexibility of DCT normalisation has been criticised
 – Inverse transformations are useful, but not always well-defined
 – More flexible registration requires careful modelling and regularisation (prior belief about reasonable warping)
 – MNI/ICBM templates/priors are not universally representative

• The DARTEL toolbox combines several methodological advances to address these limitations

Ashburner (2007) NeuroImage 38:95-113
• Recent papers comparing different approaches have favoured more flexible methods

• DARTEL usually outperforms DCT normalisation
 – Also comparable to the best algorithms from other software packages (though note that DARTEL and others have many tunable parameters...)

• Klein et al. (2009) is a particularly thorough comparison, using expert segmentations
 – Results summarised in the next slide
Klein et al., 2009 *Neuroimage*
Simultaneous registration of GM to GM and WM to WM, for a group of subjects
Unified segmentation
Limitations

- Assumes that the brain consists of only the tissues modelled by the TPMs
 - No allowance for lesions (stroke, tumours, etc)
- Prior probability model is based on relatively young and healthy brains
 - Less appropriate for subjects outside this population
- Needs reasonable quality images to work with
 - No severe artefacts
 - Good separation of intensities
 - Good initial alignment with TPMs...
• **Whether to modulate**

• **How much to smooth**

• **Interpreting results**

• **Adjusting for total GM or Intracranial Volume**

• **Limitations of linear correlation**

• **Statistical validity**
• If someone has atrophy, normalization will stretch grey matter to make brain match healthy template

• This will reduce ability to detect differences
Analogy: as we blow up a balloon, the surface becomes thinner.

Likewise, as we expand a brain area it’s volume is reduced.
• Multiplication of the warped (normalised) tissue intensities so that their regional or global volume is preserved

 – Can detect differences in completely registered areas

• Otherwise, we preserve concentrations, and are detecting mesoscopic effects that remain after approximate registration has removed the macroscopic effects

 – Flexible (not necessarily “perfect”) registration may not leave any such differences
VBM subtleties

• Whether to modulate

• **How much to smooth**

• Interpreting results

• Adjusting for total GM or Intracranial Volume

• Limitations of linear correlation

• Statistical validity
Smooth

- To get smoothed images select: SPM → Spatial → Smooth
- Click on “Images to Smooth” → Select “Dependency” (bottom right) → Select “New Segment: mwc1 Images”
- Click on “Run batch” (green button)
Smoothing

- Smoothing kernel - should match the shape and size of the expected effect

- Benefits
 - more “Gaussian distribution” of the data
 - Smooth out incorrect registration

- RFT requires FWHM > 3 voxels
• Between 7 and 14mm is probably best
 – (lower is okay with better registration, e.g. DARTEL)
• The analysis will be most sensitive to effects that match the shape and size of the kernel

• The data will be more Gaussian and closer to a continuous random field for larger kernels

• Results will be rough and noise-like if too little smoothing is used

• Too much will lead to distributed, indistinct blobs
VBM subtleties

- Whether to modulate
- How much to smooth
- **Interpreting results**
- Adjusting for total GM or Intracranial Volume
- Limitations of linear correlation
- Statistical validity
Interpretation

- Thickening
- Thinning
- Folding
- Mis-classify
- Mis-register

- Thickening
- Thinning
- Mis-classify
- Mis-register
• Microstructural changes could cause intensity changes
 – T1-weighted imaging not quantitative (cf. T1-quant, MT, etc.)
 – Still potential explanation of findings (or lack thereof)
• Complicated phenomenon…
 – Increased T1w intensity in cortex =>
 • Lower GM prob, prob shifted to WM class
 • Higher GM prob, prob taken from CSF class
• Significant differences still generally interpretable
• Whether to modulate
• How much to smooth
• Interpreting results

• Adjusting for total GM or Intracranial Volume
 • Limitations of linear correlation
 • Statistical validity
Global normalisation

- Total intracranial volume integrates GM, WM and CSF, or attempts to measure the skull-volume directly
 - Not sensitive to global reduction of GM+WM (cancelled out by CSF expansion – skull is fixed!)

- Correcting for TIV in VBM statistics may give more powerful and/or more interpretable results
 - See also
 http://dx.doi.org/10.1016/j.neuroimage.2010.06.025
• **Generic issue** in neuroimaging

 – to ensure that the analysis identifies regionally specific “non-global” effects

• Changes in dimension or shape as a function of size

 – “global” model

 – “mosaic” model

Figure from: *Adjustment for Whole Brain...*
O’Brian et al, 2006
Shape is really a multivariate concept
- Dependencies among volumes in different regions

SPM is mass univariate
- Combining voxel-wise information with “global” integrated tissue volume provides a compromise

Above: (ii) is globally thicker, but locally thinner than (i) – either of these effects may be of interest to us.

Below: The two “cortices” on the right both have equal volume...

Figures from: Voxel-based morphometry of the human brain… Mechelli et al, 2005
VBM uses the machinery of SPM to localise patterns in regional volumetric variation

The procedure involves

– Unified tissue segmentation (Gaussian mixture modelling with bias correction and spatially registered priors)
– Spatial normalisation using Dartel, with preservation of volume
– Smoothing
– SPM analysis
 • Typically with covariates for age, gender, perhaps TIV and/or total GM

Interpretation is challenging, and caution is advised
– But Science papers and BBC News articles await!
References

Rigid average (Template_0)

Template 1

Template 6
• Automated detection
 – SPM8 „unified segmentation“
 – Fuzzy clustering

• Analysis
 – GM volume
 – Binary & probabilistic lesion maps

Seghier et al., 2008 Neuroimage
• Study design

- Motor learning paradigm – 10-digit sequence

- 3 subjects, 9 weeks

- 15 min/d training @ home

Ward et al., *in preparation*