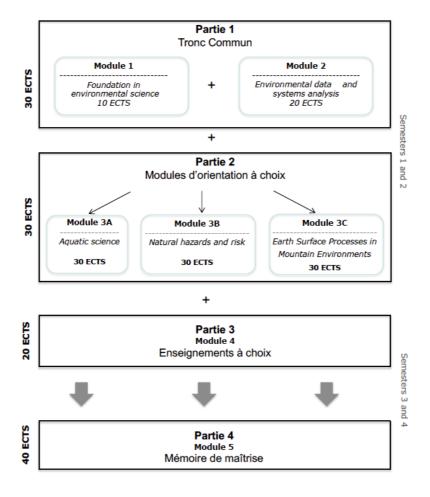


Maîtrise universitaire ès Sciences en sciences de l'environnement Master of Science (MSc) in Environmental Science

> Faculté des géosciences et de l'environnement Université de Lausanne

Plan d'études

Maîtrise universitaire ès Sciences en sciences de l'environnement Master of Science (MSc) in Environmental Science


2023-2024

Plan d'études

Dans ce document, le masculin est utilisé à titre générique, tous les titres et fonctions s'appliquent indifféremment aux femmes et aux hommes.

La Maîtrise universitaire ès Sciences en sciences de l'environnement / Master of Sciences (MSc) in Environmental Science [ci-après Maîtrise universitaire ès Sciences en sciences de l'environnement] est organisée par la Faculté des géosciences et de l'environnement de l'Université de Lausanne.

De niveau 2^{ème} cycle, ce cursus de 120 crédits ECTS a une durée prévue de 4 semestres. Les enseignements obligatoires sont donnés en anglais. Si l'anglais est utilisé, l'enseignant concerné veillera à respecter la Directive 3.4 de la Direction de l'Université.

Cadre général

Le Plan d'études de la Maîtrise universitaire ès Sciences en sciences de l'environnement s'articule en quatre parties :

Première année :

Partie 1 : un tronc commun de 30 ECTS, composé de deux modules

Module 1 « Foundations in environmental science » (10 crédits ECTS)

Module 2 « Environmental data and systems analysis » (20 crédits ECTS)

Partie 2 : une partie d'orientation de 30 ECTS

Orientation A « Aquatic science » (30 ECTS), composée d'un module

Orientation B « Natural hazards and risk » (30 ECTS), composée d'un module

Orientation C « Earth surface processes in mountain environments » (30 ECTS), composée d'un module

Deuxième année :

Partie 3 : un module d'enseignements à choix (20 crédits ECTS) dans lequel l'étudiant peut réaliser un stage en entreprise ou en administration (de 5 à 20 ECTS).

Partie 4 : un mémoire de maîtrise (40 crédits ECTS)

L'évaluation des enseignements peut se faire sous l'une des formes suivantes :

- examen écrit (entre 2 et 4 heures, pendant une session d'examen)
- examen oral (entre 15 et 30 minutes, pendant une session d'examen)
- validation: contrôle continu (au minimum deux validations), pratique (rapport, séminaire, etc.) fourni dans le cadre des études.

Pré-requis : Les enseignements signalés comme pré-requis sont considérés comme les bases permettant de suivre des enseignements du programme de la Maîtrise universitaire ès Sciences en sciences de l'environnement.

Etudes à temps partiel : Les étudiants inscrits dans le cursus d'études à temps partiel (voir Directive de la Direction 3.12) doivent respecter les indications relatives au semestre et à l'année auxquels chaque enseignement doit être suivi. Ces recommandations figurent dans la dernière colonne des tableaux détaillant le Plan d'études (SA = semestre d'automne, SP = semestre de printemps, suivi d'un chiffre indiquant le numéro du semestre).

Légende du tableau des enseignements

- 1. Enseignants: N.N. = enseignant à désigner
- 2. **Type d'enseignement** : C = cours ex cathedra, T = terrain, TP = travaux pratiques, S = séminaires
- 3. **Heures** : les heures réelles totales correspondant à la durée des enseignements; jb = enseignement donné en jourbloc ; djb = demi-journée-bloc
- 4. Crédits ECTS: un crédit ECTS équivaut à 25-30h de travail effectif
- 5. **Evaluation**: chaque enseignement est évalué au moyen d'un examen écrit ou oral ou d'une validation (contrôle continu, pratique, etc.). Les examens sont organisés pendant les sessions d'examens, les validations se déroulent pendant le semestre.

Partie 1: Tronc commun (30 ECTS)

Les enseignements du tronc commun concernent tous les étudiants inscrits au cursus. La partie de tronc commun s'articule en deux modules. Pour les étudiants réalisant le cursus à temps partiel, il est demandé que les modules communs soient achevés à la fin de la deuxième année (SP4)¹.

Module 1 « Foundations in environmental science »

	Semestre					
Enseignements	Enseignants	Nombre d'heures	Evaluation	Credits ECTS	Temps partiel	
Masters Project Preparation	P. de Anna (coord) G. Mariethoz	Automne 20 C,TP & Printemps 10 C,TP	Validation	4	SA3 SP4	
Applications of environmental science seminar series	N. Chèvre (coord) N. Linde MH. Derron J. Hunziker intervenants	Automne 12 S	Pratique	1	SA1	
Statistical Analyses in Environmental Sciences	X. Dupla O. Broennimann	Primtemps 27, C,TP	Examen Oral	3	SP2	
Introduction to Scientific Programming with Python	T. Beucler	Automne 16, C/TP	Pratique	2	SA3	
Total des crédits exigés pour ce module			Total	10		

Evaluation:

Le module est réussi et les crédits ECTS accordés lorsque la moyenne pondérée par les crédits ECTS des évaluations de l'ensemble des enseignements prévus dans le module est égale ou supérieure à 4.00.

Module 2 « Environmental data and systems analysis »

L'étudiant choisit des enseignements parmi ceux proposés pour un total de 20 ECTS.

	Semestre				
Enseignements	Enseignants	Nombre d'heures	Evaluation	Credits ECTS	Temps partiel
Model parameter estimation and uncertainty quantification	N. Linde (resp.) J. Hunziker	Printemps 48 C,TP	Pratique	5	SP2
Environmental time-series analysis	J. Irving	Automne 48 C,TP	Pratique et examen écrit	5	SA1
Remote sensing of Earth systems	G. Mariethoz G. Antoniazza	Automne 48 C,TP	Pratique	5	SA1
Machine Learning for Earth and Environmental Sciences (Ce cours a lieu en 2ème année)	T. Beucler	Automne 48 C,TP	Pratique	5	SA5
Watershed and river network modelling	N. Peleg	Printemps 48 C,TP	Pratique	5	SP4
Scientific computing	Y. Podladchikov	Automne 48 C,TP	Pratique	5	SA3
Weather and climate dynamics	D. Domeisen	Printemps 27 C,TP	Pratique	3	SP4
Mountain ecosystems; ecology and evolution Cours	A. Guisan	Printemps 28 C	Pratique	3	SP2 SP4
Mountain ecosystems; ecology and evolution Terrain (cours est obligatoire pour faire le terrain)	A. Guisan	Printemps 52 T	Contrôle Continu	4	SP2 SP4
Advanced Geospatial Data Analysis – practical concepts and environmental applications	M. Tonini	Automne 24 C, TP	Pratique	3	SA3
Principle of scientific data acquisition	C. Schmidt	Automne 24 C, TP	Pratique	3	SA3
Total des crédits offerts pour ce module				46	
Total des crédits exigés pour ce module			Total	20	

Evaluation

Le module est réussi et les crédits ECTS accordés lorsque la moyenne pondérée par les crédits ECTS des évaluations des enseignements choisis dans le module est égale ou supérieure à 4.00.

¹ Dans les tableaux, les indications SA et SP signifient respectivement Semestre d'Automne et Semestre de Printemps.

Partie 2: Orientation (30 ECTS)

L'étudiant choisit une orientation parmi les trois proposées. Chaque orientation est composée d'un module.

Orientation « Aquatic science » (30 ECTS)

L'orientation «Sciences aquatiques » vise à prodiguer des compétences pluridisciplinaires sur les enjeux relatifs aux eaux continentales. Elle a été créée et construite dans une perspective globale intégrant le continuum aquatique typique du paysage suisse pour lequel les montagnes jouent littéralement le rôle de « château d'eau ». Cette formation intègre explicitement le lien hydrologique entre les glaciers et environnements de haute altitude, et les sols et le sous-sol, vers les rivières et les lacs de piémont. Une telle perspective, unique dans le paysage des formations universitaires en Suisse, permet d'aborder les enjeux relatifs aux eaux de surface et subsurface à l'échelle des bassins versants, qui est l'unité à la fois de la gestion environnementale et de la compréhension fondamentale des impacts de l'Homme sur la quantité et la qualité des eaux.

A la fin du Master, les étudiants devraient être capables de :

- 1. Maitriser les outils de base d'étude des écoulements d'eau, du traçage de leur origine et de leur temps de résidence dans le sol, les rivières et lacs, d'étude de leur qualité chimique et biologique, tant au laboratoire que sur le terrain.
- 2. Approcher les enjeux liés à la disponibilité et qualité des eaux de surface et subsurface de façon pluridisciplinaire.
- 3. Intégrer les notions des différentes échelles d'espaces et de temps imbriquées dans les enjeux des eaux.
- 4. Construire et mener des programmes de collecte de données liés à ces enjeux, incluant leur analyse numérique.
- 5. Identifier les enjeux de gouvernance et les politiques publiques sur les eaux en Suisse.

Module 3A « Orientation Aquatic science »

	Semestre				
Enseignements	Enseignants	Nombre d'heures	Evaluation	Credits ECTS	Temps partiel
Fluid flow and transport in the subsurface	P. de Anna	Automne 50 C,TP	Pratique et examen oral	6	SA3
Environmental toxicology	N. Chèvre	Automne 30 C,TP	Pratique	3	SA1
Soil and Water Chemistry	M. Keiluweit	Automne 40 C, TP	Examen écrit	4	SA1
Aquatic ecosystems: glaciers, rivers, and lakes	ME. Perga S. Lane G. Antoniazza	Printemps 48 C,TP	Pratique	5	SP2
Tracing biogeochemical processes and fluxes using isotope analysis	T. Vennemann	Automne 20 C,TP	Pratique	2	SA1
Field and laboratory methods (I): The UNIL campus as a microcosm	J. Berg (resp) N. Chèvre T. Vennemann	Printemps 60 C, TP	Pratique	5	SP2
Field and laboratory methods (II): Alpine catchments (Le terrain peut se dérouler en dehors des périodes de cours)	ME. Perga S. Lane	Printemps Automne 50 T,C	Pratique	5	SP4
Total des crédits exigés pour ce module			Total	30	

Evaluation:

Le module est réussi et les crédits ECTS accordés lorsque la moyenne pondérée par les crédits ECTS des évaluations de l'ensemble des enseignements prévus dans le module est égale ou supérieure à 4.00.

Orientation « Natural hazards and risk » (30 ECTS)

L'orientation "Dangers naturels et risque" propose une formation en analyse des risques naturels, depuis l'étude des processus physiques jusqu'à leur gestion en passant par la quantification de leur probabilité d'occurrence (aléa).

Les principales composantes de cette orientation sont :

- 1) Etude des processus physiques : acquisition et analyse des données de base, cartographie, analyse et modélisation des mécanismes, techniques de monitoring. Dans cette partie, l'accent est mis sur les aléas gravitaires (glissement de terrain, éboulements, inondations, avalanches, ...).
- 2) Estimation du risque et de ses différent composants (aléas, vulnérabilité, résilience, « quantitive risk assessment: QRA », ...).
- 3) Gestion du risque, systèmes d'alerte, élaboration et évaluation des stratégies de réduction.
- 4) Communication du risque.

Cette orientation comprend des activités de terrain, du laboratoire et de la modélisation numérique. Elle inclut aussi des intervenants issus de la pratique dans la gestion des risques.

A la fin du Master, les étudiants devraient être capables de :

- Comprendre les processus à l'origine des principaux aléas naturels. Acquérir et analyser les données relatives à ces phénomènes sur le terrain et au laboratoire.
- Construire le modèle conceptuel d'un aléa. Maitriser les outils de base de la modélisation numérique des phénomènes concernés.
- Procéder à une analyse quantitative du risque pour des phénomènes naturels.
- Proposer des mesures de réduction du risque
- Identifier plus largement les enjeux liés à la gestion du risque et à sa communication

Module 3B « Orientation Natural hazards and risk »

	Semestre					
Enseignements	Enseignants	Nombre d'heures	Evaluation	Credits ECTS	Temps partiel	
Communication on environmental risks	M. Jaboyedoff	Automne 32 C,TP	Pratique	3	SA1	
Advanced quantitative risk and vulnerability	M. Jaboyedoff	Automne 40 C,TP	Examen Oral	3	SA1	
Risk quantification and insurance	M. Jaboyedoff (resp) L. Marescot	Printemps 20 C, TP	Pratique	2	SP4	
Risk management (monitoring, early warning, post-disaster preparedness)	M. Jaboyedoff intervenants	Printemps 20 C, TP, T	Pratique et examen oral	2	SP2	
Erosion and slope movements	M. Jaboyedoff (resp) A. Abellan	Printemps 48 C,TP	Pratique et examen oral	5	SP2	
Monitoring techniques for slope dynamics	MH. Derron	Automne 48 C,TP	Pratique	5	SA3	
Hazards and risks of slope mass movements: field camp	MH. Derron M. Jaboyedoff	Printemps 80 T	Pratique	5	SP2	
Flood risk modeling	G. Antoniazza Intervenants	Printemps 48 C,TP	Pratique	5	SP4	
Total des crédits exigés pour ce module			Total	30		

Evaluation:

Le module est réussi et les crédits ECTS accordés lorsque la moyenne pondérée par les crédits ECTS des évaluations de l'ensemble des enseignements prévus dans le module est égale ou supérieure à 4.00.

Orientation « Earth Surface Processes in Mountain Environments » (30 ECTS)

L'orientation "Processus de la surface terrestre en environnements de montagne" vise à former les étudiants à l'analyse des processus de surface actifs dans les environnements montagneux. L'accent est mis sur la caractérisation des processus, sur le traitement et l'analyse de données, sur l'apprentissage de méthodes d'étude et sur la modélisation des processus. La formation est donnée sous la forme de cours, de travaux pratiques et de mesures de terrain.

A la fin du master, les étudiants devraient être capables de :

- 1. Décrire et analyser les processus naturels dans les régions de montagne en mobilisant les outils méthodologiques adéquats.
- 2. Maîtriser l'utilisation pratique de différentes méthodes d'analyse (de terrain, de modélisation, de laboratoire, de cartographie et de télédétection).
- 3. Récolter, traiter et analyser des informations et des données de terrain.
- 4. Appréhender de manière critique la complexité des processus de surface en montagne et les enjeux d'aménagement des régions de montagne.
- 5. Communiquer les résultats de recherche en analyse des processus de surface en montagne par oral et par écrit à des publics diversifiés.

Module 3C « Earth surface processes in mountain Environments »

		Semestre			
Enseignements	Enseignants	Nombre d'heures	Evaluation	Credits ECTS	Temps partiel
Alpine periglacial environments	C. Lambiel	Automne 40 C,TP,T	Pratique	4	SA1 SA3
Monitoring techniques for slope dynamics	MH. Derron	Automne 48 C,TP	Pratique	5	SA3
Aquatic ecosystems: glaciers, rivers, and lakes	ME. Perga S. Lane G. Antoniazza	Printemps 48 C,TP	Pratique	5	SP2
GIS-based analysis for mountain geomorphology	C. Lambiel	Printemps 28 C,TP	Pratique	3	SP2 SP4
Mountain streams; sediment management ("Aquatic ecosystems: glaciers, rivers, and lakes" est un prérequis obligtoire pour cet enseignemetn)	S. Lane	Automne 40 T, TP	Pratique	4	SA3 SA5
Erosion and slope movements	M. Jaboyedoff	Printemps 48 C,TP	Pratique et examen oral	5	SP2
Dates and rates of Mountain evolution	G. King	Automne 40 C,TP,T	Pratique	4	SA3
Total des crédits exigés pour ce module			Total	30	

Evaluation:

Le module est réussi et les crédits ECTS accordés lorsque la moyenne pondérée par les crédits ECTS des évaluations de l'ensemble des enseignements prévus dans le module est égale ou supérieure à 4.00.

Partie 3 : Enseignements à choix (20 crédits ECTS)

Les étudiants complètent leur cursus académique avec des cours à choix libre. L'étudiant peut choisir les cours de master donnés soit au sein de la Faculté ou de l'UNIL, soit dans des cursus de sciences de Hautes Ecoles Suisses où à l'étranger, en accord avec leur directeur de mémoire. Chaque année, le comité scientifique met à disposition des étudiants une liste de suggestions de cours à choix pour les aider dans leur sélection.

Après avoir fait ses choix des cours, l'étudiant doit remplir le **"Formulaire d'enseignements à choix"**, le soumettre au directeur du mémoire pour **validation** et signature puis le transmettre au secrétariat du Master.

Des cours de niveau Bachelor peuvent être proposés pour un maximum de 6 crédits ECTS. Des « travaux dirigés » peuvent être reconnus à la hauteur de 5 crédits ECTS. Il est également possible d'inscrire un stage dans ce module, pour autant qu'il ait été approuvé auparavant par le comité scientifique du Master. Le nombre de crédits alloués au stage dépend de la durée du stage réalisé, avec un maximum de 20 ECTS pour un stage réalisé sur l'ensemble du semestre. L'évaluation du stage comprend la rédaction d'un rapport et d'une évaluation du superviseur dans la structure d'accueil, ainsi qu'une présentation orale pour les stages reconnus à la hauteur de 10 ECTS ou plus.

Evaluation:

Le module à choix libre est réussi et les 20 crédits ECTS octroyés lorsque chaque évaluation est réussie indépendamment grâce à l'obtention d'une note minimale de 4.0 ou d'une appréciation « acquis.

Partie 4 : Mémoire de Maîtrise » (40 crédits ECTS)

La dernière partie est réservée à un travail de recherche personnel, le mémoire, permettant l'acquisition de 40 crédits ECTS. Le mémoire est à rendre en principe à la fin du 4ème semestre. Il constitue la suite logique des modules d'enseignements. Le mémoire doit être réalisé dans l'orientation choisie. Un enseignant des cours obligatoires de la première année est en principe nommé directeur du mémoire. Un enseignant de la Faculté peut également diriger un mémoire, avec l'accord du Comité scientifique, qui nomme un de ses membres comme rapporteur.

Le module de mémoire est réussi et les 40 crédits ECTS sont accordés si la note rendant compte de la qualité de la recherche, de la qualité rédactionnelle du mémoire et de la défense est égale ou supérieure à 4.00.

Adopté lors du Conseil de Faculté du 5 avril 2023

Addenda

INFORMATION IMPORTANTE

La pandémie nous a montré que des circonstances indépendantes de notre volonté peuvent nous amener à devoir apporter les adaptations suivantes aux plans d'études en cours de semestre :

- possibilité de passer d'un mode d'enseignement à un autre (présentiel <-> à distance, synchrone <-> asynchrone, passage à l'enseignement co-modal là où il n'était pas prévu au départ).
- modification des modalités d'évaluation, sans induire de dérogation aux Règlements d'études (oral <-> écrit, examen <-> validation, travail individuel <-> travail en groupe, travail pratique <-> travail théorique, évaluation en présence <-> évaluation en ligne, etc.)
- modalités alternatives ou décalées dans le temps pour les enseignements, stages, travaux pratiques, terrains et camps qui ne pourraient avoir lieu ou les enseignements qui ne pourraient plus avoir lieu dans la forme initialement prévue.

Réserve adoptée par la Direction de l'Université de Lausanne, le 1er juillet 2022