
 
 
 

Cardiac perfusion analysis on myocardium manifolds using geometric 
deep learning and quantitative [82Rb] PET imaging (CADENCE): 

Fully funded PhD and Postdoc positions 
  
Location: This project is a collaboration between the MedGIFT research group at the University of Applied 
Sciences Western Switzerland (HES-SO), Institute of Informatics, Sierre and the Service of Nuclear 
Medicine and Molecular Imaging (SNMMI) at the University Hospital Center (CHUV), Lausanne. EPFL and 
Inselspital are also partners of the project. Working locations are both Sierre and Lausanne. The project is 
funded by the Swiss National Science Foundation (SNSF). 
 
Start date: As soon as possible. 
 

 
 
Project Description: Cardiovascular atherosclerotic disease remained 
the leading cause of death worldwide in 2020, with an estimated to 
cost of €210 billion each year. Modern multimodal imaging 
technologies based on [82Rb] Positron Emission Tomography (PET) 
constitute a set of powerful non-invasive tools to assess myocardial 
health and is called Myocardial Perfusion Imaging (MPI). MPI can 
determine the risk of major adverse cardiac events as well as their 
consequences with unprecedented performance when compared to 
other non-quantitative modalities. They also contain subtle spatial 
perfusion patterns that are challenging to identify with the naked eye. 
In this context, modern Artificial Intelligence (AI) has the potential to 
be of high added value due to its ability to fully exploit and aggregate 
the wealth of modern MPI to robustly address clinically relevant endpoints. While many studies already 
demonstrated the feasibility and promises of AI for MPI analysis, few of them were based on [82Rb] PET. 
In addition, most existing AI methods neglected the geometric peculiarities of the MPI signal, resulting in 
suboptimal exploitation of the latter. 
In this project, we plan to further develop the latest advances in Geometric Deep Learning (GDL) to 
adequately analyze the MPI signal over various geometric representations including polar maps, 3D space 
as well as on myocardium surface manifolds, the native space of the MPI signal. In addition, GDL encoder-
decoder models will be developed to generate virtual images of other relevant PET markers (e.g. [18F]FDG 
from dynamic [82Rb]). The investigation of this vast and unexplored research space is expected to 
significantly push the boundaries of how MPI can be used for clinical purposes. The proposed models are 
expected to outperform current AI methods for the analysis of [82Rb] PET/CT, which could be easily 
implemented in clinical practice.  

FlowQuant© User Manual   21 

in the VLA and HLA frames, may also be manually adjusted. The user may also click the Optimize Fit 
button to improve the fit using the manual fit as a starting point. The Common image scale check-
box allows the user to swap between independent scaling of each image in the figure (for improved 
contrast) and a common scale for all slices. 
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Once the LV model has been displayed, the Registered Polar-map, a static uptake polar-map and 
model figure, is also shown for visualization of the whole LV to ensure proper fitting. The model 
figure is displayed from three different angles to overcome visual occlusion. Missing sectors (sectors 
that are outside the FOV) are not displayed. Once the LV model has been accepted, a larger version 
of this figure is displayed.  
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Fig. 1 MPI acquisition, reconstruction and visualization of the perfusion signal s(x). After PET/CT acquisition (i), images
are reconstructed to the 3D spatial domain into a volume V (ii). The centerline of the myocardium is then segmented (iii) and
the perfusion signal is projected on a hemi-ellipsoid mesh (i.e. 2D myocardium manifold) (iv). The latter is subsequentially
projected to a 2D polar map (i.e. the unit disk B2), where the apex is located at the center (v). Global and local quantitative
perfusion metrics are further considered in various territories including vessel (i.e. 3 segments: Left Anterior Descending artery,
LAD, Left Circumflex artery, LCx and Right Coronary Artery, RCA) or segmental with 17 segments (vi).
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Fig. 2 Common perfusion signals sPM(x) and their visualization in 17-segment Polar Maps (PM) for MPI assessment from static
and dynamic [82Rb] PET. The PMs show examples of a patient with normal MPI, but impaired flow reserve MFR (adapted
from [140]). Flow capacity MFC (right) integrates absolute MPI metrics (sMBF, rMBF, MFR) to predict physiological severity
categories (adapted from [147]).

activity concentration Cmyo(t,x) in that voxel and the average arterial tracer activity concentration CLV(t) measured

in the LV cavity [140]. The uptake rate map K1(x) represents the extraction of [82Rb] into the myocardium at spatial

position x estimated from MBF(x) as [62, 150,174]

K1(x) = MBF(x) ·
⇣
1� a e��/MBF(x)

⌘
, (2)

with fitted correction factors a = 0.79 and � = 0.55mLmin�1 g�1 [69]. k2(x) can deduced using (1) and the time-

dependent activity concentration C(t,x). Each parameter map quantifies a specific aspect of myocardial perfusion

and is obtained for both physiologic rest rMBF(x) and hyperemic stress sMBF(x) conditions. For visual assessment in

clinical practice, these 3D parameter maps s3D(x) are projected into 2D Polar Maps (PM) sPM(x) and divided into 17

anatomical segments [48] (see Fig. 1 (vi)). Projecting s3D(x) onto sPM(x), requires an intermediate segmentation of

the myocardium surface “manifold” � as illustrated in Fig. 1 (iii). Analysing the perfusion signal smanifold(x) directly

on this manifold will constitute one of the research pillars of this proposal.

Additional derived metrics are used in clinical practice: The Myocoardial Flow Reserve (MFR) is defined as

the ratio of MBF at stress and rest conditions: MFR = sMBF/rMBF. The repartition coe�cient is defined as

KP = K1/k2. KP reflects the equilibrium partition of [82Rb] between myocardium and blood. KP>1 indicate active

cellular transport and metabolism [158]. The Myocardial Flow Capacity (MFC) [132, 147] is based on sMBF and

MFR, and a corresponding MFC radius is defined as MFCrad =
p
sMBF2 +MFR2 to categorize ischemic severities.

Fig. 2 summarizes and illustrates all aforementioned metrics for MPI assessment.
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(b) Isotropic versus anisotropic kernels.
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(c) Approximation and discretization of 2D manifold.

Fig. 3 (a) Adapted from https://atcold.github.io/pytorch-Deep-Learning/en/week13/13-2/ (accessed in March 2023).
(b) Isotropic versus anisotropic kernels in both image and graph domains: Isotropic kernels cannot see directional patterns
and are averaging directions over a given radial profile. Isotropic graph kernels (e.g. [66]) are based on one single weight g per
hop. Anisotropic graph kernels (e.g. [37]) use specific weights gij for each vertex pair (i, j) to retain the local graph structure
(i.e. vertex ordering) and will be used int Task 1.4 as well as in WPs 2 and 4. Inspired from https://atcold.github.io/
pytorch-Deep-Learning/en/week13/13-2/ (accessed in March 2023).
(c) 2D myocardium manifold � discretized with triangular (top right) or hemispheric (bottom right) meshes.

resulting in a complexity of O(n2). In addition, the kernels g are not local by design. Faster convolutions and compact

kernels were proposed by [66] via parametric interpolation of Fourier bases using Chebyshev polynomials Tk of order

k. The parametric graph kernels g⇥ of compact support K are expressed as

g✓(⇤) =
K�1X

k=0

⇥kTk(⇤̃), (7)

where ⇥ 2 RK is the vector of parameters with elements ⇥k and ⇤̃ 2 [�1, 1] is a normalised matrix of eigenvalues as

⇤̃ = 2⇤/�max � I. The cost of the graph convolution is drastically reduced from O(n2) to O(K|E|). The kernels have

a graph support of K hops, where e.g. K = 1 will include directly connected vertices only (see Fig. 3a).

Eq. (7) was used by Spier et al. to e�ciently analyze PM with GCNNs in [193] and classify normal versus abnormal

maps. However, the kernels g⇥ are considered to be isotropic in the sense that they can only analyze local patterns of

size (or radius) K-hop. They discard directional information since the ordering of the vertices is not defined uniquely.

This results in a strong limitation of this approach since PMs have a clear polar structure with well controlled scales

and orientations: we expect clinically significant perfusion defects of the myocardium to be related to directional

spatial patterns. The di↵erence between isotropic and anisotropic kernels is illustrated in Fig. 3b for both image and

graph domains. To address this issue, we plan to the use residual gated GCNN proposed by Bresson et al. [37], which

allows learning anisotropic graph kernels via edge gates10.

Deliverable 1.3. This deliverable includes the scientific outcomes of Tasks 1.3 and 1.4. A publication comparing GDL

approaches for PM analysis for MPI will be written.

10https://github.com/xbresson/spatial_graph_convnets, as of March 2023.
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1 PhD student researcher  
 

We look for a highly-motivated student for a PhD position in medical imaging (fully funded for four years 
with annual renewal of the contract) at the MedGIFT group, HES-SO Valais-Wallis, with workplaces both 
in Sierre and in Lausanne at CHUV. 
 

Description: We look for one PhD student that will work jointly with the MedGIFT group and the Service 
of Nuclear Medicine and Molecular Imaging (SNMMI) under the supervision of Prof. Dr. Adrien 
Depeursinge and Prof. Dr. John O. Prior. The PhD thesis project is the development of Geometric Deep 
Learning (GDL) methods to best leverage Myocardial Perfusion Imaging (MPI) based on [82Rb] PET. These 
include polar/spherical/mesh CNNs and comparison to already available traditional Artificial Intelligence 
(AI) models. Three important clinical aims will be addressed: (i) risk prediction for major adverse cardiac 
events, (ii) the diagnosis of coronary microvascular disease, and (iii) the assessment of myocardium 
viability after a myocardial damage related to the persistence of ischemia. Close interactions are planned 
with clinicians to adequately interpret the scientific insights and clinical significance related to AI models’ 
performances. The tasks involve conducting experiments, developing novel algorithms, publishing 
research findings in reputable academic journals and top-tier machine learning conferences, as well as 
involvement in the supervision of students. 
 

Your profile:  
• Master's (MSc) degree in physics, computer science, or electrical engineering, or similar degree 

with an equivalent academic level.  
• A genuine interest in signal and image processing and machine learning techniques is a must.  
• A strong will to develop clinically actionable methods and to interact with clinicians is required. 
• Strong mathematical background and programing skills in Python, including DL frameworks. 
• Prior exposure to graph signal processing and/or medical imaging is a plus. 
• Good skills in English (oral and written) are required and knowledge in French is a plus.  
• Rigorous work habits, a curious and critical mind, and a good sense of initiative.  
• A high-level perseverance and a strong personal commitment are expected.  

We offer:  
• A multidisciplinary project between cutting-edge cardiac imaging and advanced image/graph 

processing, machine learning, and a clear clinical context.  
• An extremely stimulating field of research within a highly specialized and qualified scientific 

environment.  
Gross salary (pre-employer/employee tax): in compliance with Swiss National Science Foundation. 

Successful applications are subject to academic approval from the Faculty of Biology and Medicine 
Doctoral School at the University of Lausanne; the selected candidate will be enrolled in the Doctoral 
Degree (PhD) in Life Sciences. 
To apply: If you recognize yourself in this profile and want to take up a new challenge, address your 
complete application (Cover letter, CV and 2 references) before November 10th or until the position is 
filled to: Adrien.Depeursinge@hevs.ch . 
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1 Postdoctoral researcher  
 

We look for a highly skilled and motivated Postdoctoral researcher to work on a multidisciplinary, health-
related medical imaging project (fully funded for two years with annual renewal of the contract) at the 
MedGIFT group, HES-SO Valais-Wallis, with workplaces both in Sierre and in Lausanne at CHUV. 
 

Description: We look for one Postdoctoral researcher that will work jointly with the MedGIFT group and 
the Service of Nuclear Medicine and Molecular Imaging (SNMMI) under the supervision of Prof. Dr. Adrien 
Depeursinge. The primary responsibility of the postdoctoral researcher will be to lead and drive the 
development of Geometric Deep Learning (GDL) methods to best leverage Myocardial Perfusion Imaging 
(MPI) based on [82Rb] PET. These include graph CNNs and comparison with other GDL models developed 
by the PhD student, as well as already available traditional Artificial Intelligence (AI) models. Three 
important clinical aims will be addressed: (i) risk prediction for major adverse cardiac events, (ii) the 
diagnosis of coronary microvascular disease, and (iii) the assessment of myocardium viability after a 
myocardial damage related to the persistence of ischemia. For (iii), GDL encoder-decoders will be trained 
to both generate virtual [18F]FDG images from dynamic [82Rb] as well as an auxiliary task to predict 
viability scores. Close interactions are planned with clinicians to adequately interpret the scientific insights 
and clinical significance related to AI models’ performances. The tasks involve conducting experiments, 
developing novel algorithms, publishing research findings in reputable academic journals and top-tier 
machine learning conferences, and involvement in the supervision of PhD students. 
 

Your profile:  
• You should have a PhD degree in physics, computer science, or electrical engineering, or similar 

degree with an equivalent academic level.  
• Proven experience in conducting independent cutting-edge research in the field of deep 

learning, preferably including GDL and medical imaging, with a track record of publications in 
reputable journals and top-tier machine learning and/or medical imaging conferences. 

• Extensive experience with DL frameworks and medical imaging. 
• A strong will to develop clinically actionable methods and to interact with nuclear physicians and 

cardiologists is required. 
• Good skills in English (oral and written) are required and knowledge in French is a plus.  

We offer:  
• A multidisciplinary project between cutting-edge cardiac imaging and advanced image/graph 

processing, machine learning, and a clear clinical context.  
• An extremely stimulating field of research within a highly specialized and qualified scientific 

environment.  
Gross salary (pre-employer/employee tax): in compliance with Swiss National Science Foundation. 
 

To apply: If you recognize yourself in this profile and want to take up a new challenge while moving to the 
next step of your academic career, address your complete application (Cover letter, CV, list of publications 
and 3 references) before November 10th or until the position is filled to:  Adrien.Depeursinge@hevs.ch 
. 
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