

Image Processing for fMRI John Ashburner

Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.

Contents

* Preliminaries

- * Rigid-Body and Affine Transformations
- * Optimisation and Objective Functions
- * Transformations and Interpolation
- * Within Subject: Realignment & Coregistration
- * Between Subject: Spatial Normalisation & Smoothing

Rigid-Body Transformations

- * Assume that brain of the same subject doesn't change shape or size in the scanner.
 - * Head can move, but remains the same shape and size.
 - * Some exceptions:
 - * Image distortions.
 - * Brain slops about slightly because of gravity.
 - * Brain growth or atrophy over time.
- * If the subject's head moves, we need to correct the images.
 - * Do this by image registration.

Image Registration

Two components:

 Registration - i.e. Optimise the parameters that describe a spatial transformation between the source and reference images

 Transformation - i.e. Re-sample according to the determined transformation parameters

2D Affine Transforms

* Translations by t_x and t_y

$$x_1 = x_0 + t_x$$

*
$$y_1 = y_0 + t_y$$

×

* Rotation around the origin by Θ radians

$$x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0$$

$$y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0$$

* Zooms by s_x and s_y

*
$$x_1 = s_x x_0$$

* $y_1 = s_y y_0$

*Shear

 $x_1 = x_0 + h y_0$

 $* y_1 = y_0$

2D Affine Transforms

* Translations by t_x and t_y

$$x_1 = 1 x_0 + 0 y_0 + t_x$$

*
$$y_1 = 0 x_0 + 1 y_0 + t_y$$

* Rotation around the origin by Θ radians $\overline{\Theta}$

*Shear

 $x_1 = 1 x_0 + h y_0 + 0$

 $*y_1 = 0 x_0 + 1 y_0 + 0$

$$x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0 + 0$$

*
$$y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0 + C$$

* Zooms by
$$s_x$$
 and s_y :
* $x_1 = s_x x_0 + 0 y_0 + 0$

4

$$y_1 = 0 x_0 + s_y y_0 + 0$$

3D Rigid-body Transformations

- * A 3D rigid body transform is defined by:
 - * 3 translations in X, Y & Z directions
 - * 3 rotations about X, Y & Z axes
- * The order of the operations matters

Voxel-to-world Transforms

- * Affine transform associated with each image
 - Maps from voxels (x=1..n_x, y=1..n_y, z=1..n_z) to some world coordinate system. e.g.,
 - * Scanner co-ordinates images from DICOM toolbox
 - * T&T/MNI coordinates spatially normalised
- * Registering image B (source) to image A (target) will update B's voxel-to-world mapping
 - * Mapping from voxels in A to voxels in B is by
 - * A-to-world using M_A , then world-to-B using M_B^{-1}
 - * M_B⁻¹ M_A

Left- and Right-handed Coordinate Systems

- * NIfTI format files are stored in either a left- or right-handed system
 - * Indicated in the header
- * Talairach & Tournoux uses a right-handed system
- * Mapping between them sometimes requires a flip
 - * Affine transform has a negative determinant

Optimisation

- * Image registration is done by optimisation.
- Optimisation involves finding some "best" parameters according to an "objective function", which is either minimised or maximised
- * The "objective function" is often related to a probability based on some model

Objective Functions

*

Intra-modal

- * Mean squared difference (minimise)
- * Normalised cross correlation (maximise)

- * Inter-modal (or intra-modal)
 - * Mutual information (maximise)
 - * Normalised mutual information (maximise)
 - * Entropy correlation coefficient (maximise)

Simple Interpolation

- * Nearest neighbour
 - Take the value of the closest voxel
- * Tri-linear
 - * Just a weighted average of the neighbouring voxels
 - * $f_5 = f_1 x_2 + f_2 x_1$ * $f_6 = f_3 x_2 + f_4 x_1$ * $f_7 = f_5 y_2 + f_6 y_1$

B-spline Interpolation

Nearest neighbour and trilinear interpolation are the same as B-spline interpolation with degrees 0 and 1.

2D B-spline basis functions of

degrees 0, 1, 2 and 3

Contents

- * Preliminaries
- * Within Subject: Realignment & Coregistration
 - * Realignment by minimising mean-squared difference
 - * Residual artifacts and distortion correction
 - * Coregistration by maximising mutual information
- * Between Subject: Spatial Normalisation & Smoothing

Mean-squared Difference

- Minimising mean-squared difference works for intramodal registration (realignment)
- * Simple relationship between intensities in one image, versus those in the other
 - * Assumes normally distributed differences

Residual Errors from aligned fMRI

- * Re-sampling can introduce interpolation errors
 - specially tri-linear interpolation
- * Gaps between slices can cause aliasing artefacts
- * Slices are not acquired simultaneously
 - * rapid movements not accounted for by rigid body model
- * Image artefacts may not move according to a rigid body model
 - image distortion
 - * image dropout
 - * Nyquist ghost
- Functions of the estimated motion parameters can be modelled as confounds in subsequent analyses

Movement by Distortion Interaction of fMRI

- *Subject disrupts B₀ field, rendering it inhomogeneous
- * distortions in phase-encode direction
 *Subject moves during EPI time series
 *Distortions vary with subject orientation
 *shape varies

Movement by distortion interaction

Original position

After rotation

Correcting for distortion changes using Unwarp

Estimate movement parameters.

Estimate reference from mean of all scans.

Estimate new distortion fields for each image:

 estimate rate of change of field with respect to the current estimate of movement parameters in pitch and roll.

 $\Delta \varphi + \Delta \theta$ $\partial B_0 / \partial \varphi \partial B_0 / \partial \theta$

Unwarp time series.

Andersson et al, 2001

Coregistration

- Inter-modal registration.
- Match images from same subject but different modalities:
 - anatomical localisation of single subject activations
 - achieve more precise spatial normalisation of functional image using anatomical image.

Coregistration maximises Mutual Information

T1 weighted

- * Used for between-modality registration
- Derived from joint histograms
- * $MI = \int_{ab} P(a,b) \log_2 [P(a,b)/(P(a) P(b))]$
 - * Related to entropy: MI = -H(a,b) + H(a) + H(b)
 - * Where H(a) = $-\int_a P(a) \log_2 P(a)$ and H(a,b) = $-\int_a P(a,b) \log_2 P(a,b)$

Contents

- * Preliminaries
- * Within Subject: Realignment & Coregistration
- * Between Subject: Spatial Normalisation & Smoothing
 - * Segmentation for spatial normalisation
 - * Smoothing

Processing Overview

Statistics or whatever

Alternative Pipeline

Statistics or whatever

Spatial Normalisation

- * Brains of different subjects vary in shape and size.
- * Need to bring them all into a common anatomical space.
 - * Examine homologous regions across subjects
 - * Improve anatomical specificity
 - * Improve sensitivity
 - * Report findings in a common anatomical space (eg MNI space)

Spatial Normalisation

- * This is the same algorithm as for tissue segmentation.
- * Combines:
 - Mixture of Gaussians (MOG)
 - * Bias Correction Component
 - * Warping (Non-linear Registration) Component

Spatial Normalisation

- Default spatial normalisation in SPM12 estimates nonlinear warps that match tissue probability maps to the individual image.
- Spatial normalisation achieved using the inverse of this transform.

Modelling deformations

 Tissue probability maps are warped to align with tissues identified in image.

Modelling deformations

Modelling a bias field

Corrupted image

Bias Field

Corrected image

Iterative optimisation scheme

Evaluations of LPBA40 **IBSR18** nonlinear registration algorithms LPBA40 IBSR18 0.9 0.8 ≟ ≟ ġ i i Ē Ē -₽ ₽ Ē 0.7 -∎ ∎ ī H 0.6 Overlap 0.5 0.4 ŧ 0.3 ŧ 0.2 0.1 Star US Source Oph O Solf US Fund Avillag PONE SM. Sold N. FIRT -0.0emons 3ICLE Nr. N Molo SPORT N Span Storing. F. Day Day SICLE AVIIIAN Ding Days POMEO £ Lenne -F.F. 15 Fully 15 \$

Smooth

Blurring is done by convolution.

Each voxel after smoothing effectively becomes the result of applying a weighted region of interest (ROI).

Before convolution

Convolved with a circle

Convolved with a Gaussian

References

- * Friston et al. Spatial registration and normalisation of images. Human Brain Mapping 3:165-189 (1995).
- * Collignon et al. Automated multi-modality image registration based on information theory. IPMI'95 pp 263-274 (1995).
- * Thévenaz et al. Interpolation revisited. IEEE Trans. Med. Imaging 19:739-758 (2000).
- * Andersson et al. Modeling geometric deformations in EPI time series. Neuroimage 13:903-919 (2001).
- * Ashburner & Friston. Unified Segmentation. NeuroImage 26:839-851 (2005).
- * Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3):786-802 (2009).