Introduction to Proteomics

- Mass Spectrometry for proteomics
- Protein identification by MS/MS
- Proteomics workflows and applications
• Mass Spectrometry for proteomics
Mass spectrometry: essential functions

Sample -> **Ion Source** -> **Mass Analyzer** -> **Detector**

ION SOURCE
- ESI: Electrospray Ionisation
- MALDI: Matrix Assisted Laser Desorption/Ionization

MASS ANALYZER
- Quadrupoles
- Ion traps
- Time-of-flight with reflectron
- TOF/TOF
- Orbitrap
- FT-ICR

DETECTOR
- Faraday cup
- Scintillation counter
- Electromultiplier
- High-energy dynodes with electron multiplier
- Array (detector)
- FT-MS
MS of peptides vs. proteins

• Small peptides « fly » much better than big proteins
 – Higher ionisation efficiency → sensitivity
 – Signal intensity inversely proportional to mass

• MS in proteomics is mostly (but not only) MS of peptide fragments after protein digestion (typically w. TRYPsin)
MS of peptides: general concepts

• MS: measures charged species (ions)

• MS: we ALWAYS measure M/Z, not \(M_r \)

• Molecular mass \((M_r) \Leftrightarrow M/Z : \)

\[
\frac{M}{Z} = \frac{M_r + (M_a \times Z)}{Z}
\]

\(M_a \): mass of the ionizing adduct (typically H+ for positive MS)
\(M_a(H^+) = 1.0072 \text{ u} \)

• Work mostly in positive (+) ion mode:
 => peptides protonated (MH+) due to acidic conditions and ionisation process

• Single or multiple \((Z>1)\) charge states can be observed
 f (compound, ionisation mode, instrument)
MALDI-TOF of a tryptic digest of BSA

+TOF MS 50 MDAs ans from Sample 1 (BSADigest 100 fmol) of BSADigest 100 fmol MS... Max 13050 counts

a=3.56217430068478150e-004, t0=3.64725878201043440e+001, Thresholded

YLYEIAR

LSQKFPK

LVNELTEFAK

FKDLGEEHFK

HPEYAVSVLLR

HLVDEPQNLIK

LGEYGFQNALIVR

DAFLGSFLYEYSR

KVPQVSTPCLVEYSR
1+ versus 2+ ions

LVNELTEFAK Mr = 1162.6234

MH⁺

MH₂²⁺
Modes of measurement: MS & MS/MS

Ion production (ionisation)

Ion separation

Ion detection

Ion production (ionisation)

Ion separation — isolation of “parent” ion

Ion fragmentation (CID)

Ion separation — separate fragment ions

Ion detection — measure fragment ions

MS

Detect all ions present

Tandem MS (MS/MS)

Fragment a specific ion and measure fragments
CID = collision induced dissociation

Precursor ion = parent ion : the one being fragmented

Daughter ions = fragment ions produced by CID

Tandem mass spectrometry = MS/MS
 - here : the combination of ion selection / CID / fragment analysis

ESI of tryptic peptides typically generates 2+ - 3+ charged ions due to the presence of Lys or Arg at the C terminal end of the peptides

y- and b- ion series fragments are usually observed in MS/MS fragmentation spectra of tryptic peptides.
Modes of measurement: MS & MS/MS

MS
- Ion production
- Ion separation
- Detection

MS/MS (Tandem MS)
- Ion production
- Ion separation
- Fragmentation (CID)
- Detection
Peptide backbone fragmentation in the gas phase (1)
Peptide Fragmentation
In the Gas phase (2)
Ion structure
y-, b- fragment ion series

\[\text{AA}_1 \rightarrow \text{AA}_2 \rightarrow \text{AA}_3 \rightarrow \text{AA}_4 \rightarrow \text{AA}_5 \rightarrow \text{OH} \]
ESI- MS/MS-capable instruments used in proteomics

Q: quadrupole
IT: ion trap
LIT: linear ion trap
TOF: time-of-flight
OT: orbitrap

ESI- MS/MS-capable instruments used in proteomics:

- **QQQ**
- **3D-IT**
- **LIT**
- **QQ-TOF**
- **LIT-OT**
Experimental set-up: nanoLC-MS/MS

- **HPLC pump**
- **T-splitter**: > 99% (waste), < 1% sample
- **C_{18} Column**: L = 15-25 cm, ID = 75 µm
- **Mass spectrometer**: 200-300 nl/min
LC-MS/MS data acquisition steps - 1

1. Determination of peptide mass

Chromatographic separation of peptides (time)

K.LVNELTEFAK.T

Measured: 1162.6253 Da
Calculated: 1162.6234 Da
2. Isolation, fragmentation, fragment analysis

Ion isolation
Collision Induced Dissociation (CID)
Data Dependent Acquisition (DDA)

Peptide LC elution

Survey scan
Detect precursors

MS/MS of 1
Exclude 1

MS/MS of 2
• Protein identification by MS/MS
MS/MS-based protein identification: concept

Experimental

Protein sample → Protein fragments (5-30 AA peptides) → MS → Exact masses of peptides → Fragmentation (MS/MS) spectrum of each peptide

In silico

Protein sequence(s) → Protein fragment sequences (same protease specificity) → software → Calculated exact masses of peptides → Calculated fragmentation spectrum of each peptide → software → Best Match(es)
Matching a peptide: F A D L S E A A N R

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>148.1</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1093.5</td>
<td>547.3</td>
<td>1076.5</td>
<td>1075.5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>219.1</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>946.5</td>
<td>473.7</td>
<td>929.4</td>
<td>928.5</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>334.1</td>
<td></td>
<td>316.1</td>
<td>D</td>
<td></td>
<td>875.4</td>
<td>438.2</td>
<td>858.4</td>
<td>857.4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>447.2</td>
<td></td>
<td>429.2</td>
<td>L</td>
<td></td>
<td>760.4</td>
<td>380.7</td>
<td>743.4</td>
<td>742.4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>534.3</td>
<td>516.3</td>
<td>S</td>
<td></td>
<td></td>
<td>647.3</td>
<td>324.2</td>
<td>630.3</td>
<td>629.3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>663.3</td>
<td>332.2</td>
<td></td>
<td></td>
<td>E</td>
<td>560.3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>734.3</td>
<td>367.7</td>
<td>716.3</td>
<td>A</td>
<td>431.2</td>
<td>414.2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>805.4</td>
<td>403.2</td>
<td>787.4</td>
<td>A</td>
<td>360.2</td>
<td>343.2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>919.4</td>
<td>460.2</td>
<td>902.4</td>
<td>N</td>
<td>289.2</td>
<td>272.1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1093.5</td>
<td>547.3</td>
<td>1076.5</td>
<td>R</td>
<td>175.1</td>
<td>158.1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Mascot Score Histogram
Ions score is \(-10\times \log(P)\), where \(P\) is the probability that the observed match is a random event. Individual ions scores > 34 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

« Threshold »
Mascot peptide (ion) score

- All steps of score calculation are not known (proprietary algorithm)
- Based on MOWSE algorithm
- Measures degree of matching of MS/MS spectrum vs. theoretical spectrum (# matched fragments, % of matched fragments,…)
- Also takes into account natural distribution of masses and thus « uniqueness » of a peptide mass in database

LIMITATIONS

- Not corrected for multiple testing problem
- Bias against small peptides

More in-depth information:
For those interested, a more technical description of the calculation of the MASCOT score is given in:
Mascot output

<table>
<thead>
<tr>
<th>Query</th>
<th>Observed</th>
<th>Mr(expt)</th>
<th>Mr(calc)</th>
<th>Delta</th>
<th>Miss</th>
<th>Score</th>
<th>Expect</th>
<th>Rank</th>
<th>Unique</th>
<th>Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>627.7522</td>
<td>1253.4899</td>
<td>1253.5598</td>
<td>-0.0699</td>
<td>0</td>
<td>80</td>
<td>1e-06</td>
<td>1</td>
<td>U</td>
<td>R.LGDLYEEEMR.E</td>
</tr>
<tr>
<td>86</td>
<td>662.2811</td>
<td>1322.5476</td>
<td>1322.6102</td>
<td>-0.0626</td>
<td>0</td>
<td>86</td>
<td>2.4e-07</td>
<td>1</td>
<td>U</td>
<td>R.EEAENTLQSFR.Q</td>
</tr>
<tr>
<td>95</td>
<td>714.8277</td>
<td>1427.6408</td>
<td>1427.7045</td>
<td>-0.0637</td>
<td>0</td>
<td>84</td>
<td>3.7e-07</td>
<td>1</td>
<td>U</td>
<td>R.SLYASSPGGVYATR.S</td>
</tr>
<tr>
<td>115</td>
<td>556.9347</td>
<td>1667.7823</td>
<td>1667.8366</td>
<td>-0.0543</td>
<td>0</td>
<td>27</td>
<td>0.17</td>
<td>1</td>
<td>U</td>
<td>R.ETNLDSLPLVDTHSK.R</td>
</tr>
<tr>
<td>117</td>
<td>578.9162</td>
<td>1733.7267</td>
<td>1733.8076</td>
<td>-0.0809</td>
<td>1</td>
<td>49</td>
<td>0.00081</td>
<td>1</td>
<td>U</td>
<td>R.LQDEIQNMEEMAR.H</td>
</tr>
</tbody>
</table>

Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4
Check to include this hit in error tolerant search
Mascot Search Results

Peptide View

MS/MS Fragmentation of LGEYGFQNALIRV

Found in ALBU_BOVIN, Serum albumin O= Bos taurus G= ALB F= 1 SV= 4

Match to Query 2: 1478.828768 from(740.420660,2+) index(0)

Title: 181206_QS_hsal wiff, Sample 181206_QS_hsal (sample number 1), Elution 58.079 to 58.532 min, Period 1, Cycle(s): 5323-5325 (E)

Data file 461_740_only.mgf

Click mouse within plot area to zoom in by factor of two about that point
Or, Plot from [] to [] Da [] Full range
Label all possible matches [] Label matches used for scoring []

All matches to this query

<table>
<thead>
<tr>
<th>Score</th>
<th>Mr(calc)</th>
<th>Delta</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.26</td>
<td>1478.7821</td>
<td>0.0586</td>
<td>LGEYGFQNALIRV</td>
</tr>
</tbody>
</table>

Nonstatistic range of neutral peptide M(r) (calc): 1470.7681

Fixed modifications: Carbamidomethyl (C) (apply to specified residues or terminal only)

Ion Scores: 1.26 Peptide: 1.26-40

Matches: 1.26/10 fragment ions using 24 most intense peaks

26
Many solutions proposed for validation: manual, semi-manual, training sets, mass accuracy, **statistical validation**
A good hit (Mascot score=69)

MS/MS Fragmentation of VMLAANIGTPK
Match to Query 525: 1113.616556 from(557.815554,2+)

Monoisotopic mass of neutral peptide Mr(calc): 1113.622
Fixed modifications: Carbamidomethyl (C)
Ions Score: 69 Expect: 3.8e-07
Matches (Bold Red): 17/90 fragment ions using 32 most intense peaks
A bad hit (Mascot score=13)

MS/MS Fragmentation of **VSIALSSHWINPR**
Found in **KLOT_MOUSE**, Klotho precursor - Mus musculus (Mouse)
Match to Query 2: 1478.838768 from(740.426660,2+)

- Monoisotopic Mr(calc): 1478.7994
- Fixed modifications: Carbamidomethyl (C)
- Ions Score: 13 Expect: 18
- Matches (Bold Red):
 10/110 fragment ions using 26 most intense peaks

Strong unmatched peaks

<table>
<thead>
<tr>
<th>#</th>
<th>b</th>
<th>b''</th>
<th>b''</th>
<th>b''</th>
<th>b''</th>
<th>Seq</th>
<th>y</th>
<th>y''</th>
<th>y''</th>
<th>y''</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0757</td>
<td>50.5415</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>187.1077</td>
<td>94.0575</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>1380.7383</td>
<td>690.5728</td>
<td>1363.7117</td>
<td>682.3595</td>
<td>1362.7277</td>
</tr>
<tr>
<td>3</td>
<td>300.1918</td>
<td>150.5995</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>1293.7062</td>
<td>647.3568</td>
<td>1276.6797</td>
<td>638.8435</td>
<td>1275.6957</td>
</tr>
<tr>
<td>4</td>
<td>371.2280</td>
<td>186.1181</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1180.6222</td>
<td>590.8147</td>
<td>1163.5956</td>
<td>582.2014</td>
<td>1162.6116</td>
</tr>
<tr>
<td>5</td>
<td>484.3130</td>
<td>242.6601</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>533.2183</td>
<td>177.1128</td>
<td>1156.6346</td>
<td>524.1228</td>
<td>1155.6444</td>
</tr>
<tr>
<td>6</td>
<td>484.3139</td>
<td>242.6601</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1109.2831</td>
<td>325.2962</td>
<td>1092.2382</td>
<td>316.7829</td>
<td>1091.2543</td>
</tr>
<tr>
<td>7</td>
<td>571.3450</td>
<td>286.1761</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>553.3344</td>
<td>277.1708</td>
<td>996.6610</td>
<td>498.7541</td>
<td>979.4744</td>
</tr>
<tr>
<td>8</td>
<td>658.3770</td>
<td>329.6921</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>909.4690</td>
<td>455.2381</td>
<td>892.4424</td>
<td>446.7248</td>
<td>891.4584</td>
</tr>
<tr>
<td>9</td>
<td>715.4459</td>
<td>358.2216</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>777.4254</td>
<td>389.2163</td>
<td>822.4369</td>
<td>411.7221</td>
<td>805.4104</td>
</tr>
<tr>
<td>10</td>
<td>795.4359</td>
<td>398.2116</td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td>963.5047</td>
<td>482.2560</td>
<td>685.3768</td>
<td>343.1926</td>
<td>668.2515</td>
</tr>
<tr>
<td>11</td>
<td>1094.5993</td>
<td>547.8033</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>1076.5887</td>
<td>538.7930</td>
<td>1069.5827</td>
<td>520.1530</td>
<td>1062.5762</td>
</tr>
<tr>
<td>12</td>
<td>1048.6422</td>
<td>604.8248</td>
<td>1191.6157</td>
<td>596.3115</td>
<td>1196.6317</td>
<td>593.8195</td>
<td>N</td>
<td>386.2146</td>
<td>193.6110</td>
<td>369.1831</td>
<td>185.0977</td>
</tr>
<tr>
<td>13</td>
<td>1305.6950</td>
<td>653.3511</td>
<td>1289.6684</td>
<td>644.3379</td>
<td>1287.6944</td>
<td>644.3459</td>
<td>P</td>
<td>272.1717</td>
<td>136.5095</td>
<td>255.1452</td>
<td>128.0762</td>
</tr>
<tr>
<td>14</td>
<td>1355.7414</td>
<td>700.3658</td>
<td>1339.7184</td>
<td>691.3527</td>
<td>1337.7455</td>
<td>691.3605</td>
<td>R</td>
<td>175.1199</td>
<td>88.0631</td>
<td>158.0924</td>
<td>79.5498</td>
</tr>
</tbody>
</table>
Protein inference problem

! **We are not identifying proteins, but peptides!!**

1) Apply principle of parsimony (Occam’s razor): within a family, list protein sequence which can explain the most of the identified peptides.

2) To highlight the presence of a member of a protein family, at least one discriminating (unique) peptide must be present (what if it is a borderline hit?)

Protein inference problem

<table>
<thead>
<tr>
<th>Peptide A</th>
<th>Peptide B</th>
<th>Peptide C</th>
<th>Peptide D</th>
<th>Peptide E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein 1</td>
<td>Protein 2</td>
<td>Protein 3</td>
<td>Protein 4</td>
<td></td>
</tr>
</tbody>
</table>

- Both hits are reported
- Reported
- Not reported!

**Worst case**: two distinct homologous members of the same family found in two samples, each with a weak discriminating peptide….what to say?
Further processing of Mascot results

(shotgun experiment, one or more samples)
Data analysis and distribution software: Scaffold

<table>
<thead>
<tr>
<th>Protein ID probability</th>
<th>Percentage of total spectra</th>
<th>Nr. assigned spectra</th>
<th>Nr. unique peptides</th>
<th>Nr. unique spectra</th>
<th>Unweighted spectrum count</th>
<th>Quantitative value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Name</td>
<td>Accession Number</td>
<td>Molecular Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneous nuclear 1</td>
<td>ROA2_HUMAN</td>
<td>37 kDa</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>ribonucleo...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulin, beta polypeptide</td>
<td>Q5R532_HUMAN</td>
<td>46 kDa</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Keratin, type I cytoskeletal 19 (Cyt...</td>
<td>K1C10_HUM...</td>
<td>50 kDa</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 1 (Cyto...</td>
<td>K1C6_HUMAN...</td>
<td>64 kDa</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Alpha tubulin</td>
<td>Q5R532_HUMAN</td>
<td>50 kDa</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Alpha tubulin</td>
<td>Q5R532_HUMAN</td>
<td>50 kDa</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Actin, cytoplasmic 1 (Beta-actin)</td>
<td>ACTB_HUM...</td>
<td>42 kDa</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Cullin-3 (CUL-3)</td>
<td>Q5R532_HUMAN</td>
<td>32 kDa</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Kelch-like protein 13 DBT and kelhec...</td>
<td>KLH110_HUMAN</td>
<td>66 kDa</td>
<td>11</td>
<td>21</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Heat shock cognato 71 kDa protein...</td>
<td>HSF7C_HUM...</td>
<td>71 kDa</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Protein L-asparagin (L-asparagin...</td>
<td>PMF_HUM...</td>
<td>25 kDa</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Kelch-like protein 32</td>
<td>KIK22_HUMAN</td>
<td>72 kDa</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>NIV/E protein hypothetic...</td>
<td>ORG1B2_HUM...</td>
<td>51 kDa</td>
<td>14</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin, type I cytoskeletal 9 (Cyt...</td>
<td>K1C9_HUM...</td>
<td>52 kDa</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 9 (Cyo...</td>
<td>K1C9_HUM...</td>
<td>52 kDa</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Scaffold attachment factor A2</td>
<td>CHMM1_HUM...</td>
<td>85 kDa</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Carboxy-methane synthase [co...</td>
<td>GSPM_HUM...</td>
<td>166 kDa</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneous nuclear ribonucleo...</td>
<td>HHNPD0_HUM...</td>
<td>38 kDa</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Keratin, type II cytoskeletal 2 opide...</td>
<td>K2E2_HUM...</td>
<td>66 kDa</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>TATA binding protein interacting pe...</td>
<td>G53Kh_HUM...</td>
<td>50 kDa</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Free Scaffold viewer: www.proteomesoftware.com
Spectral counting and quantification

- multiple spectra matches for abundant peptides
- spectral counting reflects relative abundance of proteins between samples
- poorly reliable at low spectral count

Spectral counting: Scaffold®

http://www.proteomesoftware.com/

Ex. Scaffold report

- Normalisation needed
- Oversampling necessary
- Accurate at medium/high spectral counts, unreliable at low spectral counts
- Samples must be reasonably similar

Probability of hitting a protein by unbiased sampling in MS/MS runs ~ concentration

Relative quantitation

Spiked myoglobin (ratio 1:2) in E.coli lysate

CAVEATS:

- Normalisation needed
- Oversampling necessary
- Accurate at medium/high spectral counts, unreliable at low spectral counts
- Samples must be reasonably similar

Improvements possible using:

- low-scoring spectra matched to confidently identified peptide sequences (Zhou et al. J Proteome Res. 2010 9:5698-704.)
- MS/MS TIC (Scaffold: average, total or TOP 3)
Summary: Typical Analytical Workflow

1. **Biological question**
2. Protease digestion
3. Peptide extraction
4. **Nano-HPLC**
5. **MS/MS**
6. **Chromatographic Separation (reversed-phase)**
7. **Tandem mass spectra of 50-2000 peptides**

Database matches
- DHX9_HUMAN
- NFM_HUMAN
- MYO6_HUMAN
- TP2A_PIG
- Q7Z5Y2
- FLIH_HUMAN
- TP2B_MOUSE
- S3B1_HUMAN
- Q8VCW5
- Q8CHF9

Output:
- Protein identification in simple/complex mixtures
- Extensive sequence coverage and peptide mapping
- Analysis of modified peptides possible

Database searching

Software (MASCOT)

Protein sequence database

Table:

- **Q7Z5Y2**
 - Mass: 118789
 - Total score: 178
 - Peptides matched: 6
 - Rho-interacting protein 3.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Mr(calc)</th>
<th>Score</th>
<th>Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>930.48</td>
<td>42</td>
<td>EGLTVQER</td>
<td></td>
</tr>
<tr>
<td>1032.54</td>
<td>11</td>
<td>NWIQTIMK</td>
<td></td>
</tr>
<tr>
<td>1206.63</td>
<td>29</td>
<td>FSLCILTEPK</td>
<td></td>
</tr>
<tr>
<td>1369.75</td>
<td>24</td>
<td>LSTHELTSLEK</td>
<td></td>
</tr>
<tr>
<td>1406.77</td>
<td>55</td>
<td>FFILYEHGLLR</td>
<td></td>
</tr>
<tr>
<td>1775.88</td>
<td>16</td>
<td>QVPIAPVHLSSEDGGR</td>
<td></td>
</tr>
</tbody>
</table>

Protease digestion

Peptide extraction

Nano-HPLC

MS/MS

Chromatographic Separation (reversed-phase)

Tandem mass spectra of 50-2000 peptides
• Proteomics workflows and applications
Expression proteomics: analysis of protein expression levels and their changes

Typical questions:
* What distinguishes a lymphocyte from a neuron?
* Which proteins are newly induced in a cell after a specific stimulus?

- Protein levels: main end product of gene activation, functionally active molecules
- Transcriptomics (cDNA, Affymetrix oligo chips, RNAseq,...) vs. proteomics
 - Comprehensive
 - Higher throughput, fast(er)
 - More sensitive
 - Assumption: [mRNA] ~ [protein]

2) **Functional proteomics**: studies on subsets of the proteome to map interactions and functional relationships

Typical question:

* which groups of proteins bind to each other and function together ?
* how does the protein composition of an organelle change in determined conditions

- Major proteomics application
- Protein-protein interactions \Rightarrow active complexes (molecular machines)
- In vivo (keep PTMs, consider natural abundances, occurrences).
- Strategy: guilty by association
- Others: 2-hybrid screens (genetic), FACS, fluorescence
3) **Modification proteomics**: the analysis of post-translational modifications (PTMs).

Typical question: how is protein activity modulated by covalent chemical modification?

- Very numerous and varied PTMs
- Affect activity, targeting, degradation, …
- Combinatorial
- Dynamic
- Heterogeneous
- Various stoichiometry
- Proteomics and particularly MS are the sole “universal” techniques to study them
• Classical proteomics:
 – 2D-PAGE and MS (MALDI-TOF)

• More and more:
 LC-MS/MS-based “shotgun” approaches for large scale protein identification and quantification
 – Compared to 2D-PAGE: greater dynamic range and higher proteome coverage
 – Can be combined with isotope labelling to achieve relative protein quantification
WORKFLOW 1:

„classical“

2D-PAGE

+

Protein ID by MALDI-TOF-MS
Example: adaptation of bacteria to growth conditions

Normal medium Low Glucose

E.Coli adaptation to low glucose by modulation of 15 proteins

(+) ID and quantification
PTM separated

(-) Reproducibility: poor
Dynamic Range limited
PTM separated
WORKFLOWS 2:

General shotgun protein ID
Shotgun sequencing from complex mixtures

Multiprotein complex

Denaturation, Proteolytic digestion

Complex peptide mixture (1000-20000 species)

Nano rp-LC-MSMS

Db search

List of identified proteins
1. P45218
2. P21543
3. Q12588
4. P32651
5. Q01245
6.
A VERY complex mixture – direct analysis (no separation)
Mascot Search Results
User: MQ
Email:
Search title: 151002_ACO_B4strep.wiff: Angelos frac B4 IP strept
MS data file: C:\DOCUME~1\paf\LOCALS~1\Temp\mas5D.tmp
Database: Sprot 4028 (114033 sequences; 41888693 residues)
Taxonomy: Mammalia (mammals) (23838 sequences)
Timestamp: 17 Oct 2002 at 08:09:30 GMT

Significant hits:

- ALBU_BOVIN (P02769) Serum albumin precursor (Allergen Bos d 6).
- DNM1_HUMAN (P26358) DNA (cytosine-5)-methyltransferase 1 (EC 2.1.1.37)
- AC15_HUMAN (P35251) Activator 1 140 kDa subunit (Replication factor C
- IF16_HUMAN (Q16666) Gamma-interferon-inducible protein Ifi-16 (Interferon stimulus response gene)
- K1CJ_HUMAN (P13645) Keratin, type I cytoskeletal 10 (Cytokeratin 10) (KRT10)
- K22E_HUMAN (P35908) Keratin, type II cytoskeletal 2 epidermal (Cytokeratin 2)
- ACF7_HUMAN (Q9UPN3) Actin cross-linking family protein 7 (Macrophin) (MPR)
- AC14_HUMAN (P35250) Activator 1 40 kDa subunit (Replication factor C 4)
- ALBU_FELCA (P49064) Serum albumin precursor (Allergen Fel d 2).
- AC15_MOUSE (P35601) Activator 1 140 kDa subunit (Replication factor C
- DYHC_MOUSE (Q9JHU4) Dynein heavy chain, cytosolic (DYHC) (Cytoplasmic dynein)
- AC12_HUMAN (P35249) Activator 1 37 kDa subunit (Replication factor C 3
- EF11_CRIGR (P20001) Elongation factor 1-alpha 1 (EF-1-alpha-1) (Elongation factor 1)
- RYR3_HUMAN (Q15413) Ryanodine receptor 3 (Brain-type ryanodine receptor)
- K2C1_HUMAN (P04264) Keratin, type II cytoskeletal 1 (Cytokeratin 1) (KRT1)
- PLE1_RAT (P30427) Plectin 1 (PLTN) (PCN).
- AHNK_HUMAN (Q09666) Neuroblast differentiation associated protein AHNA
- TRYP_PIG (P00761) Trypsin precursor (EC 3.4.21.4).
- ACF7_MOUSE (Q9QXZ0) Actin cross-linking family protein 7 (Microtubule cross-linking protein)
- CENF_HUMAN (P49454) CENP-F kinetochore protein (Centromere protein F)
- ALBU_HUMAN (P02768) Serum albumin precursor.
- PLE1_HUMAN (Q15149) Plectin 1 (PLTN) (PCN) (Hemidesmosomal protein 1)
- TRI4_HUMAN (Q15650) Activating signal cointegrator 1 (ASC-1) (Thyroid transcription factor)
- NF1_HUMAN (P21359) Neurofibromin (Neurofibromatosis-related protein N)
- NEBU_HUMAN (P20929) Nebulin

A VERY complex mixture still gives results, but...
....... how deep are we going?
Fractionation to reduce complexity (1)

GeLC-MS workflow

Complex mixture

Trypsin digestion

LC-MS/MS

Db search

Protein IDs
1. P45218
2. P21543
3. Q12588
4. P32651
5. Q01245

....

1545. Q34258
Ex: protein-protein interactions analysis by affinity purification

- Bait + -
- IgG HC 52 kDa
- IgG LC 24 kDa

Trypsin digestion
- A
- B
- C
- D
- E
- F

LC-MS/MS

db search

(+)
- AHNK
- ANXA2
- GNAI2
- 5NTD
- ACTG
- GBB1
- GNAI3
- CD44
- CALM
- HSP7C
- LYN
- STOM
- CD59
- ECHB
- RAB35
- PLEC1
- VPP1
- CAD13
- CLH1
- SNP23

(-)
- AHNK
- ANXA2
- GNAI2
- 5NTD
- ACTG
- GBB1
- GNAI3
- CD44
- CALM
- HSP7C
- LYN
- STOM
- CD59
- ECHB
- RAB35
- PLEC1
- VPP1
- CAD13
- CLH1
- SNP23
Why is SDS-PAGE such a good preparation method?

- Ideal interface to biology
- Analytical and micropreparative
- Robust
- Solid phase chemistry of proteins
- Easy, low-tech
- Removal of contaminants:
 - At the loading point
 - After migration during fix / staining steps

Disadvantages

- Protein digestion in gel: non quantitative
- Peptide sequence recovery: usually incomplete
- Whole protein recovery: poor
Fractionation to reduce complexity (2)

Peptide-based fractionation

Complex mixture

Trypsin digestion

Peptide fractionation

LC-MS/MS

Db search

Protein IDs
1. P45218
2. P21543
3. Q12588
4. P32651
5. Q01245
....
1545. Q34258

SCX LC or Peptide IEF
WORKFLOWS 3:

quantification strategies
Comparison: A ↔ B

Which proteins change in amount and how much?

Applications:
- Healthy vs. diseased tissues
- Healthy vs. diseased body fluids
- Drug treated / untreated cells
- Stimulated / unstimulated cells
- Mutants / wt cells

......
Techniques for large scale quantitative proteomics

- **2D Electrophoresis**
 - Classical (Label-free)
 - DIGE (Labelling)

- **MS-based methods**
 - **Label-free methods**
 - MS-based
 - Spectral counting
 - **Labelling methods**
 - Chemical Labelling
 - ICAT
 - iTRAQ
 - ICPL
 - TMT
 - Di-ME
 - 18O
 - ...
 - Metabolic Labelling
 - SILAC
 - ISIS
 - 15N
 - ...

- quantification at protein level

- quantification at peptide level
Relative quantification by stable isotope labelling

Sample A
Light

Sample B
Heavy

mix
analyse

Labelling strategies:

• Chemical (side chains: C, K, N-term)

 ICAT, iTRAQ, ICPLP, ...

• Metabolic (K, R, all)

 SILAC, ...

• Enzymatic

 Trypsin + 18O, ...

Co-analyse
Eliminate analytical variability

Δm
SILAC experiment workflow

Data analysis software!

MaxQuant
SILAC peaks

\[\Delta m = 3.0 \text{ Da} \]

Heat shock protein
HSP 90β
Chemical labelling: Isobaric Tags (iTRAQ)- multiplex quantification

Control

Harvest cells

Trypsin digestion

Treated

↔ in vitro chemical labeling

↔ Same peptide from 4 samples has same mass (isobaric)

↔ quantification by tags in MS/MS spectra at fixed M/Z

Figure 1. The concept of iTRAQ™ Reagent chemistry (example of a 4-plex experiment) Each sample is labeled with one of the four iTRAQ Reagents and then pooled prior to MS analysis.

Multiplexed Protein Quantitation in *Saccharomyces cerevisiae* Using Amine-reactive Isobaric Tagging Reagents
How to label? Pros and cons

• **Metabolically** (during protein synthesis)
 → Incorporation of one or more labelled amino acid
 (+) “native” proteins
 (+) compatible w. purifications
 (+) accurate
 (-) need cultivatable organism
 (-) limited multiplexing (max. 3)

• **Chemically** (post protein synthesis)
 → “specific” chemical modification of AA side chain
 (+) any sample can be done
 (+) higher multiplex (iTRAQ max 8-plex)
 (-) side (or incomplete) reactions
 (-) separate purifications
 (-) less accurate
Labeling

▷ Analytical variability minimized

▷ Number of samples limited (2-8)

Label free

▷ Number of samples unlimited

▷ Simpler sample preparation

▷ Analytical variability

Computationally heavy (XIC)
Signal processing in MS quantification

Quantitation summary

<table>
<thead>
<tr>
<th>Application</th>
<th>Multiplexing</th>
<th>Accuracy (process)</th>
<th>Quantitative proteome coverage</th>
<th>Linear dynamic range<sup>a</sup></th>
<th>Ease of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic protein labeling</td>
<td>2-3</td>
<td>+++</td>
<td>++</td>
<td>1–2 logs</td>
<td>+</td>
</tr>
<tr>
<td>• Complex biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cell culture systems only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical protein labeling (MS)</td>
<td>2-3</td>
<td>+++</td>
<td>++</td>
<td>1–2 logs</td>
<td>+</td>
</tr>
<tr>
<td>• Medium to complex biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical peptide labeling (MS)</td>
<td>2-3</td>
<td>++</td>
<td>++</td>
<td>2 logs</td>
<td>+</td>
</tr>
<tr>
<td>• Medium complexity biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical peptide labeling (MS/MS)</td>
<td>2-8</td>
<td>++</td>
<td>++</td>
<td>2 logs</td>
<td>+</td>
</tr>
<tr>
<td>• Medium complexity biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzymatic labeling (MS)</td>
<td>2</td>
<td>++</td>
<td>++</td>
<td>1–2 logs</td>
<td>++</td>
</tr>
<tr>
<td>• Medium complexity biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiked peptides</td>
<td>multiple</td>
<td>++</td>
<td>+</td>
<td>2 logs</td>
<td>++</td>
</tr>
<tr>
<td>• Medium complexity biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted analysis of few proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label free (ion intensity)</td>
<td>multiple</td>
<td>+</td>
<td>+++</td>
<td>2–3 logs</td>
<td>++</td>
</tr>
<tr>
<td>• Simple biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Whole proteome analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label free (spectrum counting)</td>
<td>multiple</td>
<td>+</td>
<td>+++</td>
<td>2–3 logs</td>
<td>+++</td>
</tr>
<tr>
<td>• Simple biochemical workflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Whole proteome analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a In MRM mode, dynamic range may be extended to 4–5 logs

Adapted from:
WORKFLOWS 4: "Modificomics"

f.ex. Phosphoproteomics
Caveat

Protein identification

IS NOT

protein characterisation

Two peptides are enough to identify a protein but we are still identifying two peptides, not the entire protein

Highly similar sequences cannot be distinguished

For finding PTMs extensive sequence coverage is essential !!!
Some common PTMs

<table>
<thead>
<tr>
<th>Modification</th>
<th>Δ Mass</th>
<th>Residue</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteolysis</td>
<td>Various</td>
<td>Any</td>
<td>PTM, artefact</td>
</tr>
<tr>
<td>Dehydration</td>
<td>- 18.0106</td>
<td>N, Q, S, T, Y</td>
<td>PTM, artefact</td>
</tr>
<tr>
<td>Glycosylation (N-, O-, simple/complex)</td>
<td>Various</td>
<td>N, S, T, (Q)</td>
<td>PTM</td>
</tr>
<tr>
<td>Phosphorylation</td>
<td>+ 79.9663</td>
<td>S, T, Y</td>
<td>PTM</td>
</tr>
<tr>
<td>Sulfonation</td>
<td>+ 79.9568</td>
<td>S, T, Y, C</td>
<td>PTM</td>
</tr>
<tr>
<td>Acetylation</td>
<td>+ 42.0106</td>
<td>N-term or K</td>
<td>PTM, derivative</td>
</tr>
<tr>
<td>Carboxydimethylation</td>
<td>+ 57.0215</td>
<td>C</td>
<td>Derivative</td>
</tr>
<tr>
<td>Methylation</td>
<td>+ 14.0156</td>
<td>K, R, D, E, ...</td>
<td>PTM, artefact</td>
</tr>
<tr>
<td>Ubiquitination (mono, di-, poly, K48, K63, ..)</td>
<td>Various / + 114.043</td>
<td>K</td>
<td>PTM</td>
</tr>
<tr>
<td>Sumoylation (SUMO-1, -2, -3)</td>
<td>Various</td>
<td>K</td>
<td>PTM</td>
</tr>
<tr>
<td>Oxidation</td>
<td>+ 15.9949</td>
<td>C, M, W</td>
<td>PTM, artefact</td>
</tr>
<tr>
<td>ADP-ribosylation</td>
<td>+ 541.0611</td>
<td>R, C, N, S, E</td>
<td>PTM</td>
</tr>
<tr>
<td>Myristoylation</td>
<td>+ 210.1984</td>
<td>N-term G, K, C</td>
<td>PTM</td>
</tr>
<tr>
<td>Palmitoylation</td>
<td>+ 238.2297</td>
<td>C, K, S, T, N-term</td>
<td>PTM</td>
</tr>
<tr>
<td>Prenylation (farnesyl-, geranylgeranyl-)</td>
<td>Various</td>
<td>CaaX (C-term)</td>
<td>PTM</td>
</tr>
<tr>
<td>Nitrosylation</td>
<td>+ 28.9902</td>
<td>C</td>
<td>PTM</td>
</tr>
</tbody>
</table>

….. Almost 100 known…..
PTM characterization by MS

M

\[b_5 \]
\[b_4 \]
\[b_3 \]
\[b_2 \]
\[b_1 \]

H \[AA_1 \] \[AA_2 \] \[AA_3 \] \[AA_4 \] \[AA_5 \] OH

\[y_5 \]
\[y_4 \]
\[y_3 \]
\[y_2 \]
\[y_1 \]

M' = M + \Delta M

\[b_5^* = b_5 + \Delta M \]
\[b_4^* = b_4 + \Delta M \]
\[b_3^* = b_3 + \Delta M \]

\[y_5^* = y_5 + \Delta M \]
\[y_4^* = y_4 + \Delta M \]
\[y_3^* = y_3 + \Delta M \]
Common issues in PTM analysis

• Protein sequence coverage
 → can be increased by multi-enzyme digestion, linked to abundance issue

• Labile PTMs / MS suitability
 → enzyme inhibitors, PTM derivatisation, use of alternative MS fragmentation (for ex. ETD)

• Abundance
 → PTM enrichment

• Artefacts
 → appropriate sample preparation, control experiments

• Isobaric PTMs
 → high resolution MS, specific fragments (for ex. immonium ions)

• Unknown (untargeted) PTMs
 → error-tolerant search, blind search

• Localization
 → use of alternative MS fragmentation, localization algorithms

• Connectivity
 → middle-down / top-down analysis
Phosphoproteomics

- Kinase cascades ⇔ all aspects of cell regulation
- Functional assay of the proteome
Questions in phosphorylation analysis

• Is a protein of interest phosphorylated?

• Which proteins are phosphorylated in a cell (or in a precise pathway?)

• Mapping phosphorylation sites: exact residues

• Quantitation of changes in response to a stimulus

• Effect on physiological protein activity
Problems with phosphopeptide analysis

1) **Quantity** problem : abundance of the protein to analyse is often low and phosphorylation is substoichiometric, especially when purifying from in vivo.
 → Scale up prep, P-peptide enrichment

2) **Binding** of phosphopeptides to metal and other surfaces : what is its real impact ? Probably sequence dependent
 → Inert HPLC systems ; injection with Phosphoric acid

3) Low (or no) **signal intensity** due to acidic nature : highly variable depending on seq.
 → Derivatisation

4) Are we digesting with the good **enzyme** ? Phosphorylated regions are sometimes (often?) in problematic regions of proteins : very acidic, K/R-poor sequences (example plectin)
 → Digestion with multiple proteases

5) **Bad fragmentation** due to neutral loss : highly variable depending on peptide sequence
 → Choice of MS instrument, neutral loss MS, MS^n, multi-stage activation
Phosphoproteomics by TiO$_2$ P-peptide enrichment

Trypsin

Raw digest

Peptide fractionation (SCX, IEF, …)

Phosphopeptide Enrichment (TiO$_2$ column)

LC-MS/MS (all fractions)

ID: P-proteins

P-sites

Variants / options

• SILAC label
• α-P-Tyr protein enrichment
• Asp, Glu esterification
Metal affinity enrichment makes P-peptides detectable

MALDI-TOF analysis of a digested phosphoprotein
Multi-enzymatic strategy

- Protein sequence coverage can be improved by using different digestion enzymes:
 - Trypsin (K,R)
 - Chymotrypsin (F, L, W, Y)
 - Lys-C (K)
 - Gluc-C (D, E)
 - Arg-C (R)
 - Combination of 2 enzymes

Ex: POM1_SCHPO \((S.\ pombe,\ fission\ yeast)\)

Semi-specific search, 4 missed cleavages allowed:

1. SEQ: sequence covered with trypsin digestion
2. SEQ: additional sequence covered with chymotrypsin digestion
3. SEQ: additional sequence covered with Lys-C digestion
4. SEQ: additional sequence covered with Glu-C digestion

=> Total sequence coverage: 95.9 %

S: phosphosite found with trypsin

S: additional phosphosite found with chymotrypsin

S: additional phosphosite found with Lys-C

SS: ambiguous phosphosite localization

=> Total number of phosphosites: 41

```
MGYLQSQKAV SLGDENTDAL FKLH[SNRS] ANMFGIKSEL LN[SEL][AVG
SYSNDICP[QSSSU] AADT SPSTNASNTN IS[PEQEHKD ELF[NEP[PKG
V[SSMNDHAI TIIHSTCNGL LR[SFHDHYR Q[NSPRNSIH RLSNISIGNN
PIDFESSQON NE[SLTSS] HRTSSINSK S[FC][SLSYN R[SSP][DWQ
QNNGGHLSGV[ISISQDVSSV PLQSSVFS[NG NHAYHASMAP K[EGSW[RTN
IHSTSHPRAA SIGNR[S] GIPP V[PPTPNP[CH TDHQP[AN ISGSLT[SSS
APSVDNKNKP VSSDHNNT[ETS SQ[HPD][SR NPDPA[PKA VSQKTN[VDGH
RNHEAKHGNT VQNESKSQ[S] SNKEGRSSRG G[FT][LSFSR SS[RM][KKGSK
AKHEDAPDV[AIHPAYIAA[S] SYRNGK RTPTRK[SM Q[FINWFKPS
KERSSN[NSD S][EPVPVPL HITRSQV[S]E PEK[EE[ESV PPLPSNKDK
GIVPO[QST][YS] Y[PPKR[SD] ES[LOP][LSFA SS[NL][SEPFD RKVADLAMKA
INSKRINKLL DD[AKVMQ[LL DRACIT[Pr VR NT[VQ[INTA PLTEYEQ[DEI
NNYDNIFTG LRNVKR[RSA DENTSSNFG DDERG[DYKV LG[DIAYRE
VVD[FLKGS[GF QQVLR[CIDYE T[GLVALKII R[NKRFH[MQA LVE[TKI[QKI
REWDPLDEC[YS MVQXTDFHYF RDHLCVATEL LG[KNL[ELIK SNG[FPGLP[IV
VIKSTRQ[LI QCLTLLNEKH VIHCDLP[EN ILLCHPFK[S VKVIDFG[S[CC
FEGC[NT[QI QSRFHYR[PEV ILGMRGTP[ DCWSSLGC[I AEMTGFLF[PP
GENEQ[QLAC I[MEIFGPPDH SLIDKCRSRK V[FDSSG[KKR PFVSSG[VD[SR
RPFSKSLHQV LOCK[DSF[LS FISDCLKWD[ DER[QPOQA QHD[FTGKQD
VRRPA[APAR QKFARPPNIE L[APIP[LP[LPN LPMEYN[HTL P[PEPSN[QA
SNLV[S]DKF PN[TL]NLDYS IISDNGFLRK P[VEKSR
```
Unknown PTMs – mining unassigned MS/MS spectra

- A large proportion of MS/MS spectra are not assigned in proteomics samples:

- All possible unknown PTMs cannot be searched in the classical way (too large search space)

⇒ error-tolerant search (Mascot) can be used on proteins identified by a first pass search
 - The selected enzyme becomes semi-specific
 - The complete list of modifications is tested, serially
 - For a protein, the set of substitutions that can arise from single base substitutions is tested
 - Only one of the above is allowed per peptide.

- Other tools: MS-Alignment, InsPecT, MODa, …(Note: some tools use de novo sequencing)
Unknown PTMs – error-tolerant search (Mascot)

- Results of error-tolerant search must be interpreted with caution: many artefacts (PTM identity or position)!
- Many PTMs can be explained by sample preparation artefacts (oxidation, carbamylation, propionamide, ...)
- Ex (PTMs from error-tolerant search in italics):

<table>
<thead>
<tr>
<th>Glycerol-3-phosphate O-acyltransferase 2 OS=Saccharomyces cerevisiae</th>
</tr>
</thead>
<tbody>
<tr>
<td>617 – 624</td>
</tr>
<tr>
<td>617 – 625</td>
</tr>
<tr>
<td>625 – 640</td>
</tr>
<tr>
<td>626 – 640</td>
</tr>
<tr>
<td>649 – 661</td>
</tr>
<tr>
<td>649 – 665</td>
</tr>
<tr>
<td>670 – 675</td>
</tr>
<tr>
<td>688 – 708</td>
</tr>
<tr>
<td>688 – 710</td>
</tr>
</tbody>
</table>
Key concepts

- Proteome: complexity, plasticity, dynamic range
- Proteomics: more challenging than genomics but direct access to cell functions
- 2D-PAGE: differential display, then MS for ID
- LC & MS: many workflows to ID and quantify proteomes to depths of 4000-5000 proteins

Applications:
- Expression analysis
- PTMs
- Protein-protein interactions
- Protein trafficking, compartments, tissues,…
- Biomarker discovery
- ….
Take home message-1

- Many new possibilities in large scale protein analysis

PTM’s

- PTM are one of the most exciting and difficult « new » fields
- Huge variety and complexity of PTMs; no general workflow exists

Quantitative proteomics

- Quantitation is now feasible on a significant fraction of the proteome
- Several methods available; data quality and throughput are variable. Choice is often based on the experimental system and design
Take home message-2

• Some choices crucial for success:
 - Biological question: what are we looking for?
 - Model system
 - Sample preparation (!)
 - Abundance of protein of interest
 - Complexity of mixture
 - Enrichment mechanism
 - Data analysis: *not sooooooooooooo easy!*
 - If we get results, can we interpret them?
 - If we get results, are they going to be useful?
Some good reviews -1

Some good articles to start reading

 Discusses limits and potential of proteomics and compares proteomics with genomics (incl. mRNA ⇔ protein correlation)

 Very good overview presenting examples of proteomics studies which had a significant impact on a field of biology

 Focus on MS technology and its applications
Some good reviews - 2

Give an overview of proteomics techniques used for PTM characterization in cells

Review of databases and other tools useful for study of PTMs

General introduction to quantitative proteomics

Review and comparison of analytical techniques used in quantitative proteomics