Go to: content | top | bottom | search
 
 
You are hereUNIL > Department of Biochemistry > Research > Schneider Pascal

Schneider Pascal, Tenured Senior Lecturer and Researcher


 

Biography

Pascal Schneider studied biochemistry and obtained a PhD in 1992 at the University of Lausanne. He performed a post-doc with MAJ Ferguson at the University of Dundee, Scotland, and then joined the research group of J. Tschopp at the Department of Biochemistry, University of Lausanne, where he has been appointed assistant professor in 2002 and senior lecturer and researcher in 2006. Ligands and receptors of the TNF family are his major research interest.

Research Interests

FUNCTIONAL CHARACTERIZATION OF TNF FAMILY LIGANDS

TNF family ligands are trimeric, type II transmembrane proteins that can either function as membrane-bound proteins or as soluble cytokines after proteolytic processing. Although they are predominantly active in the development, homeostasis and function of the immune system, they are also involved in several other processes such as control of bone turnover, mammary gland development and morphogenesis of skin derivatives such as hair, teeth and sweat glands. Primary defects in TNF family ligands or their receptors are directly associated to several inherited diseases, whereas deregulated expression of some members is implicated in the onset and/or maintenance of autoimmune conditions or malignancies. The TNF/TNFR family thus provides a number of interesting therapeutic targets.

B cells

B cells are key components of the humoral immune response. Some B cell types in the peritoneal cavity or in the splenic marginal zone encode a relatively limited repertoire of antibodies that are mainly directed against carbohydrate epitopes. These B cells give rise to plasma cells secreting so called “natural antibodies” crucial to provide broad protection against bacterial infections. Other B cells in the spleen, lymph nodes and other secondary lymphoid organs can produce high affinity antibodies against more specific antigens such as microbial toxins. From B cell precursors in the bone marrow to fully differentiated antibody-secreting plasma cells homing in the bone marrow or sub-mucosal areas of lymphoid organs such as tonsils, B cells undergo a number of maturation and selection steps, achieved in part by the availability of sufficient amounts of specific survival factors. The TNF ligand BAFF, also known as BLyS, supports survival of newly formed B cells as they exit from the bone marrow. BAFF is also important a later stages to maintain the pool of mature B2 B cells and marginal zone B cells. Another TNF family ligand, APRIL, shares receptors with BAFF and is believed to help B cells at terminal stages of differentiation (Fig.1).

 

 

Fig. 1: Receptor activation by various forms of BAFF, APRIL and EDA.

Ectodermal dysplasia

In a very different biological context, the TNF family ligand ectodysplasin A (EDA) participates in the development of skin appendages, such as teeth, hair, eccrine sweat glands and numerous other glands (Fig. 2). EDA-deficiency in human and various animal species such as mice and dogs causes one form of ectodermal dysplasia (X-linked hypohidrotic ectodermal dysplasia, XLHED). There is presently no cure for ectodermal dysplasia. This disease can be particularly dangerous for young, undiagnosed patients, decreases the quality of life, can have severe impacts on self-esteem, and generates important financial burden for palliative treatments. In the past, our group has demonstrated the feasibility to cure XLHED in very young mice and dogs by protein replacement therapy (with the collaboration of Dr M. Casal at the University of Pennsylvania for experiments performed in dogs) (Fig.3). Recently, we have given full support to the initiators of Edimer, a newly founded company whose goal is to launch clinical trials in XLHED patients by the end of 2011, and with whom we are associated from a research point of view.

 

Fig. 2: Involvement of the TNF family ligand EDA in the development of skin appendages. Membrane-bound EDA must be released as a soluble protein in order to activate its receptor, EDAR. At the site of EDAR activation, a NF-kB-dependent pathwayinduces neutralization of placode inhibitors, thus opening the way to the development of skin-derived structures such as hair, teeth or sweat glands. Hair and teeth that form despite the absence of EDA are often morphologically abnormal, suggesting that EDA is required for development and morphology.

BAFF and APRIL

TNF family ligands signal by engagement of one or several receptors of the TNF receptor family. Some TNF ligands, in addition to their cognate receptors, interact with unconventional partners such a proteoglycans. Most TNF family ligands assemble as homotrimers and display three receptor-binding sites. Recruitment of three receptors to the trimeric ligand is the first signaling step. In the past few years, several groups including our own have accumulated evidence that the form of ligand presented to responsive cells is very important. It is now generally considered that membrane-bound and soluble TNF family ligands, including TNF itself, can trigger distinct effects. Membrane-bound ligands may be presented in a dense manner, “cross-linked” by the membrane to which they are physically attached, allowing the recruitment of more than three receptors in close proximity. Depending on the receptor, this may or may not be required for the generation of an optimal intracellular signal. As an example, TNF-R1 signals in response to soluble TNF, whereas TNF-R2 requires membrane-bound TNF. We wondered whether this concept could be extended to various forms of soluble ligands. Indeed, soluble BAFF exists either as trimers (BAFF 3-mer), or as an ordered assembly of 20 trimers (BAFF 60-mer), whereas APRIL can interact with carbohydrate side chains of proteoglycans that may cross-link soluble trimeric APRIL (Fig. 1). We reasoned that the occurrence of BAFF and APRIL as trimers and higher order multimers might be functionally relevant, should they trigger receptors differently. BAFF binds to BAFF-R, TACI and BCMA, whereas APRIL binds TACI and BCMA. We indeed found that BAFF 3-mer and BAFF 60-mer could both signal through BAFFR, but that TACI (and BCMA) only responded to BAFF 60-mer and not to BAFF 3-mer. Similar observations were made with APRIL, which needed to be cross-linked in order to activate TACI. In other experiments, we have compared wild type mice, BAFF -/- mice and mice expressing membrane-bound BAFF only. When required, these mice were also provided with recombinant forms of BAFF 3-mer or BAFF 60-mer. Membrane-bound BAFF was unable to maintain the mature B cell pool, whereas soluble BAFF could. Membrane-bound BAFF (or BAFF 60-mer) was however required to induce specific B cell markers in the mature B cell pool. In collaboration with Dr B. Huard in Geneva, we also addressed the physiological relevance of APRIL-proteoglycan interaction in human. Proteoglycan-bound APRIL improved survival of primary human plasma cells ex vivo. Also, APRIL produced in small amounts by epithelial tonsil cells in a normal situation, and in greater amounts by neutrophils upon inflammation, accumulated on neighboring proteoglycans and correlated with the presence of numerous plasma cells. Proteoglycan-bound APRIL is therefore likely to provide a survival niche for plasma cells.

Of course, several questions remain to be addressed: what are the relative contributions of membrane-bound BAFF and BAFF 60-mer in vivo? Which of the different forms of BAFF and APRIL are to be found in vivo? Does their ratio change in pathological conditions? Are they all sensitive to BAFF-blocking drugs currently tested in clinical trials?

EDA

There are strong genetic evidences that EDA must be processed in a soluble form to exert its function (Fig. 2). EDA is unique in that is contains a collagen-like domain in addition to its receptor-binding domain. We have identified a proteoglycan-binding region in EDA that is distinct from both the receptor-binding domain and the collagen domain. Binding to proteoglycan restricts EDA’s distribution in vivo, although the physiological impact of this observation remains to be determined. The presence of the collagen domain was found to bring together two trimeric receptor-binding domains in the same molecule, resulting in a considerable increase of biological activity (Fig. 1).

Fig. 3: A recombinant form of EDA rescues the permanent dentition in a dog model of EDA-deficiency.

As mentioned above, EDA-deficiency leads to XLHED. However, few case studies also reported EDA mutations in patients missing some teeth (selective tooth agenesis), with no or very little involvement of other ectodermal appendages. Dr G. Mues (Baylor College of Dentistry, Dallas) characterized a four-generation family affected with a non-syndromic tooth defect, in which all affected individuals displayed a V365A mutation in EDA. We characterized the biochemical effect of this and five further EDA mutations associated with tooth agenesis. EDA found in XLHED is totally inactive, whereas those found in tooth agenesis often have an impaired but not totally abrogated ability to bind EDAR. Those that bound EDAR normally were either produced at lower levels, or displayed impaired ability to signal in a biological assay. Thus, we propose that hypomorph EDA mutations produce teeth defects, with no major impact on other structures. Teeth may therefore require stronger or higher quality EDAR signals to form properly.

Future work on EDA and EDAR will assess whether agonist anti-EDAR antibodies can be produced, whether predictive markers of treatment efficacy can be identified, whether EDAR signaling has any impact in adults, and whether a successful treatment induces biomarkers that can be monitored.


2016 |  2015 |  2014 |  2013 |  2012 |  2011 |  2010 |  2009 |  2008 |  2007 |  2006 |  2005 |  2004 |  2003 |  2002 |  2001 |  2000 |  1999 |  1998 |  1997 |  1996 |  1995 |  1994 |  1993 |  1992 |  1990 |  Thèses (doctorat) | 
 

2016
Alvarez A., Lagos-Cabré R., Kong M., Cárdenas A., Burgos-Bravo F., Schneider P., Quest A.F., Leyton L., 2016. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration. Biochimica et Biophysica Acta 1863(9) pp. 2175-2188. [DOI] [Pubmed]
Chypre M., Seaman J., Cordeiro O.G., Willen L., Knoop K.A., Buchanan A., Sainson R.C., Williams I.R., Yagita H., Schneider P. et al., 2016. Characterization and application of two RANK-specific antibodies with different biological activities. Immunology Letters 171 pp. 5-14. [DOI] [Web of Science] [Pubmed]
Del Rio M.L., Fernandez-Renedo C., Chaloin O., Scheu S., Pfeffer K., Shintani Y., Perez-Simon J.A., Schneider P., Rodriguez-Barbosa J.I., 2016. Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. mAbs 8(3) pp. 478-490. [DOI] [Web of Science] [Pubmed]
Garcin C.L., Huttner K.M., Kirby N., Schneider P., Hardman M.J., 2016. Ectodysplasin a pathway contributes to human and murine skin repair. Journal of Investigative Dermatology 136(5) pp. 1022-1030. [DOI] [Web of Science] [Pubmed]
Maskos K., Lammens A., Tan S.L., Hess H., Palinsky W., Schneider P., Jiang X., 2016. Data for the crystal structure of APRIL-BAFF-BAFF heterotrimer. Data In Brief 6 pp. 438-444. [Document] [DOI] [Pubmed]
2015
Allam R., Maillard M.H., Tardivel A., Chennupati V., Bega H., Yu C.W., Velin D., Schneider P., Maslowski K.M., 2015. Epithelial NAIPs protect against colonic tumorigenesis. Journal of Experimental Medicine 212(3) pp. 369-383. [DOI] [Web of Science] [Pubmed]
François A., Gombault A., Villeret B., Alsaleh G., Fanny M., Gasse P., Adam S.M., Crestani B., Sibilia J., Schneider P. et al., 2015. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis. Journal of Autoimmunity 56 pp. 1-11. [DOI] [Web of Science] [Pubmed]
Grosjean F., Nasi S., Schneider P., Chobaz V., Liu A., Mordasini V., Moullec K., Vezzoni P., Lavanchy C., Busso N. et al., 2015. Dendritic Cells Cause Bone Lesions in a New Mouse Model of Histiocytosis. Plos One 10(8) pp. e0133917. [DOI] [Web of Science] [Pubmed]
Johnston A.J., Murphy K.T., Jenkinson L., Laine D., Emmrich K., Faou P., Weston R., Jayatilleke K.M., Schloegel J., Talbo G. et al., 2015. Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell 162(6) pp. 1365-1378. [DOI] [Web of Science] [Pubmed]
Kowalczyk-Quintas C., Schuepbach-Mallepell S., Willen L., Smith T.K., Huttner K., Kirby N., Headon D.J., Schneider P., 2015. Pharmacological stimulation of edar signaling in the adult enhances sebaceous gland size and function. Journal of Investigative Dermatology 135(2) pp. 359-368. [DOI] [Web of Science] [Pubmed]
Lugrin J., Parapanov R., Rosenblatt-Velin N., Rignault-Clerc S., Feihl F., Waeber B., Müller O., Vergely C., Zeller M., Tardivel A. et al., 2015. Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. Journal of Immunology 194(2) pp. 499-503. [DOI] [Web of Science] [Pubmed]
Schuepbach-Mallepell S., Das D., Willen L., Vigolo M., Tardivel A., Lebon L., Kowalczyk-Quintas C., Nys J., Smulski C., Zheng T.S. et al., 2015. Stoichiometry of Heteromeric BAFF and APRIL Cytokines Dictates Their Receptor Binding and Signaling Properties. Journal of Biological Chemistry 290(26) pp. 16330-16342. [DOI] [Web of Science] [Pubmed]
Voutilainen M., Lindfors P.H., Trela E., Lönnblad D., Shirokova V., Elo T., Rysti E., Schmidt-Ullrich R., Schneider P., Mikkola M.L., 2015. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway. Plos Genetics 11(11) pp. e1005676. [DOI] [Web of Science] [Pubmed]
Wild J., Schmiedel B.J., Maurer A., Raab S., Prokop L., Stevanović S., Dörfel D., Schneider P., Salih H.R., 2015. Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis. Leukemia 29(8) pp. 1676-1683. [DOI] [Web of Science] [Pubmed]
Woess C., Tuzlak S., Labi V., Drach M., Bertele D., Schneider P., Villunger A., 2015. Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice. Cell Death and Differentiation 22(9) pp. 1477-1488. [DOI] [Web of Science] [Pubmed]
2014
Del Rio M.L., Fernandez-Renedo C., Scheu S., Pfeffer K., Shintani Y., Kronenberg M., Chaloin O., Schneider P., Rodriguez-Barbosa J.I., 2014. Therapeutic Blockade of LIGHT Interaction With Herpesvirus Entry Mediator and Lymphotoxin β Receptor Attenuates In Vivo Cytotoxic Allogeneic Responses. Transplantation 98(11) pp. 1165-1174. [DOI] [Web of Science] [Pubmed]
Hermes K., Schneider P., Krieg P., Dang A.T., Huttner K., Schneider H., 2014. Prenatal therapy in developmental disorders: drug targeting via intra-amniotic injection to treat X-linked hypohidrotic ectodermal dysplasia. Journal of Investigative Dermatology 134(12) pp. 2985-2987. [DOI] [Web of Science]
Kowalczyk-Quintas C., Schneider P., 2014. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation. Cytokine and Growth Factor Reviews 25(2) pp. 195-203. [DOI] [Web of Science] [Pubmed]
Kowalczyk-Quintas C., Willen L., Dang A.T., Sarrasin H., Tardivel A., Hermes K., Schneider H., Gaide O., Donzé O., Kirby N. et al., 2014. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia. Journal of Biological Chemistry 289(7) pp. 4273-4285. [DOI] [Web of Science] [Pubmed]
Pieper K., Rizzi M., Speletas M., Smulski C.R., Sic H., Kraus H., Salzer U., Fiala G.J., Schamel W.W., Lougaris V. et al., 2014. A common single nucleotide polymorphism impairs B-cell activating factor receptor's multimerization, contributing to common variable immunodeficiency. Journal of Allergy and Clinical Immunology 133(4) pp. 1222-1225.e10. [DOI] [Web of Science] [Pubmed]
Schneider P., Willen L., Smulski C.R., 2014. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members. Methods in Enzymology 545 pp. 103-125. [DOI] [Web of Science] [Pubmed]
Vincent F.B., Morand E.F., Schneider P., Mackay F., 2014. The BAFF/APRIL system in SLE pathogenesis. Nature Reviews. Rheumatology 10(6) pp. 365-373. [DOI] [Web of Science] [Pubmed]
2013
del Rio M.L., Schneider P., Fernandez-Renedo C., Perez-Simon J.A., Rodriguez-Barbosa J.I., 2013. LIGHT/HVEM/LTβR interaction as a target for the modulation of the allogeneic immune response in transplantation. American Journal of Transplantation 13(3) pp. 541-551. [DOI] [Web of Science] [Pubmed]
Kong M., Muñoz N., Valdivia A., Alvarez A., Herrera-Molina R., Cárdenas A., Schneider P., Burridge K., Quest A.F., Leyton L., 2013. Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of αVβ3 integrin and syndecan-4. Biochimica et Biophysica Acta. Molecular Cell Research 1833(6) pp. 1409-1420. [DOI] [Web of Science] [Pubmed]
Nys J., Smulski C.R., Tardivel A., Willen L., Kowalczyk C., Donzé O., Huard B., Hess H., Schneider P., 2013. No Evidence That Soluble TACI Induces Signalling via Membrane-Expressed BAFF and APRIL in Myeloid Cells. PLoS One 8(4) pp. e61350. [Document] [DOI] [Web of Science] [Pubmed]
Pellegrini M., Willen L., Perroud M., Krushinskie D., Strauch K., Cuervo H., Day E.S., Schneider P., Zheng T.S., 2013. Structure of the extracellular domains of human and Xenopus Fn14: implications in the evolution of TWEAK and Fn14 interactions. FEBS Journal 280(8) pp. 1818-1829. [DOI] [Web of Science] [Pubmed]
Schmiedel B.J., Nuebling T., Steinbacher J., Malinovska A., Wende C.M., Azuma M., Schneider P., Grosse-Hovest L., Salih H.R., 2013. Receptor activator for NF-κB ligand in acute myeloid leukemia: expression, function, and modulation of NK cell immunosurveillance. Journal of Immunology 190(2) pp. 821-831. [DOI] [Web of Science] [Pubmed]
Schmiedel B.J., Scheible C.A., Nuebling T., Kopp H.G., Wirths S., Azuma M., Schneider P., Jung G., Grosse-Hovest L., Salih H.R., 2013. RANKL expression, function, and therapeutic targeting in multiple myeloma and chronic lymphocytic leukemia. Cancer Research 73(2) pp. 683-694. [DOI] [Web of Science] [Pubmed]
Smith W., Tomasec P., Aicheler R., Loewendorf A., Nemčovičová I., Wang E.C., Stanton R.J., Macauley M., Norris P., Willen L. et al., 2013. Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host and Microbe 13(3) pp. 324-335. [DOI] [Web of Science] [Pubmed]
Smulski C.R., Beyrath J., Decossas M., Chekkat N., Wolff P., Estieu-Gionnet K., Guichard G., Speiser D., Schneider P., Fournel S., 2013. Cysteine-rich Domain 1 of CD40 Mediates Receptor Self-assembly. Journal of Biological Chemistry 288(15) pp. 10914-10922. [DOI] [Web of Science] [Pubmed]
Tanos T., Sflomos G., Echeverria P.C., Ayyanan A., Gutierrez M., Delaloye J.F., Raffoul W., Fiche M., Dougall W., Schneider P. et al., 2013. Progesterone/RANKL is a major regulatory axis in the human breast. Science Translational Medicine 5(182) pp. 182ra55. [DOI] [Web of Science] [Pubmed]
Zhang N., Wang X., Huo Q., Li X., Wang H., Schneider P., Hu G., Yang Q., 2013. The Oncogene Metadherin Modulates the Apoptotic Pathway Based on the Tumor Necrosis Factor Superfamily Member TRAIL (Tumor Necrosis Factor-related Apoptosis-inducing Ligand) in Breast Cancer. Journal of Biological Chemistry 288(13) pp. 9396-9407. [DOI] [Web of Science] [Pubmed]
2012
Drexler S.K., Bonsignore L., Masin M., Tardivel A., Jackstadt R., Hermeking H., Schneider P., Gross O., Tschopp J., Yazdi A.S., 2012. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 109(45) pp. 18384-18389. [DOI] [Web of Science] [Pubmed]
Heinz L.X., Rebsamen M., Rossi D.C., Staehli F., Schroder K., Quadroni M., Gross O., Schneider P., Tschopp J., 2012. The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death and Differentiation 19(4) pp. 722-731. [DOI] [Web of Science] [Pubmed]
Herrera-Molina R., Frischknecht R., Maldonado H., Seidenbecher C.I., Gundelfinger E.D., Hetz C., Aylwin Mde L, Schneider P., Quest A.F., Leyton L., 2012. Astrocytic αVβ3 integrin inhibits neurite outgrowth and promotes retraction of neuronal processes by clustering Thy-1. PLoS One 7(3) pp. e34295. [Document] [DOI] [Web of Science] [Pubmed]
Kimberley F.C., van der Sloot A.M., Guadagnoli M., Cameron K., Schneider P., Marquart J.A., Versloot M., Serrano L., Medema J.P., 2012. The design and characterization of receptor-selective APRIL variants. Journal of Biological Chemistry 287(44) pp. 37434-37446. [DOI] [Web of Science] [Pubmed]
Lefebvre S., Fliniaux I., Schneider P., Mikkola M.L., 2012. Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development. Journal of Investigative Dermatology 132(4) pp. 1094-1102. [DOI] [Web of Science] [Pubmed]
Voutilainen M., Lindfors P.H., Lefebvre S., Ahtiainen L., Fliniaux I., Rysti E., Murtoniemi M., Schneider P., Schmidt-Ullrich R., Mikkola M.L., 2012. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Proceedings of the National Academy of Sciences of the United States of America 109(15) pp. 5744-5749. [DOI] [Web of Science] [Pubmed]
2011
Bacchelli C., Buckland K.F., Buckridge S., Salzer U., Schneider P., Thrasher A.J., Gaspar H.B., 2011. The C76R transmembrane activator and calcium modulator cyclophilin ligand interactor mutation disrupts antibody production and B-cell homeostasis in heterozygous and homozygous mice. Journal of Allergy and Clinical Immunology 127(5) pp. 1253-9.e13. [DOI] [Web of Science] [Pubmed]
Boeglin E., Smulski C.R., Brun S., Milosevic S., Schneider P., Fournel S., 2011. Toll-like receptor agonists synergize with CD40L to induce either proliferation or plasma cell differentiation of mouse B cells. PLoS One 6(10) pp. e25542. [Document] [DOI] [Web of Science] [Pubmed]
Bossen C., Tardivel A., Willen L., Fletcher C.A., Perroud M., Beermann F., Rolink A.G., Scott M.L., Mackay F., Schneider P., 2011. Mutation of the BAFF furin cleavage site impairs B-cell homeostasis and antibody responses. European Journal of Immunology 41(3) pp. 787-797. [DOI] [Web of Science] [Pubmed]
Fuertes Marraco S.A., Scott C.L., Bouillet P., Ives A., Masina S., Vremec D., Jansen E.S., O'Reilly L.A., Schneider P., Fasel N. et al., 2011. Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS One 6(6) pp. e20189. [Document] [DOI] [Web of Science] [Pubmed]
Ganeff C., Remouchamps C., Boutaffala L., Benezech C., Galopin G., Vandepaer S., Bouillenne F., Ormenese S., Chariot A., Schneider P. et al., 2011. Induction of the alternative NF-κB pathway by lymphotoxin αβ (LTαβ) relies on internalization of LTβ receptor. Molecular and Cellular Biology 31(21) pp. 4319-4334. [DOI] [Web of Science] [Pubmed]
Henríquez M., Herrera-Molina R., Valdivia A., Alvarez A., Kong M., Muñoz N., Eisner V., Jaimovich E., Schneider P., Quest A.F. et al., 2011. ATP release due to Thy-1-integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation. Journal of Cell Science 124(Pt 9) pp. 1581-1588. [DOI] [Web of Science] [Pubmed]
Kowalczyk C., Dunkel N., Willen L., Casal M.L., Mauldin E.A., Gaide O., Tardivel A., Badic G., Etter A.L., Favre M. et al., 2011. Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies. Journal of Biological Chemistry 286(35) pp. 30769-30779. [DOI] [Web of Science] [Pubmed]
Michaelson J.S., Amatucci A., Kelly R., Su L., Garber E., Day E.S., Berquist L., Cho S., Li Y., Parr M. et al., 2011. Development of an Fn14 agonistic antibody as an anti-tumor agent. mAbs 3(4) pp. 362-375. [DOI] [Web of Science] [Pubmed]
Turchinovich G., Vu T.T., Frommer F., Kranich J., Schmid S., Alles M., Loubert J.B., Goulet J.P., Zimber-Strobl U., Schneider P. et al., 2011. Programming of marginal zone B-cell fate by basic Kruppel-like factor (BKLF/KLF3). Blood 117(14) pp. 3780-3792. [DOI] [Web of Science] [Pubmed]
2010
Beleut M., Rajaram R.D., Caikovski M., Ayyanan A., Germano D., Choi Y., Schneider P., Brisken C., 2010. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America 107(7) pp. 2989-2994. [DOI] [Web of Science] [Pubmed]
Mues G., Tardivel A., Willen L., Kapadia H., Seaman R., Frazier-Bowers S., Schneider P., D'Souza R.N., 2010. Functional analysis of Ectodysplasin-A mutations causing selective tooth agenesis. European Journal of Human Genetics 18(1) pp. 19-25. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., 2010. The beautiful structures of BAFF, APRIL and their receptors. pp. 1-18 in Cancro M.P. (eds.) BLyS ligands and receptors. Contemporary Immunology . Humana Press, Totowa, NJ. [Document] [url editor site] [DOI]
Schneider P., Huard B., 2010. Buffy's, B-cells, and membrane BAFF. Arthritis & Rheumatism 62(5) pp. 1557-1558. [Document] [DOI] [Web of Science]
Swee L.K., Tardivel A., Schneider P., Rolink A., 2010. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF. Immunology Letters 131(1) pp. 40-48. [Document] [DOI] [Web of Science] [Pubmed]
2009
Avalos A.M., Valdivia A.D., Muñoz N., Herrera-Molina R., Tapia J.C., Lavandero S., Chiong M., Burridge K., Schneider P., Quest A.F. et al., 2009. Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with alphavbeta3 integrin that activates PKCalpha and RhoA. Journal of Cell Science 122(Pt 19) pp. 3462-3471. [DOI] [Web of Science] [Pubmed]
Back J., Malchiodi E.L., Cho S., Scarpellino L., Schneider P., Kerzic M.C., Mariuzza R.A., Held W., 2009. Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis. Immunity 31(4) pp. 598-608. [DOI] [Web of Science] [Pubmed]
Bessa J., Jegerlehner A., Hinton H.J., Pumpens P., Saudan P., Schneider P., Bachmann M.F., 2009. Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses. Journal of Immunology 183(6) pp. 3788-3799. [DOI] [Web of Science] [Pubmed]
Guarda G., Dostert C., Staehli F., Cabalzar K., Castillo R., Tardivel A., Schneider P., Tschopp J., 2009. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460(7252) pp. 269-273. [DOI] [Web of Science] [Pubmed]
Guichard G., Trouche N., Wieckowski S., Sun W., Chaloin O., Bianco A., Hoebeke J., Schneider P., Fournel S., 2009. Rationally-designed multivalent architectures for mimicking homotrimers of CD40L, a member of the TNF superfamily. pp. 355-357 in Del Valle S., Escher E., Lubell W.D. (eds.) Peptides for youth. Advances in experimental medicine and biology 611(7). Springer, New York. [DOI] [Web of Science] [Pubmed]
Kassahn D., Nachbur U., Conus S., Micheau O., Schneider P., Simon H.U., Brunner T., 01-2009. Distinct requirements for activation-induced cell surface expression of preformed Fas/CD95 ligand and cytolytic granule markers in T cells. Cell Death and Differentiation 16(1) pp. 115-124. [DOI] [Web of Science] [Pubmed]
Mackay F., Schneider P., 2009. Cracking the BAFF code. Nature reviews. Immunology 9(7) pp. 491-502. [Document] [DOI] [Web of Science] [Pubmed]
Mauldin E.A., Gaide O., Schneider P., Casal M.L., 2009. Neonatal treatment with recombinant ectodysplasin prevents respiratory disease in dogs with X-linked ectodermal dysplasia. American Journal of Medical Genetics. Part A 149A(9) pp. 2045-2049. [DOI] [Web of Science] [Pubmed]
Narasimamurthy R., Geuking P., Ingold K., Willen L., Schneider P., Basler K., 02-2009. Structure-function analysis of Eiger, the Drosophila TNF homolog. Cell Research 19(3) pp. 392-394. [DOI] [Web of Science] [Pubmed]
Salzer U., Bacchelli C., Buckridge S., Pan-Hammarström Q., Jennings S., Lougaris V., Bergbreiter A., Hagena T., Birmelin J., Plebani A. et al., 2009. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood 113(9) pp. 1967-1976. [DOI] [Web of Science] [Pubmed]
Swee L.K., Ingold-Salamin K., Tardivel A., Willen L., Gaide O., Favre M., Demotz S., Mikkola M., Schneider P., 10-2009. Biological activity of ectodysplasin A is conditioned by its collagen and heparan sulfate proteoglycan-binding domains. Journal of Biological Chemistry 284(40) pp. 27567-27576. [Document] [DOI] [Web of Science] [Pubmed]
Willett B.J., McMonagle E.L., Logan N., Schneider P., Hosie M.J., 2009. Enforced covalent trimerisation of soluble feline CD134 (OX40)-ligand generates a functional antagonist of feline immunodeficiency virus. Molecular Immunology 46(6) pp. 1020-1030. [DOI] [Web of Science] [Pubmed]
2008
Belnoue E., Pihlgren M., McGaha T.L., Tougne C., Rochat A.F., Bossen C., Schneider P., Huard B., Lambert P.H., Siegrist C.A., 2008. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111(5) pp. 2755-2764. [Document] [DOI] [Web of Science] [Pubmed]
Bossen C., Cachero T.G., Tardivel A., Ingold K., Willen L., Dobles M., Scott M.L., Maquelin A., Belnoue E., Siegrist C.A. et al., 2008. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 111(3) pp. 1004-1012. [DOI] [Web of Science] [Pubmed]
Farley S.M., Purdy D.E., Ryabinina O.P., Schneider P., Magun B.E., Iordanov M.S., 2008. Fas ligand-induced proinflammatory transcriptional responses in reconstructed human epidermis. Recruitment of the epidermal growth factor receptor and activation of MAP kinases. Journal of Biological Chemistry 283(2) pp. 919-928. [Document] [DOI] [Web of Science] [Pubmed]
Hermosilla T., Muñoz D., Herrera-Molina R., Valdivia A., Muñoz N., Nham S.U., Schneider P., Burridge K., Quest A.F., Leyton L., 06-2008. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication. Biochimica et Biophysica Acta-Molecular Cell Research 1783(6) pp. 1111-1120. [DOI] [Web of Science] [Pubmed]
Huard B., McKee T., Bosshard C., Durual S., Matthes T., Myit S., Donze O., Frossard C., Chizzolini C., Favre C. et al., 2008. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. Journal of Clinical Investigation 118(8) pp. 2887-2895. [DOI] [Web of Science] [Pubmed]
Mackay F., Schneider P., 2008. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine and Growth Factor Reviews 19(3-4) pp. 263-276. [DOI] [Web of Science] [Pubmed]
Massacand J.C., Kaiser P., Ernst B., Tardivel A., Bürki K., Schneider P., Harris N.L., 2008. Intestinal bacteria condition dendritic cells to promote IgA production. PLoS ONE 3(7) pp. e2588. [Document] [DOI] [Web of Science] [Pubmed]
Pappu B.P., Borodovsky A., Zheng T.S., Yang X., Wu P., Dong X., Weng S., Browning B., Scott M.L., Ma L. et al., 05-2008. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. Journal of Experimental Medicine 205(5) pp. 1049-1062. [DOI] [Web of Science] [Pubmed]
Roosnek E., Schneider P., Huard B., 08-2008. Heparan sulfate proteoglycans, Fc receptors, and DC suppression. Blood 112(3) pp. 915-6; author reply 916-7. [DOI] [Web of Science] [Pubmed]
Schneider P., 2008. Signaling by TNF and related ligands. pp. 433-441 in Epstein C., Erickson R., Wynshaw-Boris A. (eds.) Inborn Errors of Development. 2nd edition, Oxford monographs on medical genetics 54. Oxford University Press, Oxford.
Tu W., Lau Y.L., Zheng J., Liu Y., Chan P.L., Mao H., Dionis K., Schneider P., Lewis D.B., 09-2008. Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112(6) pp. 2554-62. [Document] [DOI] [Web of Science] [Pubmed]
Vince J.E., Chau D., Callus B., Wong W.W., Hawkins C.J., Schneider P., McKinlay M., Benetatos C.A., Condon S.M., Chunduru S.K. et al., 2008. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. Journal of Cell Biology 182(1) pp. 171-184. [Document] [DOI] [Web of Science] [Pubmed]
2007
Casal M.L., Lewis J.R., Mauldin E.A., Tardivel A., Ingold K., Favre M., Paradies F., Demotz S., Gaide O., Schneider P., 2007. Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia. American Journal of Human Genetics 81(5) pp. 1050-1056. [Document] [DOI] [Web of Science] [Pubmed]
Kothlow S., Morgenroth I., Graef Y., Schneider K., Riehl I., Staeheli P., Schneider P., Kaspers B., 2007. Unique and conserved functions of B cell-activating factor of the TNF family (BAFF) in the chicken. International Immunology 19(2) pp. 203-215. [Document] [DOI] [Web of Science] [Pubmed]
Kummer J.A., Micheau O., Schneider P., Bovenschen N., Broekhuizen R., Quadir R., Strik M.C., Hack C.E., Tschopp J., 2007. Ectopic expression of the serine protease inhibitor PI9 modulates death receptor-mediated apoptosis. Cell Death and Differentiation 14(8) pp. 1486-1496. [Document] [DOI] [Web of Science] [Pubmed]
Pummila M., Fliniaux I., Jaatinen R., James M.J., Laurikkala J., Schneider P., Thesleff I., Mikkola M.L., 2007. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134(1) pp. 117-125. [Document] [DOI] [Web of Science] [Pubmed]
Schwaller J., Schneider P., Mhawech-Fauceglia P., McKee T., Myit S., Matthes T., Tschopp J., Donze O., Le Gal F.A., Huard B., 2007. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 109(1) pp. 331-338. [Document] [DOI] [Web of Science] [Pubmed]
Vince J.E., Wong W.W., Khan N., Feltham R., Chau D., Ahmed A.U., Benetatos C.A., Chunduru S.K., Condon S.M., McKinlay M. et al., 2007. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4) pp. 682-693. [Document] [DOI] [Web of Science] [Pubmed]
Willett B.J., McMonagle E.L., Logan N., Spiller O.B., Schneider P., Hosie M.J., 2007. Probing the interaction between feline immunodeficiency virus and CD134 by using the novel monoclonal antibody 7D6 and the CD134 (Ox40) ligand. Journal of Virology 81(18) pp. 9665-9679. [Document] [DOI] [Web of Science] [Pubmed]
2006
Bossen C., Ingold K., Tardivel A., Bodmer J.L., Gaide O., Hertig S., Ambrose C., Tschopp J., Schneider P., 2006. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. Journal of Biological Chemistry 281(20) pp. 13964-13971. [Document] [DOI] [Web of Science] [Pubmed]
Bossen C., Schneider P., 2006. BAFF, APRIL and their receptors: structure, function and signaling. Seminars in Immunology 18(5) pp. 263-275. [Document] [DOI] [Web of Science] [Pubmed]
Cachero T.G., Schwartz I.M., Qian F., Day E.S., Bossen C., Ingold K., Tardivel A., Krushinskie D., Eldredge J., Silvian L. et al., 2006. Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor). Biochemistry 45(7) pp. 2006-2013. [Document] [DOI] [Web of Science] [Pubmed]
Corazza N., Jakob S., Schaer C., Frese S., Keogh A., Stroka D., Kassahn D., Torgler R., Mueller C., Schneider P. et al., 2006. TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. Journal of Clinical Investigation 116(9) pp. 2493-2499. [Document] [DOI] [Web of Science] [Pubmed]
Farley S.M., Dotson A.D., Purdy D.E., Sundholm A.J., Schneider P., Magun B.E., Iordanov M.S., 2006. Fas ligand elicits a caspase-independent proinflammatory response in human keratinocytes: implications for dermatitis. Journal of Investigative Dermatology 126(11) pp. 2438-2451. [Document] [DOI] [Web of Science] [Pubmed]
Girgenrath M., Weng S., Kostek C.A., Browning B., Wang M., Brown S.A., Winkles J.A., Michaelson J.S., Allaire N., Schneider P. et al., 2006. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO Journal 25(24) pp. 5826-5839. [Document] [DOI] [Web of Science] [Pubmed]
Mérino D., Lalaoui N., Morizot A., Schneider P., Solary E., Micheau O., 2006. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Molecular and Cellular Biology 26(19) pp. 7046-7055. [Document] [DOI] [Web of Science] [Pubmed]
Mou C., Jackson B., Schneider P., Overbeek P.A., Headon D.J., 2006. Generation of the primary hair follicle pattern. Proceedings of the National Academy of Sciences of the United States of America 103(24) pp. 9075-9080. [Document] [DOI] [Web of Science] [Pubmed]
Schmidt-Ullrich R., Tobin D.J., Lenhard D., Schneider P., Paus R., Scheidereit C., 2006. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 133(6) pp. 1045-1057. [Document] [DOI] [Web of Science] [Pubmed]
2005
Cebecauer M., Guillaume P., Hozák P., Mark S., Everett H., Schneider P., Luescher I.F., 2005. Soluble MHC-peptide complexes induce rapid death of CD8+ CTL. Journal of immunology 174(11) pp. 6809-6819. [Document] [Web of Science] [Pubmed]
Fournel S., Wieckowski S., Sun W., Trouche N., Dumortier H., Bianco A., Chaloin O., Habib M., Peter J.C., Schneider P. et al., 2005. C3-symmetric peptide scaffolds are functional mimetics of trimeric CD40L. Nature Chemical Biology 1(7) pp. 377-382. [Document] [DOI] [Web of Science] [Pubmed]
Ingold K., Zumsteg A., Tardivel A., Huard B., Steiner Q.G., Cachero T.G., Qiang F., Gorelik L., Kalled S.L., Acha-Orbea H. et al., 2005. Identification of proteoglycans as the APRIL-specific binding partners. Journal of Experimental Medicine 201(9) pp. 1375-1383. [Document] [DOI] [Web of Science] [Pubmed]
Iordanov M.S., Ryabinina O.P., Schneider P., Magun B.E., 2005. Two mechanisms of caspase 9 processing in double-stranded RNA- and virus-triggered apoptosis. Apoptosis 10(1) pp. 153-166. [Document] [DOI] [Web of Science] [Pubmed]
Iordanov M.S., Sundholm A.J., Simpson E.L., Hanifin J.M., Ryabinina O.P., Choi R.J., Korcheva V.B., Schneider P., Magun B.E., 2005. Cell death-induced activation of epidermal growth factor receptor in keratinocytes: implications for restricting epidermal damage in dermatitis. Journal of Investigative Dermatology 125(1) pp. 134-142. [Document] [DOI] [Web of Science] [Pubmed]
Kvell K., Nguyen T.H., Salmon P., Glauser F., Werner-Favre C., Barnet M., Schneider P., Trono D., Zubler R.H., 2005. Transduction of CpG DNA-stimulated primary human B cells with bicistronic lentivectors. Molecular Therapy 12(5) pp. 892-899. [Document] [DOI] [Web of Science] [Pubmed]
Legler D.F., Doucey M.A., Schneider P., Chapatte L., Bender F.C., Bron C., 2005. Differential insertion of GPI-anchored GFPs into lipid rafts of live cells. FASEB Journal 19(1) pp. 73-75. [Document] [DOI] [Web of Science] [Pubmed]
Pleskoff O., Casarosa P., Verneuil L., Ainoun F., Beisser P., Smit M., Leurs R., Schneider P., Michelson S., Ameisen J.C., 2005. The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS Journal 272(16) pp. 4163-4177. [Document] [DOI] [Web of Science] [Pubmed]
Salzer U., Chapel H.M., Webster A.D., Pan-Hammarström Q., Schmitt-Graeff A., Schlesier M., Peter H.H., Rockstroh J.K., Schneider P., Schäffer A.A. et al., 2005. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nature Genetics 37(8) pp. 820-828. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., 2005. The role of APRIL and BAFF in lymphocyte activation. Current Opinion in Immunology 17(3) pp. 282-289. [Document] [DOI] [Web of Science] [Pubmed]
2004
Avalos A.M., Arthur W.T., Schneider P., Quest A.F., Burridge K., Leyton L., 2004. Aggregation of integrins and RhoA activation are required for Thy-1-induced morphological changes in astrocytes. Journal of Biological Chemistry 279(37) pp. 39139-39145. [DOI] [Web of Science] [Pubmed]
Batten M., Fletcher C., Ng L.G., Groom J., Wheway J., Laâbi Y., Xin X., Schneider P., Tschopp J., Mackay C.R. et al., 2004. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. Journal of Immunology 172(2) pp. 812-822. [Web of Science] [Pubmed]
Huard B., Arlettaz L., Ambrose C., Kindler V., Mauri D., Roosnek E., Tschopp J., Schneider P., French L.E., 2004. BAFF production by antigen-presenting cells provides T cell co-stimulation. International Immunology 16(3) pp. 467-475. [DOI] [Web of Science] [Pubmed]
Mustonen T., Ilmonen M., Pummila M., Kangas A.T., Laurikkala J., Jaatinen R., Pispa J., Gaide O., Schneider P., Thesleff I. et al., 2004. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131(20) pp. 4907-4919. [Document] [DOI] [Web of Science] [Pubmed]
Schneider K., Kothlow S., Schneider P., Tardivel A., Göbel T., Kaspers B., Staeheli P., 2004. Chicken BAFF--a highly conserved cytokine that mediates B cell survival. International Immunology 16(1) pp. 139-148. [DOI] [Web of Science] [Pubmed]
Tardivel A., Tinel A., Lens S., Steiner Q.G., Sauberli E., Wilson A., Mackay F., Rolink A.G., Beermann F., Tschopp J. et al., 2004. The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF. European Journal of Immunology 34(2) pp. 509-518. [Document] [DOI] [Web of Science] [Pubmed]
2003
Brunetti C.R., Paulose-Murphy M., Singh R., Qin J., Barrett J.W., Tardivel A., Schneider P., Essani K., McFadden G., 2003. A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proceedings of the National Academy of Sciences of the United States of America 100(8) pp. 4831-4836. [DOI] [Web of Science] [Pubmed]
Gaide O., Schneider P., 2003. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nature Medicine 9(5) pp. 614-618. [Document] [DOI] [Web of Science] [Pubmed]
Holler N., Tardivel A., Kovacsovics-Bankowski M., Hertig S., Gaide O., Martinon F., Tinel A., Deperthes D., Calderara S., Schulthess T. et al., 2003. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Molecular and Cellular Biology 23(4) pp. 1428-1440. [Document] [DOI] [Web of Science] [Pubmed]
Küenzi P., Schneider P., Dobbelaere D.A., 2003. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. Journal of Immunology 171(3) pp. 1224-1231. [Web of Science] [Pubmed]
Mackay F., Schneider P., Rennert P., Browning J., 2003. BAFF AND APRIL: a tutorial on B cell survival. Annual Review of Immunology 21 pp. 231-264. [DOI] [Web of Science] [Pubmed]
Schneider P., Olson D., Tardivel A., Browning B., Lugovskoy A., Gong D., Dobles M., Hertig S., Hofmann K., Van Vlijmen H. et al., 2003. Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Journal of Biological Chemistry 278(7) pp. 5444-5454. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Tschopp J., 2003. BAFF and the regulation of B cell survival. Immunology Letters 88(1) pp. 57-62. [DOI] [Web of Science] [Pubmed]
2002
Bodmer J.L., Schneider P., Tschopp J., 2002. The molecular architecture of the TNF superfamily. Trends in Biochemical Sciences 27(1) pp. 19-26. [Document] [DOI] [Web of Science] [Pubmed]
Groom J., Kalled S.L., Cutler A.H., Olson C., Woodcock S.A., Schneider P., Tschopp J., Cachero T.G., Batten M., Wheway J. et al., 2002. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome. Journal of Clinical Investigation 109(1) pp. 59-68. [DOI] [Web of Science] [Pubmed]
Lowin-Kropf B., Kunz B., Schneider P., Held W., 2002. A role for the src family kinase Fyn in NK cell activation and the formation of the repertoire of Ly49 receptors. European Journal of Immunology 32(3) pp. 773-782. [DOI] [Web of Science] [Pubmed]
Micheau O., Thome M., Schneider P., Holler N., Tschopp J., Nicholson D.W., Briand C., Grütter M.G., 2002. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. Journal of Biological Chemistry 277(47) pp. 45162-45171. [DOI] [Web of Science] [Pubmed]
Petit F., Arnoult D., Lelièvre J.D., Moutouh-de Parseval L., Hance A.J., Schneider P., Corbeil J., Ameisen J.C., Estaquier J., 2002. Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. Journal of Biological Chemistry 277(2) pp. 1477-1487. [DOI] [Web of Science] [Pubmed]
Rolink A.G., Tschopp J., Schneider P., Melchers F., 2002. BAFF is a survival and maturation factor for mouse B cells. European Journal of Immunology 32(7) pp. 2004-2010. [DOI] [Web of Science] [Pubmed]
Strik M.C., Bladergroen B.A., Wouters D., Kisiel W., Hooijberg J.H., Verlaan A.R., Hordijk P.L., Schneider P., Hack C.E., Kummer J.A., 2002. Distribution of the human intracellular serpin protease inhibitor 8 in human tissues. Journal of Histochemistry and Cytochemistry 50(11) pp. 1443-1454. [Web of Science] [Pubmed]
2001
Houimel M., Schneider P., Terskikh A., Mach J.P., 2001. Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. International Journal of Cancer 92(5) pp. 748-755. [DOI] [Web of Science] [Pubmed]
Huard B., Schneider P., Mauri D., Tschopp J., French L.E., 2001. T cell costimulation by the TNF ligand BAFF. Journal of Immunology 167(11) pp. 6225-6231. [Web of Science] [Pubmed]
Lecossier D., Bouchonnet F., Schneider P., Clavel F., Hance A.J., Centre de Recherche Integré sur le VIH Bichat-Claude Bernard, 2001. Discordant increases in CD4+ T cells in human immunodeficiency virus-infected patients experiencing virologic treatment failure: role of changes in thymic output and T cell death. Journal of Infectious Diseases 183(7) pp. 1009-1016. [DOI] [Web of Science] [Pubmed]
Leyton L., Schneider P., Labra C.V., Rüegg C., Hetz C.A., Quest A.F., Bron C., 2001. Thy-1 binds to integrin beta(3) on astrocytes and triggers formation of focal contact sites. Current Biology 11(13) pp. 1028-1038. [DOI] [Web of Science] [Pubmed]
Schneider P., Street S.L., Gaide O., Hertig S., Tardivel A., Tschopp J., Runkel L., Alevizopoulos K., Ferguson B.M., Zonana J., 2001. Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. Journal of Biological Chemistry 276(22) pp. 18819-18827. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Takatsuka H., Wilson A., Mackay F., Tardivel A., Lens S., Cachero T.G., Finke D., Beermann F., Tschopp J., 2001. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. Journal of Experimental Medicine 194(11) pp. 1691-1697. [Document] [DOI] [Web of Science] [Pubmed]
Thompson J.S., Bixler S.A., Qian F., Vora K., Scott M.L., Cachero T.G., Hession C., Schneider P., Sizing I.D., Mullen C. et al., 2001. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293(5537) pp. 2108-2111. [DOI] [Web of Science] [Pubmed]
Werner-Favre C., Bovia F., Schneider P., Holler N., Barnet M., Kindler V., Tschopp J., Zubler R.H., 2001. IgG subclass switch capacity is low in switched and in IgM-only, but high in IgD+IgM+, post-germinal center (CD27+) human B cells. European Journal of Immunology 31(1) pp. 243-249. [DOI] [Web of Science] [Pubmed]
2000
Batten M., Groom J., Cachero T.G., Qian F., Schneider P., Tschopp J., Browning J.L., Mackay F., 2000. BAFF mediates survival of peripheral immature B lymphocytes. Journal of Experimental Medicine 192(10) pp. 1453-1466. [Document] [DOI] [Web of Science] [Pubmed]
Bodmer J.L., Holler N., Reynard S., Vinciguerra P., Schneider P., Juo P., Blenis J., Tschopp J., 2000. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature Cell Biology 2(4) pp. 241-243. [DOI] [Web of Science] [Pubmed]
Bodmer J.L., Meier P., Tschopp J., Schneider P., 2000. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. Journal of Biological Chemistry 275(27) pp. 20632-20637. [Document] [DOI] [Web of Science] [Pubmed]
Holler N., Kataoka T., Bodmer J.L., Romero P., Romero J., Deperthes D., Engel J., Tschopp J., Schneider P., 2000. Development of improved soluble inhibitors of FasL and CD40L based on oligomerized receptors. Journal of Immunological Methods 237(1-2) pp. 159-173. [Document] [DOI] [Web of Science] [Pubmed]
Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.L., Schneider P., Seed B., Tschopp J., 2000. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology 1(6) pp. 489-495. [DOI] [Web of Science] [Pubmed]
Mühlenbeck F., Schneider P., Bodmer J.L., Schwenzer R., Hauser A., Schubert G., Scheurich P., Moosmayer D., Tschopp J., Wajant H., 2000. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. Journal of Biological Chemistry 275(41) pp. 32208-32213. [DOI] [Web of Science] [Pubmed]
Rennert P., Schneider P., Cachero T.G., Thompson J., Trabach L., Hertig S., Holler N., Qian F., Mullen C., Strauch K. et al., 2000. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. Journal of Experimental Medicine 192(11) pp. 1677-1684. [Document] [DOI] [Web of Science] [Pubmed]
Rochat-Steiner V., Becker K., Micheau O., Schneider P., Burns K., Tschopp J., 2000. FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. Journal of Experimental Medicine 192(8) pp. 1165-1174. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., 2000. Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods in Enzymology 322 pp. 325-345. [Web of Science] [Pubmed]
Schneider P., Tschopp J., 2000. Apoptosis induced by death receptors. Pharmaceutica Acta Helvetiae 74(2-3) pp. 281-286. [Pubmed]
Schneider P., Tschopp J., 2000. Modulation of death receptor signalling. Symposia of the Society for Experimental Biology 52 pp. 31-42. [Pubmed]
Thompson J.S., Schneider P., Kalled S.L., Wang L., Lefevre E.A., Cachero T.G., MacKay F., Bixler S.A., Zafari M., Liu Z.Y. et al., 2000. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. Journal of Experimental Medicine 192(1) pp. 129-135. [DOI] [Web of Science] [Pubmed]
Tucker A.S., Headon D.J., Schneider P., Ferguson B.M., Overbeek P., Tschopp J., Sharpe P.T., 2000. Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development 127(21) pp. 4691-4700. [Web of Science] [Pubmed]
1999
Benedict C.A., Butrovich K.D., Lurain N.S., Corbeil J., Rooney I., Schneider P., Tschopp J., Ware C.F., 1999. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. Journal of Immunology 162(12) pp. 6967-6970. [Web of Science] [Pubmed]
Corradin S., Ransijn A., Corradin G., Roggero M.A., Schmitz A.A., Schneider P., Mauël J., Vergères G., 1999. MARCKS-related protein (MRP) is a substrate for the Leishmania major surface protease leishmanolysin (gp63). Journal of Biological Chemistry 274(36) pp. 25411-25418. [DOI] [Web of Science] [Pubmed]
Mackay F., Woodcock S.A., Lawton P., Ambrose C., Baetscher M., Schneider P., Tschopp J., Browning J.L., 1999. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. Journal of Experimental Medicine 190(11) pp. 1697-1710. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., MacKay F., Steiner V., Hofmann K., Bodmer J.L., Holler N., Ambrose C., Lawton P., Bixler S., Acha-Orbea H. et al., 1999. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. Journal of Experimental Medicine 189(11) pp. 1747-1756. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Schwenzer R., Haas E., Mühlenbeck F., Schubert G., Scheurich P., Tschopp J., Wajant H., 1999. TWEAK can induce cell death via endogenous TNF and TNF receptor 1. European Journal of Immunology 29(6) pp. 1785-1792. [Document] [DOI] [Web of Science] [Pubmed]
Thome M., Martinon F., Hofmann K., Rubio V., Steiner V., Schneider P., Mattmann C., Tschopp J., 1999. Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-kappaB transcription factor and c-Jun N-terminal kinase. Journal of Biological Chemistry 274(15) pp. 9962-9968. [DOI] [Web of Science] [Pubmed]
1998
Burns K., Martinon F., Esslinger C., Pahl H., Schneider P., Bodmer J.L., Di Marco F., French L., Tschopp J., 1998. MyD88, an adapter protein involved in interleukin-1 signaling. Journal of Biological Chemistry 273(20) pp. 12203-12209. [DOI] [Web of Science] [Pubmed]
Eberl G., Jiang S., Yu Z., Schneider P., Corradin G., Mach J.P., 1998. An anti-CD19 antibody coupled to a tetanus toxin peptide induces efficient Fas ligand (FasL)-mediated cytotoxicity of a transformed human B cell line by specific CD4+ T cells. Clinical and Experimental Immunology 114(2) pp. 173-178. [DOI] [Web of Science] [Pubmed]
Hahne M., Kataoka T., Schröter M., Hofmann K., Irmler M., Bodmer J.L., Schneider P., Bornand T., Holler N., French L.E. et al., 1998. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. Journal of Experimental Medicine 188(6) pp. 1185-1190. [DOI] [Web of Science] [Pubmed]
Kataoka T., Schröter M., Hahne M., Schneider P., Irmler M., Thome M., Froelich C.J., Tschopp J., 1998. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. Journal of Immunology 161(8) pp. 3936-3942. [Web of Science] [Pubmed]
Schneider P., Holler N., Bodmer J.L., Hahne M., Frei K., Fontana A., Tschopp J., 1998. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. Journal of Experimental Medicine 187(8) pp. 1205-1213. [Document] [DOI] [Web of Science] [Pubmed]
Treumann A., Güther M.L., Schneider P., Ferguson M.A., 1998. Analysis of the carbohydrate and lipid components of glycosylphosphatidylinositol structures. Methods in Molecular Biology 76 pp. 213-235. [DOI] [Pubmed]
Viard I., Wehrli P., Bullani R., Schneider P., Holler N., Salomon D., Hunziker T., Saurat J.H., Tschopp J., French L.E., 1998. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282(5388) pp. 490-493. [DOI] [Web of Science] [Pubmed]
1997
Becker K., Schneider P., Hofmann K., Mattmann C., Tschopp J., 1997. Interaction of Fas(Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Letters 412(1) pp. 102-106. [DOI] [Web of Science] [Pubmed]
Bodmer J.L., Burns K., Schneider P., Hofmann K., Steiner V., Thome M., Bornand T., Hahne M., Schröter M., Becker K. et al., 1997. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity 6(1) pp. 79-88. [DOI] [Web of Science] [Pubmed]
Irmler M., Thome M., Hahne M., Schneider P., Hofmann K., Steiner V., Bodmer J.L., Schröter M., Burns K., Mattmann C. et al., 1997. Inhibition of death receptor signals by cellular FLIP. Nature 388(6638) pp. 190-195. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Bodmer J.L., Holler N., Mattmann C., Scuderi P., Terskikh A., Peitsch M.C., Tschopp J., 1997. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. Journal of Biological Chemistry 272(30) pp. 18827-18833. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Bodmer J.L., Thome M., Hofmann K., Holler N., Tschopp J., 1997. Characterization of two receptors for TRAIL. FEBS letters 416(3) pp. 329-34. [Document] [DOI] [Web of Science] [Pubmed]
Schneider P., Thome M., Burns K., Bodmer J.L., Hofmann K., Kataoka T., Holler N., Tschopp J., 1997. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7(6) pp. 831-836. [Document] [DOI] [Web of Science] [Pubmed]
Thome M., Schneider P., Hofmann K., Fickenscher H., Meinl E., Neipel F., Mattmann C., Burns K., Bodmer J.L., Schröter M. et al., 1997. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624) pp. 517-521. [Document] [DOI] [Web of Science] [Pubmed]
1996
Hahne M., Rimoldi D., Schröter M., Romero P., Schreier M., French L.E., Schneider P., Bornand T., Fontana A., Lienard D. et al., 1996. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274(5291) pp. 1363-1366. [DOI] [Web of Science] [Pubmed]
1995
Bouvier J., Schneider P., Etges R., 1995. Leishmanolysin: surface metalloproteinase of Leishmania. Methods in Enzymology 248 pp. 614-633. [Web of Science] [Pubmed]
Buchmüller-Rouiller Y., Corrandin S.B., Smith J., Schneider P., Ransijn A., Jongeneel C.V., Mauël J., 1995. Role of glutathione in macrophage activation: effect of cellular glutathione depletion on nitrite production and leishmanicidal activity. Cellular Immunology 164(1) pp. 73-80. [DOI] [Web of Science] [Pubmed]
McConville M.J., Schnur L.F., Jaffe C., Schneider P., 1995. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochemical Journal 310 ( Pt 3)(3) pp. 807-818. [Web of Science] [Pubmed]
Proudfoot L., Schneider P., Ferguson M.A., McConville M.J., 1995. Biosynthesis of the glycolipid anchor of lipophosphoglycan and the structurally related glycoinositolphospholipids from Leishmania major. Biochemical Journal 308 ( Pt 1)(1) pp. 45-55. [Web of Science] [Pubmed]
Redman C.A., Schneider P., Mehlert A., Ferguson M.A., 1995. The glycoinositol-phospholipids of Phytomonas. Biochemical Journal 311(2) pp. 495-503. [Web of Science] [Pubmed]
Sacks D.L., Pimenta P.F., McConville M.J., Schneider P., Turco S.J., 1995. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. Journal of Experimental Medicine 181(2) pp. 685-697. [DOI] [Web of Science] [Pubmed]
Schneider P., Ferguson M.A., 1995. Microscale analysis of glycosylphosphatidylinositol structures. Methods in Enzymology 250 pp. 614-630. [Web of Science] [Pubmed]
Treumann A., Lifely M.R., Schneider P., Ferguson M.A., 1995. Primary structure of CD52. Journal of Biological Chemistry 270(11) pp. 6088-6099. [Web of Science] [Pubmed]
1994
McConville M.J., Schneider P., Proudfoot L., Masterson C., Ferguson M.A., 1994. The developmental regulation and biosynthesis of GPI-related structures in Leishmania parasites. Brazilian Journal of Medical and Biological Research 27(2) pp. 139-144. [Web of Science] [Pubmed]
Schneider P., McConville M.J., Ferguson M.A., 1994. Characterization of GDP-alpha-D-arabinopyranose, the precursor of D-Arap in Leishmania major lipophosphoglycan. Journal of Biological Chemistry 269(28) pp. 18332-18337. [Web of Science] [Pubmed]
Schneider P., Schnur L.F., Jaffe C.L., Ferguson M.A., McConville M.J., 1994. Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochemical Journal 304 ( Pt 2)(2) pp. 603-609. [Web of Science] [Pubmed]
1993
Bouvier J., Schneider P., Malcolm B., 1993. A fluorescent peptide substrate for the surface metalloprotease of Leishmania. Experimental Parasitology 76(2) pp. 146-155. [DOI] [Web of Science] [Pubmed]
McConville M.J., Collidge T.A., Ferguson M.A., Schneider P., 1993. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. Journal of Biological Chemistry 268(21) pp. 15595-15604. [Web of Science] [Pubmed]
McConville M.J., Schneider P., 1993. Conservation of surface molecules in the trypanosomatids. Parasitology Today 9(9) pp. 316-317. [DOI] [Web of Science] [Pubmed]
Schneider P., Glaser T.A., 1993. Characterisation of two soluble metalloexopeptidases in the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology 62(2) pp. 223-231. [DOI] [Web of Science] [Pubmed]
Schneider P., Ralton J.E., McConville M.J., Ferguson M.A., 1993. Analysis of the neutral glycan fractions of glycosyl-phosphatidylinositols by thin-layer chromatography. Analytical Biochemistry 210(1) pp. 106-112. [DOI] [Web of Science] [Pubmed]
Schneider P., Rosat J.P., Ransijn A., Ferguson M.A., McConville M.J., 1993. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochemical Journal 295(2) pp. 555-564. [Web of Science] [Pubmed]
1992
Buchmüller-Rouiller Y., Schneider P., Betz-Corradin S., Smith J., Mauël J., 1992. 3-amino-1,2,4-triazole inhibits macrophage NO synthase. Biochemical and Biophysical Research Communications 183(1) pp. 150-155. [DOI] [Web of Science] [Pubmed]
Schneider P., Bordier C., Etges R., 1992. Membrane proteins and enzymes of Leishmania. Sub-cellular Biochemistry 18 pp. 39-72. [Pubmed]
Schneider P., Rosat J.P., Bouvier J., Louis J., Bordier C., 1992. Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Experimental Parasitology 75(2) pp. 196-206. [DOI] [Web of Science] [Pubmed]
1990
Bouvier J., Schneider P., Etges R., Bordier C., 1990. Peptide substrate specificity of the membrane-bound metalloprotease of Leishmania. Biochemistry 29(43) pp. 10113-10119. [DOI] [Web of Science] [Pubmed]
Schneider P., Ferguson M.A., McConville M.J., Mehlert A., Homans S.W., Bordier C., 1990. Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. Journal of Biological Chemistry 265(28) pp. 16955-16964. [Web of Science] [Pubmed]
Phd thesis
Quintas C., 2014. Ectodysplasin A (EDA)-EDA receptor signalling and its pharmacological modulation. 166 p., Université de Lausanne, Faculté de biologie et médecine, Schneider P. (dir.).
Das D, 2012. Characterisation of heteromers and oligomers in the TNF family of ligands and receptors. 134 p., Université de Lausanne, Faculté de biologie et médecine, Schneider, P. (dir.). [Document]
Bossen C., 2008. Mechanisms of B cell survival induced by BAFF, APRIL and their receptors. 206 p., Université de Lausanne, Faculté de biologie et médecine, Schneider P. (dir.).
 
 
 
 
 
 
 
Person Position Contact
Mahya Eslami Mobility student Unisciences
Christine Quintas Postdoctoral fellow Unisciences
Sonia Schüpbach Postdoctoral fellow Unisciences
Aubry Tardivel Research Associate Unisciences
Michele Vigolo Ph.D student Unisciences
Laure Willen Technician Unisciences
Search:
 Go
 
rss/atom
youtube 

Contact

Schneider_web2.jpg

Pascal Schneider

pascal.schneider@unil.ch

Tel: + 41 21 692 5709

Chemin des Boveresses 155 - CH-1066 Epalinges  - Switzerland  -  Tel. +41 21 692 5700  -  Fax +41 21 692 5705
Swiss University