Richard Benton received his PhD in 2003 from the University of Cambridge, and was an EMBO/Heley Hay Whitney post-doctoral fellow at The Rockefeller University, New York. He joined the Center for Integrative Genomics in September 2007 as Assistant Professor and promoted to Associate Professor in 2012 and Full Professor in 2018. His group’s research has been recognised by the Eppendorf & Science Prize for Neurobiology (2009), Friedrich Miescher Award (2012), AChemS Young Investigator Award for Research in Olfaction (2012), National Latsis Prize (2015), EMBO Gold Medal (2016) and EMBO Membership (2019). His research has been supported by the Swiss National Science Foundation, ERC Starting, Consolidator and Advanced Grants, EMBO and HFSP.

INTERVIEWRESEARCH REPORT 2015-2016
Research summary
Our group is interested in the structure, function and evolution of nervous systems. We focus on the olfactory system, which mediates recognition of myriad environmental signals to control diverse behaviours. As a model, we use Drosophila melanogaster, whose nervous system is sophisticated but numerically simple and experimentally highly tractable; many of our projects involve comparative functional approaches with both closely related drosophilid species and more evolutionarily distant invertebrates. We take a multidisciplinary approach, including bioinformatics, genetics, molecular and cellular biology, electrophysiology, optical imaging, and behavioural analysis. Our work provides fundamental insights into how nervous systems develop, operate and change, as well as offering opportunities to devise novel chemical sensors and rational strategies to control the odour-guided behaviours of insect vectors of disease and agricultural pests.
Representative publications
Prieto-Godino LL*, Silbering AF*, Khallaf MA**, Cruchet S**, Bojkowska K, Pradervand S, Hansson BS, Knaden M and Benton R. Functional integration of “undead” neurons in the olfactory system. bioRxiv (2019) doi: 10.1101/623488 (*equal contribution; **equal contribution)
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Hansson BS, Jefferis GSXE, Caron S, Knaden M, and Benton R. The making of an olfactory specialist. bioRxiv (2019) doi: 10.1101/546507
Chai PC, Cruchet S, Wigger L and Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nature Communications (2019) 10:64
Sánchez-Alcañiz JA, Silbering AF*, Croset V*, Zappia G*, Sivasubramaniam AK, Abuin L, Sahai SY, Münch D, Steck K, Auer TO, Cruchet S, Neagu-Maier GL, Sprecher SG, Ribeiro C, Yapici N and Benton R. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nature Communications (2018) 9:4252
Sánchez-Alcañiz JA, Zappia G, Marion-Poll F and Benton R. A mechanosensory receptor required for food texture detection in Drosophila. Nature Communications (2017) 8:14192
Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L, Silbering AF, Ruta V, Dal Peraro M and Benton R. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron (2017) 93(3):661-67
Prieto-Godino LL, Rytz R, Bargeton B, Abuin L, Arguello JR, Dal Peraro M and Benton R. Olfactory receptor pseudo-pseudogenes. Nature (2016) 539(7627):93-97
Ramdya P, Lichocki P, Cruchet S, Frisch L, Tse W, Floreano D and Benton R. Mechanosensory Interactions Drive Collective Behaviour in Drosophila. Nature (2015) 519(7542):233-6
Our current work comprises three, interrelated research themes. More information can be found in our publications, our pre-prints or by contacting us.
Structure and function of sensory Ionotropic Receptors
Since our discovery in 2009 of Ionotropic Receptors (IRs) – a subclade of the ionotropic glutamate receptor superfamily of ligand-gated ion channels – as a novel family of insect olfactory receptors, we and others have shown that these proteins have evolved diverse roles in olfaction, gustation, hygrosensation and thermosensation across insects. IRs form heteromeric complexes of “tuning” receptors, which define stimulus specificity, and one or more co-receptor subunits, which function in subcellular trafficking and signalling. We are currently developing in vivo, in vitro and in silico approaches to understand the mechanisms and evolution of ligand-recognition, heteromeric complex assembly and channel gating.
Evolutionary neurodevelopmental biology of olfactory circuits
Olfactory pathways are one of the most dynamically evolving parts of the nervous system: animals frequently acquire (and discard) olfactory receptors, circuits and odour-evoked behaviours with the ever-changing landscape of stimuli in their environment. The evolutionary flexibility of olfactory systems is reflected in their modular organisation: in insects (as in vertebrates), most individual olfactory sensory neurons (OSNs) express just one olfactory receptor gene, and the axons of OSNs expressing the same receptor converge on discrete regions of neuropil (glomeruli) within the primary olfactory centre, where they synapse with second-order neurons. The numbers of olfactory receptors vary widely across species, with concordant diversity in the number and organisation of OSNs and glomeruli in the brain.
Using molecular genetic, single-cell sequencing and circuit tracing approaches in the D. melanogaster peripheral olfactory system, we are studying the mechanisms and evolution of (i) neuronal lineage specification, (ii) olfactory receptors’ singular expression patterns, (iii) how novel populations of OSNs arise through changes in patterns of neurogenesis and developmental programmed cell death, and (iv) how OSN populations are segregated to distinct glomeruli to form unique sensory channels in the brain. The mechanisms and molecules we characterise are likely to be relevant for understanding circuit formation and evolution in other brain regions and species.
Drosophila sechellia: a novel neurogenetic model
How animals’ extraordinarily diverse behaviours have evolved is unknown. Relating interspecific behavioural differences to anatomical or physiological distinctions in neural circuits, and causal genetic variation, offers a powerful approach to inform how nervous systems develop, function and change. We are establishing a new model neurogenetic system, Drosophila sechellia, an island endemic that is closely related to D. melanogaster and D. simulans. While D. sechellia retains global genomic and superficial morphological similarity to its cosmopolitan generalist cousins, this species has adapted to a unique ecological niche, using Morinda fruit as a sole host for feeding and breeding. This work, which now takes our lab beyond the olfactory system, is being developed through three main aims:
(i) Establishment of a D. sechellia (neuro)genetic toolkit: we are building essential genetic reagents for generation and maintenance of animals of desired genotypes, for neurogenetic manipulations, and for recombination mapping-based approaches.
(ii) Behavioural, neuroanatomical and molecular phenomics: systematic comparison of D. sechellia, D. simulans and D. melanogaster for their behaviours, their neuroanatomy and their neuro-molecular expression properties should reveal how D. sechellia has adapted to its niche, and will provide multiple entry-points to relate molecular, neuronal and behavioural differences between these species.
(iii) Defining the genetic basis and functional significance of neuronal adaptations in D. sechellia: through high-resolution quantitative trait mapping and interspecific allele swap approaches, we aim to identify the causal genetic changes underlying neural adaptations in D. sechellia, and their physiological and behavioural significance.
![]() |
Liliane Abuin - Technician Liliane obtained her Diplôme de Technicienne en Analyses Biomédicales from the Ecole Cantonale Vaudoise de Laborantins et Laborantines Médicaux. During 1996-2007 she worked in the group of Susanna Cotecchia in the Department of Pharmacology and Toxicology at the University of Lausanne. She has worked in the lab since October 2007. |
![]() |
Raquel Alvarez Ocana - PhD Student Raquel Alvarez Ocaña obtained her Bachelors in Biology from the Autonomous University of Madrid in 2015. During her degree, she worked in Isabel Correas’s laboratory on biochemical and functional characterization of 4.1/Coracle protein in Drosophila, and in Ana Busturia’s laboratory investigating MDM2 expression and p53-dependent apoptotic factors in Drosophila melanogaster cells. In September 2015 she started her Masters in Medical Biology at UNIL, working in Angela Ciuffi’s group for her First Steps Project on the resurrection of a zebrafish endogenous retrovirus. She joined our group in February 2016, first as a Master student, and before staying on for her PhD, to perform a comparative analysis of olfactory pathways in drosophilids. |
![]() |
Thomas Auer - Post-doctoral Fellow Thomas obtained his Bachelor and Master degrees from the Ruprecht-Karls-University Heidelberg where he was working on cis-regulation in the teleost fish Medaka in the lab of Joachim Wittbrodt. After a short research stay in Okazaki, Japan he started his PhD as a joint project between the labs of Joachim Wittbrodt and Filippo Del Bene at the Institut Curie in Paris. There he was developing genome editing tools in zebrafish and studied the role of axonal transport in visual system development. He joined our lab in April 2015 to work on the genetic basis of olfactory circuit evolution, supported by an HFSP Long-Term Fellowship. |
![]() |
Iris Marouani - Administrative Assistant |
![]() |
Steeve Cruchet - Technician Steeve obtained his Diploma of Technician in Biomedical Analysis from the Ecole Cantonale Vaudoise de Laborantins et Laborantines Médicaux. From 2007 to 2010 he worked in the group of Thierry Pedrazzini in the Unity of Experimental Cardiology at the University Hospital of Lausanne. He joined the lab in March 2011. |
![]() |
Kaan Mika - PhD Student Kaan obtained his Bachelors in Molecular Biology and Genetics from Istanbul Technical University in 2012, where he studied the effect of Nuclear Factor 1 family transcription factors on hind brain development under the supervision of Aslı Kumbasar. During his degree, he studied two semesters at Roskilde University where he worked on two independent projects under the supervision of Kim Furbo Rewitz and Birgit Koch, respectively. He then obtained his Masters in Molecular Biology and Genetics from Boğaziçi University in 2014 working in the laboratory of Arzu Çelik, where he focused on the development of the Drosophila olfactory system. He joined our lab as a visiting student in Jan 2015, working with Lucia Prieto, before beginning his PhD in the group in Dec 2015. Check out his other scientific interests on Slice of Science! |
![]() |
Jérôme Mermet - Post-doctoral Fellow Jérôme obtained his Bachelor and Master degrees from University of Toulouse in France where he studied epigenetic regulation of gene expression in breast cancer cells in the lab of Kerstin Bystricky. He then joined the lab of Félix Naef at the EPFL, Switzerland, to study the dynamics of the three-dimensional organisation of chromatin across the circadian cycle and its function for circadian-clock gene transcription in mouse tissues. He joined our lab in April 2019 to investigate molecular mechanisms modulating olfactory circuit architecture during development in Drosophila. |
![]() |
Marta Scalzotto - PhD Student Marta obtained her Masters degree from the University of Padova, Italy, in 2014, performing her thesis research at the University of Leicester, UK, as an Erasmus student. There she worked with Ezio Rosato and Flaviano Giorgini to characterise the activity of a light-switchable transgene system in Drosophila. She joined our lab in September 2014. |
![]() |
Hayden Schmidt - Post-doctoral Fellow Hayden received his Bachelor’s degree from Whittier College in 2014, where he worked with Dr. Erica Fradinger studying the effects of organophosphate pesticides on zebrafish development. He also assessed use of zebrafish as a model for testing chemical antidotes for organophosphate poisoning, in collaboration with Drs. Palmer Taylor and Zoran Radić at the University of California San Diego. Afterwards, he started his PhD at Harvard University where he joined the laboratory of Dr Andrew Kruse. There, Hayden studied the structural pharmacology and biochemistry of σ1 and σ2 receptors, a pair of enigmatic membrane proteins that are notable for their broad pharmacological profiles and promise as drug targets for several conditions. He joined our lab in July 2019 to work on the structural pharmacology of insect chemoreceptors, with the hope of applying the principles of structure-based drug design to characterise receptor-ligand interactions and develop novel, environmentally sustainable forms of agricultural pest control. |
![]() |
Suguru Takagi - Post-doctoral Fellow Suguru obtained his BEng from the Department of Applied Physics, University of Tokyo, where he studied the properties of shot noise in interferometry using power modulated laser beam. He then obtained his MS and PhD from the Department of Physics, the University of Tokyo, where he studied the circuit mechanisms and their molecular underpinnings of action selection in Drosophila melanogaster larvae, in collaboration with investigators in HHMI Janelia Research Campus and RIKEN BSI. He will join the lab in September 2019 to carry out cross-species comparisons of central olfactory circuits in drosophilids. |
![]() |
Giovanna Zappia - Technician Giovanna obtained her MS in Pharmaceutical Biotechnology from the University of Milan, Italy, where she studied the role of ADAM10, a metalloprotease involved in the physiological functioning, brain development and pathogenesis of Alzheimer's disease. In 2010 she joined the Andrea Volterra's Lab in the Department of Fundamental Neuroscience at UNIL where she investigated the role of TNFα on the astrocytes in pathological conditions, particularly in experimental autoimmune encephalomyelitis (EAE), a mouse model of Multiple Sclerosis. She joined our group in Oct 2013. |
The Benton lab is active in developing, optimising and documenting a number of diverse experimental methods we (and others) use. Please see below for links to published articles.
Bioinformatics
Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS and Benton R. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nature Communications (2015) 6:6077 doi: 10.1038/ncomms7077 URL
We have collaborated with Debbie Marks' lab at Harvard to generate the first de novo three-dimensional models of insect Odorant Receptors using EVfold-Transmembrane. You can find all the resources for this method on the EVfold webpage. The accuracy of these models can be improved by increasing the number of ORs in the sequence alignments (currently just under 6000), so we would be happy to incorporate any OR sequence resources being generated by the community (please contact Richard Benton).
Histology and imaging
Saina M and Benton R. Visualizing olfactory receptor expression and localization in Drosophila. In Methods in Molecular Biology (2013) Vol. 1003 URL
Greg Jefferis' lab at the MRC-LMB has developed powerful tools for chemical-tag based in situ labelling; we've shown that these work well also in peripheral appendages:
Sutcliffe B*, Ng J, Auer TO, Pasche M, Benton R, Jefferis GSXE and Cachero S*. Second Generation Chemical Tags: Sensitivity, Versatility and Speed. Genetics (2017) doi:10.1534/genetics.116.199281 URL (*equal contribution)
Electrophysiology
Benton R and Dahanukar A. Electrophysiological recording from Drosophila olfactory sensilla. Cold Spring Harbor Protocols (2011) doi: 10.1101/pdb.prot5630 URL
Benton R and Dahanukar A. Electrophysiological recording from Drosophila taste sensilla. Cold Spring Harbor Protocols (2011) doi: 10.1101/pdb.prot5631 URL
Benton R and Dahanukar A. Chemosensory coding in single sensilla. Cold Spring Harbor Laboratory Press - Drosophila Neurobiology: A Laboratory Manual (2010) URL
Optical imaging
Silbering AF, Bell R, Galizia CG and Benton R. Calcium imaging in the Drosophila antennal lobe. Journal of Visualized Experiments (2012) 10.3791/2976 URL
Behaviour
Ramdya P, Schaffter T, Floreano D and Benton R. Fluorescence Behavioral Imaging (FBI) tracks identity in heterogeneous groups of Drosophila. PLOS ONE (2012) 7(11):e48381 URL
See also this resource page for FBI
Uhlmann V*, Ramdya P*, Delgado-Gonzalo R, Benton R and Unser M. FlyLimbTracker: an active contour based approach for leg segment tracking in unmarked, freely behaving Drosophila. PLOS ONE (2017) 12(4):e0173433 URL (*equal contribution)
Genetic tools in non-melanogaster drosophilids
We are currently generating many genetic & neurogenetic tools in Drosophila sechellia (as well as a few in Drosophila simulans) as part of our comparative neuroscience projects in the mel-sim-sec species trio. See our recent pre-print for more details on some of these efforts:
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Hansson BS, Jefferis GSXE, Caron S, Knaden M, and Benton R. The making of an olfactory specialist. bioRxiv (2019) doi: 10.1101/546507
Reference brains for D. sechellia females and males, generated by Richard Benton and Greg Jefferis are available here
We are also interested in establishing community exchange for sharing ideas and reagents in genetic modification of non-melanogaster insect species. Please contact Richard Benton for more information.
Open Labware / 3D Printing
Through her work with TReND in Africa, Lucia Prieto-Godino has been involved in development of 3D design and printing for labs:
Baden T, Chagas AM, Gage G, Marzullo T, Prieto-Godino LL, Euler T. PLOS Biol (2015) 13(3):e1002086 URL
Maia Chagas A, Prieto-Godino L, Arrenberg AB and Baden T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLOS Biol (2017) 15(7):e2002702 URL
Some of the 3D printed object designs we use in the research in our group are available through Thingiverse
Quelques articles/emissions sur notre recherche - Some articles/broadcasts about our research
Understanding the fruit fly's nose (SNF/Latsis) (en anglais, sous-titré en français)
Une mouche alliée de la science (RTS - CQFD)
What fruit flies can teach us about the science of smell (Podcast at swissinfo.ch)
Sa majesté des mouches (Le Temps)
Rencontre avec Richard Benton (RTS - CQFD)
Im Kopf von Fruchtfliegen - Migros Magazin (auf deutsch)
The wisdom of the fly crowds (Ed Yong/National Geographic)
The world's first true aphrodisiac (NBC News)
Our European Research Councial project on the evolution of olfactory circuits (english / français)
Pseudo-pseudogenes (or "zombie genes") - RTS1 video report, Le Matin, 24heures (en français); Nature Podcast (in english)
An ant’s kiss may hide a sneaky form of communication - a comment in Science on our paper on trophallaxis and chemical communication in social insects; see also the Daily Mail and Wire